ON THE DISTRIBUTION OF VALUES OF THE TYPE $\Sigma \boldsymbol{\Sigma}\left(q^{k} t\right)$

Shigeru Takahashi

(Received September 4, 1961 and in revised form April 30, 1962)

1. Let $f(t)$ be a measurable function satisfying the conditions;

$$
\begin{equation*}
f(t+1)=f(t), \quad \int_{0}^{1} f(t) d t=0 \quad \text { and } \quad \int_{0}^{1} f^{2}(t) d t<+\infty \tag{1.1}
\end{equation*}
$$

In [1] M.Kac proved that if $f(t)$ is a function of $\operatorname{Lip} \alpha, \alpha>1 / 2$, or of bounded variation, then it is seen that, for $-\infty<\omega<+\infty$,

$$
\begin{equation*}
\lim _{n \rightarrow \infty}\left|\left\{t ; 0 \leqq t \leqq 1, \frac{1}{\sigma \sqrt{n}} \sum_{k=0}^{n-1} f\left(2^{k} t\right) \leqq \omega\right\}\right|=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\omega} e^{-u z / 2} d u, \tag{1.2}
\end{equation*}
$$

provided that the following limit is positive;

$$
\sigma^{2}=\lim _{n \rightarrow \infty} \int_{0}^{1}\left\{\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} f\left(2^{k} t\right)\right\}^{2} d t .
$$

At the end of that paper he proposed the problem to replace the sequence $\left\{2^{k}\right\}$ in (1.2) by a sequence of real numbers satisfying the Hadamard's gap condition. In this direction R.Salem and A.Zygmund proved the central limit theorem of lacunary trigonometric series (c.f. [2]). Also they showed that if $f(t)=\cos 2 \pi t$ $+\cos 4 \pi t$ and $n_{k}=2^{k}-1, k=1,2, \ldots \ldots$, then

$$
\lim _{n \rightarrow \infty}\left|\left\{t ; 0 \leqq t \leqq 1, \frac{1}{\sqrt{n}} \sum_{k=1}^{n} f\left(n_{k} t\right) \leqq \omega\right\}\right|=\frac{1}{\sqrt{\pi}} \int_{0}^{1} d x \int_{-\infty}^{\omega / 2|\cos \pi x|} e^{-u^{2} / 2} d u .
$$

In this note we consider the sequence $\left\{f\left(q^{k} t\right)\right\}$, where q is any real number greater than 1 . To state our result we need some definitions. For any measurable set A in $(-\infty, \infty)$ we define its relative measure $\mu_{R}\{A\}$ as follows;

$$
\mu_{R}\{A\}=\lim _{T \rightarrow \infty} \frac{1}{2 T}|A \cap(-T, T)|
$$

and for any measurable function $g(t)$ defined on $(-\infty, \infty)$ its relative mean $M\{g(t)\}$ as follows;

$$
M\{g(t)\}=\lim _{r \rightarrow \infty} \frac{1}{2 T} \int_{-T}^{T} g(t) d t
$$

provided the two limits exist (cf. [4]). It is easily seen that if $g(t)$ is periodic with period 1 and integrable on the interval $(0,1)$, then
$M\{g(t)\}=\int_{0} g(t) d t$, and that if $f(t)$ satisfies the condition (1.1), then for each n the set $\left\{t ; \sum_{k=0}^{n} f\left(q^{k} t\right) \leqq \omega\right\}$ has the relative measure for any q and ω.

The purpose of the present note is to prove the following
THEOREM. Let q be any real number greater than 1 and $f(t)$ satisfy the condition (1.1) and, for some $\varepsilon>0$,

$$
\begin{equation*}
\left[\int_{0}^{1}\left|f(t)-S_{n}(t)\right|^{2} d t\right]^{1,2}=O\left[(\log n)^{-(1+\epsilon)}\right], \quad \text { as } n \rightarrow+\infty \tag{1.3}
\end{equation*}
$$

where $S_{n}(t)$ denotes the n-th partial sum of the Fourier series of $f(t)$. Then the following limit

$$
\left.\sigma^{2}=\lim _{n \rightarrow \infty} M\left\{\left|\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} f\left(q^{k} t\right)\right|^{2}\right\}^{*}\right)
$$

exists and if σ^{2} is positive, we have for any ω,

$$
\lim _{n \rightarrow \infty} \mu_{R}\left\{t ; \frac{1}{\sigma \sqrt{n}} \sum_{k=0}^{n-1} f\left(q^{k} t\right) \leqq \omega\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\omega} e^{-u z_{2}} d u
$$

REmARK 1. If q^{k} is an irrational number for any positive integer k, then we have $\sigma^{2}=\int_{0}^{1}\{f(t)\}^{2} d t$ (cf. the proof of Lemma 1).

REmARK 2. If $q=2$, then we have, for each n,

$$
\mu_{R}\left\{t ; \frac{1}{\sigma \sqrt{n}} \sum_{k=0}^{n-1} f\left(q^{k} t\right) \leqq \omega\right\}=\left|\left\{t ; 0 \leqq t \leqq 1, \frac{1}{\sigma \sqrt{n}} \sum_{k=0}^{n-1} f\left(q^{k} t\right) \leqq \omega\right\}\right| .
$$

Hence if $\sigma^{2}>0$, then (1.2) holds under the condition (1.3) which is weaker than that of M.Kac.

To prove (1.2) Kac approximated $\Sigma f\left(2^{k} t\right)$ by sums of independent functions using the system of Rademacher functions. To prove our theorem we approximate $\Sigma f\left(q^{k} t\right)$ by sums of gap sequences with infinite gaps (cf. [3]).
2. From now on let $f(t)$ and q satisfy the conditions of the theorm. Further without loss of generality we may assume that the Fourier series of $f(t)$ contains cosine terms only. This assumption is introduced solely for the purpose of shortening the formulas. Let us put

$$
f(t) \sim \sum_{k=1}^{\infty} a_{k} \cos 2 \pi k t, \quad \text { and } \quad S_{n}(t)=\sum_{k=1}^{n} a_{k} \cos 2 \pi k t .
$$

From (1.3) it is seen that

[^0]\[

$$
\begin{equation*}
\left[\int_{0}^{1}\left|f(t)-S_{n}(t)\right|^{2} d t\right]^{1 / 2}=\left(\frac{1}{2} \sum_{k>n} a_{k}^{2}\right)^{1 / 2} \leqq A(\log n)^{-(1+\epsilon)} .^{*)} \tag{2.1}
\end{equation*}
$$

\]

Further let us put, for $k=0,1, \cdots \ldots, n$ and $n=1,2, \cdots \ldots$,

$$
\begin{equation*}
N_{k, n}=k\left[n^{\beta}\right], N_{k, n}^{\prime}=N_{k+1, n}-\left[\log ^{2} n\right], \tag{2.2}
\end{equation*}
$$

$$
\begin{equation*}
T_{k, n}(t)=\sum_{l=N_{k, n}}^{N_{k, n}^{\prime}} g_{n}\left(q^{l} t\right), \quad \text { and } \quad R_{k, n}(t)=\sum_{N_{k}^{\prime}, n<l<N_{k+l, n}} g_{n}\left(q^{l} t\right), \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{n}(t)=S_{\left[n^{\beta / 2}\right]}(t), \tag{2.4}
\end{equation*}
$$

and β is a constant such that

$$
\begin{equation*}
0<\beta<1 / 3 . \tag{2.5}
\end{equation*}
$$

Then we have

$$
\begin{equation*}
\left|g_{n}(t)\right| \leqq \sum_{k=1}^{n^{\beta / 2}}\left|a_{k}\right| \leqq\left(\sum_{k=1}^{\infty} a_{k}^{2}\right)^{1 / 2} n^{\beta / 4} \leqq A n^{\beta / 4} \tag{2.6}
\end{equation*}
$$

Lemma 1. The following limit exists;

$$
\sigma^{2}=\lim _{n \rightarrow \infty} M\left\{\left|\frac{1}{\sqrt{n}} \sum_{k=0}^{n-1} f\left(q^{k} t\right)\right|^{2}\right\} .
$$

Proof. We have

$$
\begin{aligned}
M\left\{\left|\frac{1}{\sqrt{ } n} \sum_{k=0}^{n-1} f\left(q^{k} t\right)\right|^{2}\right\} & =M\left\{f^{2}(t)\right\}+\frac{2}{n} \sum_{r=1}^{n-1} \sum_{k=0}^{n-1-r} M\left\{f\left(q^{k} t\right) f\left(q^{k+r} t\right)\right\} \\
& =\int_{0}^{1} f^{2}(t) d t+2 \sum_{r=1}^{n-1}\left(1-\frac{r}{n}\right) M\left\{f(t) f\left(q^{\gamma} t\right)\right\} .
\end{aligned}
$$

By (2. 1), we have

$$
\left|M\left\{f(t) f\left(q^{r} t\right)\right\}\right|=\frac{1}{2}\left|\sum_{m=k q^{r}} a_{m} a_{k}\right| \leqq\left(\sum_{k=1}^{\infty} a_{k}^{2}\right)^{1 / 2}\left(\sum_{m \geqq q^{r}} a_{m}^{2}\right)^{1 / 2} \leqq A r^{-(1+\epsilon)} .
$$

Hence $\sum_{r}\left|M\left\{f(t) f\left(q^{r} t\right)\right\}\right|<+\infty$, and this proves the lemma.
Lemma 2. We have

$$
\lim _{n \rightarrow \infty} M\left\{\left|\frac{1}{\sqrt{N_{n, n}}} \sum_{k=0}^{N_{n, n}-1} f\left(q^{k} t\right)-\frac{1}{\sqrt{N_{n, n}}} \sum_{k=0}^{n-1} T_{k, n}(t)\right|^{2}\right\}=0
$$

and

[^1]$$
\lim _{n \rightarrow \infty} M\left\{\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} T_{k, n}^{2}(t)\right\}=\sigma^{2}
$$

Proof. We have

$$
\begin{gathered}
M\left[\left|\frac{1}{\sqrt{N_{n, n}}} \sum_{k=0}^{N_{n, n}-1}\left\{f\left(q^{k} t\right)-g_{n}\left(q^{k} t\right)\right\}\right|^{2}\right] \\
\leqq \int_{0}^{1}\left|f(t)-g_{n}(t)\right|^{2} d t+2 \sum_{r=1}^{N_{n, n}-1}\left|M\left[\left\{f(t)-g_{n}(t)\right\}\left\{f\left(q^{r} t\right)-g_{n}\left(q^{r} t\right)\right\}\right]\right| .
\end{gathered}
$$

By (2. 1) and (2. 4), we have

$$
\int_{0}^{1}\left|f(t)-g_{n}(t)\right|^{2} d t=\frac{1}{2} \sum_{k>n^{3 / 2}} a_{k}^{2},
$$

and

$$
\left|M\left[\left\{f(t)-g_{n}(t)\right\}\left\{f\left(q^{\tau} t\right)-g_{n}\left(q^{\tau} t\right)\right\}\right]\right|=\left|\frac{1}{2} \sum_{\substack{k>n^{\beta / 2} \\ m=k q^{\gamma}}} a_{m} a_{k}\right| \leqq A\left(\sum_{k>n^{\beta / 2}} a_{k}^{2}\right)^{1 / 2} r^{-(1+\varepsilon)} .
$$

Since $\sum_{k>n^{\beta / 2}} a_{k}^{2} \rightarrow 0$ as $n \rightarrow+\infty$, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} M\left[\left|\frac{1}{\sqrt{N_{n, n}}} \sum_{k=0}^{N_{n, n-1}}\left\{f\left(q^{k} t\right)-g_{n}\left(q^{k} t\right)\right\}\right|^{2}\right]=0 \tag{2.7}
\end{equation*}
$$

On the other hand from (2.3), we have

$$
\begin{equation*}
\sum_{k=0}^{N_{n n n}-1} g_{n}\left(q^{k} t\right)-\sum_{k=0}^{n-1} T_{k, n}(t)=\sum_{k=0}^{n-1} R_{k, n}(t) . \tag{2.8}
\end{equation*}
$$

The maximum frequency of cosine terms of $R_{k, n}(t)$ is $q^{N}{ }_{k+1}, n^{-1}\left[n^{\beta / 2}\right]$ and the minimum frequency of terms of $R_{k+1, n}(t)$ is $q^{N_{k+1, n^{\prime}}}$, and by (2. 2), $q^{N_{k+1, n^{\prime}}{ }^{\prime}}$ $>q^{N_{k+1}, n^{-1}}\left[n^{\beta_{i}}\right]$ if $n>n_{0}$. Therefore the sequence $\left\{R_{k, n}(t)\right\}, k=0,1, \cdots \cdots, n-1$, is orthogonal on $(-\infty,+\infty)$ with respect to the relative measure if $n>n_{0}$.*) Further we have, by (2. 3), (2. 6) and (2. 2),

$$
R_{k, n}^{2}(t) \leqq A\left(N_{k+1, n}-N_{k, n}\right)^{2} n^{\beta / 2} \leqq A n^{\beta / 2} \log ^{4} n .
$$

Hence we have, by (2. 5),

$$
\begin{equation*}
M\left\{\left|\frac{1}{\sqrt{N_{n, n}}} \sum_{k=0}^{n-1} R_{k, n}(t)\right|^{2}\right\}=\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} M\left\{R_{k, n}^{\mathbf{2},(t)\}}\right. \tag{2.9}
\end{equation*}
$$

*) We say that $f(t)$ and $g(t)$ are orthogonal on $(-\infty, \infty)$ with respect to the relative measure if $M\{g(t) f(t)=0$.

$$
\leqq A \frac{n^{1+\beta / 2}}{n^{1+\beta}}\left(\log ^{4} n\right)=o(1), \quad \text { as } n \rightarrow+\infty
$$

By (2. 7), (2. 8), (2.9) and the Minkowski's inequality, we can prove the first part of the lemma. By Lemma 1 and the relation just proved it is seen that

$$
\lim _{n \rightarrow \infty} M\left\{\left|\frac{1}{\sqrt{N_{n, n}}} \sum_{k=0}^{n-1} T_{k, n}(t)\right|^{2}\right\}=\sigma^{2}
$$

In the same way as $\left\{R_{k, n}(t)\right\}$ we can see that $\left\{T_{k \cdot n}(t)\right\} \quad k=0,1, \cdots \cdots, n-1$, is orthogonal on the interval $(-\infty, \infty)$ with respect to the relative measure if $n>n_{0}$. Hence we have

$$
\lim _{n \rightarrow \infty} M\left\{\left|\frac{1}{\sqrt{N_{n, n}}} \sum_{k=0}^{n-1} T_{k, n}(t)\right|^{2}\right\}=\lim _{n \rightarrow \infty} \frac{1}{N_{n, n}} \sum_{k=0}^{n-1} M\left\{T_{k, n}^{2}(t)\right\}=\sigma^{2} .
$$

This is the second part of the lemma.
3. Lemma 3. We have

$$
\lim _{n \rightarrow \infty} M\left\{\left|\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} T_{k, n}^{2}(t)-\sigma^{2}\right|^{2}\right\}=0
$$

Proof. We have, by (2. 3) and (2. 4),

$$
\begin{aligned}
T_{k, n}^{2}(t) & =\sum_{l=N_{k, n}}^{N_{k}^{\prime}, n} g_{n}\left(q^{l} t\right)+2 \sum_{r=1}^{N_{0, n}^{\prime}} \sum_{l=N_{k, n}}^{N_{k, n}^{\prime}-r} g_{n}\left(q^{l} t\right) g_{n}\left(q^{l+r} t\right) \\
g_{n}^{2}\left(q^{l} t\right) & =\frac{1}{2} \sum_{s=1}^{\left[n^{\beta / 2}\right]} a_{s}^{2}\left\{1+\cos 4 \pi s q^{l} t\right\} \\
& +\sum_{0<s<m \leqq n^{\beta / 2}} a_{m} a_{s}\left\{\cos 2 \pi q^{l}(m-s) t+\cos 2 \pi q^{l}(m+s) t\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
& g_{n}\left(q^{l} t\right) g_{n}\left(q^{l+r} t\right)=\frac{1}{2} \sum_{\substack{m=s q^{r} \\
0<m, s \leq n^{\beta / 2}}} a_{m} a_{s}\left\{1+\cos 4 \pi q^{l} m t\right\} \\
& +\frac{1}{2} \sum_{\substack{0<m, s \leq n \\
0<\left|m-s q^{\prime}\right|<1}} a_{m} a_{s}\left\{\cos 2 \pi q^{l}\left(m-s q^{r}\right) t+\cos 2 \pi q^{l}\left(m+s q^{r}\right) t\right\} \\
& +\frac{1}{2} \sum_{\substack{0<m, s \leq n^{\beta, 2} \\
\left|m-s q^{r}\right| \geqq 1}} a_{m} a_{s}\left\{\cos 2 \pi q^{l}\left(m-s q^{r}\right) t+\cos 2 \pi q^{l}\left(m+s q^{r}\right) t\right\}
\end{aligned}
$$

and then we can write $T_{k, n}^{2}(t)$ in the following form

$$
\begin{equation*}
T_{k, n}^{2}(t)=M\left\{T_{k, n}^{2}(t)\right\}+U_{k, n}(t)+V_{k, n}(t) \tag{3.1}
\end{equation*}
$$

where
and $U_{k, n}(t)$ is the sum of cosine terms whose frequencies are not less than $q^{N_{k, n}}$ and not greater than $2 q^{N k^{\prime}, n}\left[n^{\beta / 2}\right]$. Therefore $\left\{U_{k, n}(t)\right\}, k=0,1,2, \ldots \ldots, n-1$, is ort hogonal on $(-\infty,+\infty)$ with respect to the relative measure if $n>n_{0}$. On the other hand from the definition of $U_{k, n}(t)$ and (2.3) (2.4), we have

$$
\left|U_{k, n}(t)\right| \leqq\left(N_{k, n}^{\prime}-N_{k, n}\right)^{2}\left(\sum_{k=1}^{n^{\beta / 2}}\left|a_{k}\right|\right)^{2} \leqq n^{5 \beta / 2}\left(\sum_{k=1}^{n^{\beta / 2}} a_{k}^{2}\right)
$$

Since $\left\{U_{k, n}(t)\right\}$ is orthogonal, we have ,by (2.5) and the above relation,

$$
\begin{align*}
& M\left\{\left|\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} U_{k, n}(t)\right|^{2}\right\}=\frac{1}{N_{n, n}^{2}} \sum_{k=0}^{n-1} M\left\{U_{k, n}^{2}(t)\right\} \tag{3.3}\\
& \leqq A \frac{n^{1+5 \beta}}{n^{2+5 \beta}}=o(1), \quad \text { as } n \rightarrow+\infty .
\end{align*}
$$

In the same way we have, for any fixed θ and r such that $\theta \neq 0$ and $0<r$ $<N_{0, n}^{\prime}$,

$$
\begin{aligned}
M\left\{\left|\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} \sum_{l=N_{k, n}}^{N_{k}^{\prime}-r} \cos 2 \pi q^{l} \theta t\right|^{2}\right\}= & \frac{1}{N_{n, n}^{2}} \sum_{k=0}^{n-1} M\left\{\left|\sum_{l=N_{k}, n}^{N_{k, n}^{\prime}-r} \cos 2 \pi q^{l} \theta t\right|^{2}\right\} \\
& <A \frac{n((x l, n)}{n^{2+2 \beta}}<A n^{-(1+\beta)}, \quad \text { if } n>n_{0}
\end{aligned}
$$

Changing the order of summation and apply the Minkowski's inequality to (3. 2), we have, by (2.1) and the above relation,

$$
\begin{align*}
& M\left\{\left|\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} V_{k, n}(t)\right|^{2}\right\}^{1 / 2} \tag{3.4}\\
& \leqq \sum_{r=1}^{N_{0}^{\prime}, n} \sum_{\substack{0<m, s \leq n \\
0<|m| z s q \mid<1}}\left|a_{m} a_{s}\right| M\left\{\left|\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} \sum_{\substack{n=N_{k}, n}}^{N_{k}^{\prime}, n^{-r}} \cos 2 \pi q^{l}\left(m-s q^{r}\right) t\right|^{2}\right\}^{1 / 2} \\
& \leqq A n^{-(1+\beta) / 2} \sum_{r=1}^{\infty} \sum_{\substack{\left.0<m, s \leq \leq 1 / 2 \\
0<m=s q^{r}\right]<1}}\left|a_{m} a_{s}\right| \leqq A n^{-(1+\beta) / 2} \sum_{r=1}^{\infty} \sum_{s=1}^{\infty}\left|a_{s}\right|\left\{\left|a_{\left[s r^{\prime}\right]}\right|+\left|a_{\left[s q^{r}\right]+1}\right|\right\} \\
& \leqq A n^{-(1+\beta) / 2} \sum_{r=1}^{\infty}\left(\sum_{s=1}^{\infty} a_{s}^{2}\right)^{1 / 2}\left(\sum_{m \geq\left[q^{r}\right]} a_{m}^{2}\right)^{1 / 2} \leqq A n^{-(1+\beta) / 2} \sum_{r=1}^{\infty} r^{-(1+\varepsilon)}=o(1),
\end{align*}
$$

as $n \rightarrow+\infty$.
From (3. 1), (3. 3) and (3. 4), it is seen that

$$
\lim _{n \rightarrow \infty} M\left[\left|\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} T_{k, n}^{2}(t)-\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} M\left\{T_{k, n}^{2}(t)\right\}\right|^{2}\right]=0 .
$$

Thus by Lemma 2, we can prove the lemma.
Let us put for any real number λ,

$$
\begin{equation*}
P_{n}(t, \lambda)=\prod_{k=0}^{n-1}\left\{1+\lambda \frac{T_{k, n}(t)}{\sqrt{N_{n, n}}}\right\} . \tag{3.5}
\end{equation*}
$$

Then we have the following
Lemma 4. There exists an integer n_{0} depending only on q such that $n>n_{0}$ implies

$$
M\left\{\left|P_{n}(t, \lambda)\right|^{2}\right\} \leqq e^{\lambda^{2} A}, \text { and } \quad M\left\{P_{n}(t, \lambda)\right\}=1 .
$$

Proof. By the definition of $T_{k, n}(t)$ and Lemma 2, we have

$$
M\left\{\frac{T_{k, n}^{2}(t)}{\left[n^{\beta}\right]}\right\}=M\left\{\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} T_{k, n}^{2}(t)\right\} \rightarrow \sigma^{2}, \quad \text { as } n \rightarrow+\infty .
$$

Further by (2.1) and (3. 2), we have

$$
\begin{aligned}
& \left|V_{k, n}(t)\right| \leqq \sum_{n=1}^{N_{0, k}^{\prime}} \sum_{l=N_{k, n}, n}^{N_{k, n}^{\prime}, n} \sum_{\substack{0<m, s \leq n \\
0<\left\langle m \leq s, n_{r}\right|<1}}\left|a_{m} a_{s}\right| \\
& \quad \leqq A n^{\beta} \sum_{r=1}^{\infty}\left\{\sum_{s=1}^{\infty} a_{8}^{2}\right\}^{1 / 2}\left\{\sum_{m>q r-1} a_{m}^{2}\right\}^{1 / 2} \leqq A n^{\beta} .
\end{aligned}
$$

Hence we have, by (3.1) and Lemma 2 and the above relations,

$$
\frac{T_{k, n}^{2}(t)}{N_{n, n}} \leqq \frac{A}{n}+\frac{U_{k, n}(t)}{N_{n, n}} .
$$

This implies, by (3. 5),

$$
\begin{equation*}
\left|P_{n}(t, \lambda)\right|^{2} \leqq \prod_{k=0}^{n-1}\left\{1+\frac{\lambda^{2} A}{n}+\frac{\lambda^{2} U_{k, n}(t)}{N_{n, n}}\right\} \tag{3.6}
\end{equation*}
$$

Now let $d_{j} \cos 2 \pi u_{j} t$ be a term of $U_{j_{n} n}(t)$, then $q^{N_{j, n}} \leqq u_{j} \leqq 2 n^{\beta / 2} q^{N^{\prime}, n, n}$. Therefore by (2.2), it follows that for any $k<n$,

$$
\begin{aligned}
u_{k}-\sum_{j=0}^{k-1} u_{j} & \geqq q^{N_{k, n}}-2 n^{\beta / 2} \sum_{j=0}^{k-1} q^{N_{j, n}^{\prime}} \\
& \geqq q^{N_{k, n}}\left(1-2 n^{\beta / 2} q^{-\left[\log ^{2} n\right]} \sum_{j=0}^{k-1} q^{-(k-1-j)\left[n^{\beta /}\right]}\right)>0, \quad \text { if } n>n_{0} .
\end{aligned}
$$

This implies that for any $0 \leqq j_{0}<j_{1}<\ldots \ldots .<j_{l}<n$, we have

$$
M\left\{\prod_{m=0}^{l} \cos 2 \pi u_{j_{m}} t\right\}=0, \quad \text { for } n>n_{0}
$$

Thus we have

$$
\begin{aligned}
& M\left\{\left|P_{n}(t, \lambda)\right|^{2}\right\} \leqq M\left[\prod_{k=0}^{n-1}\left\{1+\lambda^{2} \frac{A}{n}+\lambda^{2} \frac{U_{k, n}(t)}{N_{n, n}}\right\}\right] \\
& =\left(1+\lambda^{2} \frac{A}{n}\right)^{n} \leqq e^{2^{2} A}, \quad \text { for } n>n_{0} .
\end{aligned}
$$

In the same way we can prove the second assertion of the lemma.
4. Lemma 5. If $\sigma^{2}>0$, then we have for any fixed λ,

$$
\lim _{n \rightarrow \infty} M\left[\exp \left\{\frac{i \lambda}{\sigma \sqrt{N_{n, n}}} \sum_{k=0}^{n-1} T_{k, n}(t)\right\}\right]=e^{-\lambda^{2}, 2}
$$

Proof. If we put

$$
E_{n}=\left\{t ;\left|\frac{1}{N_{n, n}} \sum_{k=0}^{n-1} T_{k, n}^{2}(t)-\sigma^{2}\right|<1\right\},
$$

then by Lemma 3 and the Tchebyschev's inequality, it follows that

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu_{R}\left\{E_{n}\right\}=1 \tag{4.1}
\end{equation*}
$$

By (2. 3), (2. 5) and (2. 6), we have

$$
\begin{equation*}
\operatorname{Max}_{0 \leqq k<n}\left|\frac{T_{k, n}(t)}{\sqrt{N_{n, n}}}\right| \leqq A n^{-1 / 2+3 \beta / 4}=o(1), \quad \text { as } n \rightarrow+\infty \tag{4.2}
\end{equation*}
$$

Therefore if $t \in E_{n}$, then it is seen that

$$
\begin{equation*}
\sum_{k=0}^{n-1}\left|\frac{T_{k, n}(t)}{\sqrt{N_{n, n}}}\right|^{3} \leqq A \operatorname{Max}_{0 \leqq k<n}\left|\frac{T_{k, n}^{2}(t)}{\sqrt{N_{n, n}}}\right|=C_{n}=o(1), \quad \text { as } n \rightarrow+\infty \tag{4.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|P_{n}\left(t, \frac{\lambda}{\sigma}\right)\right|^{2} \leqq \prod_{k=0}^{n-1}\left(1+\lambda^{2} \frac{T_{k, n}^{2}(t)}{\sigma^{2} N_{n, n}}\right) \leqq e^{\lambda\left(\left(1+\sigma^{2}\right) / \sigma^{2}\right.} . \tag{4.4}
\end{equation*}
$$

We have by (4. 1) and the fact that the integrand is less than one,

$$
\begin{aligned}
\mid M[\exp & \left.\left\{\frac{i \lambda}{\sigma \sqrt{N_{n, n}}} \sum_{k=0}^{n-1} T_{k, n}(t)\right\}\right] \\
& \left.-\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{(-T, T) \cap E_{n}} \exp \left\{\frac{i \lambda}{\sigma \sqrt{N_{n, n}}} \sum_{k=0}^{n-1} T_{k, n}(t)\right\} d t \right\rvert\, \leqq \mu_{R}\left(E_{n}^{\prime}\right),
\end{aligned}
$$

where $E_{n}^{\prime}=(-\infty, \infty)-E_{n}$ and $\mu_{R}\left(E_{n}^{\prime}\right) \rightarrow 0$, as $n \rightarrow+\infty$.
Using the relation $\exp z=(1+z) \exp \left\{z^{2} / 2+O\left(|z|^{3}\right)\right\}$ as $|z| \rightarrow 0$, and (4.2), (4. 3) and (4. 4), we have

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{(-T, T) \cap E_{n}} \exp \left\{\frac{i \lambda}{\sigma \sqrt{N_{n, n}}} \sum_{k=0}^{n-1} T_{k \cdot n}(t)\right\} d t
$$

$$
=\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{(-T, T) \cap E_{n}} P_{n}\left(t, \frac{\lambda}{\sigma}\right) \exp \left\{\frac{-\lambda^{2}}{2 \sigma^{2} N_{n, n}} \sum_{k=0}^{n-1} T_{k, n}^{2}(t)\right\} d t+o(1)
$$

$$
\text { as } n \rightarrow+\infty
$$

By (4. 4) and (4. 1), it is seen that if $t \in E_{n}$, then

$$
\left|P_{n}\left(t, \frac{\lambda}{\sigma}\right)\left[\exp \left\{\frac{-\lambda^{2}}{2 \sigma^{2} N_{n, n}} \sum_{k=0}^{n-1} T_{k, n}^{2}(t)\right\}-e^{-\lambda^{2} / 2}\right]\right| \leqq B_{\lambda}\left|\frac{1}{\sigma^{2} N_{n, n}} \sum_{k=0}^{n-1} T_{k, n}^{2}(t)-1\right|,
$$

where B_{λ} is a constant depending on λ.
By Lemma 3, the relative mean of the right hand side of the above formula tends to zero as $n \rightarrow+\infty$. Hence for the proof of lemma it is sufficient to show that

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{(-T, r) \cap E_{n}} P_{n}\left(t, \frac{\lambda}{\sigma}\right) d t=1+o(1), \quad \text { as } n \rightarrow+\infty
$$

and by the second assertion of Lemma 4, the above relation reduces to

$$
\lim _{T \rightarrow \infty} \frac{1}{2 T} \int_{(-T, T) \cap E_{n}^{\prime}}^{N} P_{n}\left(t, \frac{\lambda}{\sigma}\right) d t=o(1), \quad \text { as } n \rightarrow+\infty
$$

By (4. 1) and the first part part of Lemma 4, we have

$$
\left|\lim _{r \rightarrow \infty} \frac{1}{2 T} \int_{(-T, T) \cap E_{n}^{\prime}} P_{n}\left(t, \frac{\lambda}{\sigma}\right) d t\right| \leqq\left[M\left\{\left\lvert\, P_{n}\left(t, \frac{\lambda}{\sigma}\right)^{2}\right.\right\} \mu_{R}\left\{E_{n}^{\prime}\right\}\right]^{1 / 2}=o(1)
$$

as $n \rightarrow+\infty$.
Lemma 6. If $\sigma^{2}>0$, then we have for any ω,

$$
\lim _{n \rightarrow \infty} \mu_{R}\left\{t ; \frac{1}{\sigma \sqrt{N_{n, n}}} \sum_{k=0}^{n-1} T_{k, n}(t) \leqq \omega\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\omega} e^{-u^{2} / 2} d u
$$

Proof. Let us put

$$
Q_{n}(t)=\frac{1}{\sigma \sqrt{N_{n, n}}} \sum_{k=0}^{n-1} T_{k, n}(t)
$$

Further let $\phi_{\varepsilon}^{+}(t)$ (or $\left.\boldsymbol{\varphi}_{\varepsilon}^{-}(t)\right)$ be the familar trapezoidal function equal to 1 in the interval $\left(\omega_{1}, \omega_{2}\right)$ (or $\left(\omega_{1}+\varepsilon, \omega_{2}-\varepsilon\right)$) vanishing outside the interval ($\omega_{1}-\varepsilon$, $\omega_{2}+\varepsilon$) (or $\left(\omega_{1}, \omega_{2}\right)$) and linear elsewhere, where ε is a real number such that $0<2 \varepsilon<\omega_{2}-\omega_{1}$. Then we have

$$
\begin{equation*}
\left.M\left\{\boldsymbol{\varphi}_{\varepsilon}^{-}\left(Q_{n}(t)\right)\right\} \leqq \mu_{R}\left\{t ; \omega_{1} \leqq Q_{n}(t) \leqq \omega_{2}\right\} \leqq M\left\{\boldsymbol{\varphi}_{\varepsilon}^{+}\left(Q_{n}(t)\right)\right\} \quad{ }^{*}\right) \tag{4.5}
\end{equation*}
$$

If we put

[^2]$$
\Phi_{\varepsilon}^{ \pm}(\xi)=\int_{-\infty}^{\infty} \varphi_{\varepsilon}^{ \pm}(t) e^{-u \xi} d t
$$
then $\Phi_{\varepsilon}^{ \pm}(\xi)$ are absolutely integrable on $(-\infty, \infty)$. Therefore we have
\[

$$
\begin{equation*}
M\left\{\varphi_{\varepsilon}^{ \pm}\left(Q_{n}(t)\right)\right\}=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi_{\varepsilon}^{ \pm}(\xi) M\left[\exp \left\{i \xi Q_{n}(t)\right\}\right] d \xi \tag{4.6}
\end{equation*}
$$

\]

Since $\Phi_{\varepsilon}^{ \pm}(\xi)$ are absolutely integrable and $M\left[\exp \left\{i \xi Q_{n}(t)\right\}\right]$ converges bounbedly to $e^{-\xi^{2} / 2}$ as $n \rightarrow+\infty$, we have by (4.5), (4.6) and the Prancherel's relation,

$$
\begin{aligned}
& \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \varphi_{\cdot}^{-}(t) e^{-t t^{2} / 2} d t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi_{\varepsilon}^{-}(\xi) e^{-\xi^{\xi^{2}} 2} d \xi \\
& \leqq \lim _{n \rightarrow \infty} \mu_{R}\left\{t ; \omega_{1} \leqq Q_{n}(t) \leqq \omega_{2}\right\} \leqq \varlimsup_{n \rightarrow \infty} \mu_{R}\left\{t ; \omega_{1} \leqq Q_{n}(t) \leqq \omega_{2}\right\} \\
& \leqq \frac{1}{2 \pi} \int_{-\infty}^{\infty} \Phi_{\varepsilon}^{+}(\xi) e^{-\xi^{\xi} / 2} d \xi=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \phi_{\varepsilon}^{+}(t) e^{-t t^{2} / 2} d t .
\end{aligned}
$$

Since ε is arbitrary we can prove the lemma.
5. Proof of the Theorem. By Lemma 1, we can prove the first part of the theorem. By the first assertion of Lemma 2 and Lemma 6, we obtain

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \mu_{R}\left\{t ; \frac{1}{\sigma \sqrt{N_{n, n}}} \sum_{k=0}^{N_{n, n}-1} f\left(q^{k} t\right) \leqq \omega\right\}=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\omega} e^{-u z / 2} d u . \tag{5.1}
\end{equation*}
$$

On the other hand we have, by (2. 2),

$$
\lim _{n \rightarrow \infty} \frac{N_{n+1, n+1}}{N_{n, n}}=1
$$

By the above relation and Lemma 1 , we have for any m such that $N_{n, n}<m$ $\leqq N_{n+1, n+1}$

$$
\begin{aligned}
M\left\{\left\lvert\, \frac{1}{\sqrt{N_{n, n}}} \sum_{k=N_{n, n}}^{m} f\left(q^{k} t\right)^{2}\right.\right\} & =M\left\{\left|\frac{1}{\sqrt{N_{n, n}}} \sum_{k=0}^{m-N_{n, n}} f\left(q^{k} t\right)\right|^{2}\right\} \\
& \leqq A \frac{N_{n+1, n+1}-N_{n, n}}{N_{n, n}} \rightarrow 0, \quad \text { as } m \rightarrow+\infty
\end{aligned}
$$

and

$$
\begin{aligned}
& M\left\{\left|\left(\frac{1}{\sqrt{N_{n, n}}}-\frac{1}{\sqrt{m}}\right) \sum_{k=0}^{m-1} f\left(q^{k} t\right)\right|^{2}\right\} \leqq A\left|\frac{1}{\sqrt{N_{n, n}}}-\frac{1}{\sqrt{m}}\right|^{2} m=o(1) \\
& \text { as } m \rightarrow+\infty .
\end{aligned}
$$

Hence we have

$$
M\left\{\left|\frac{1}{\sqrt{m}} \sum_{k=0}^{m-1} f\left(q^{k} t\right)-\frac{1}{\sqrt{N_{n, n}}} \sum_{k=0}^{N_{n, n}-1} f\left(q^{k} t\right)\right|^{2}\right\}=o(1), \quad \text { as } m \rightarrow+\infty
$$

By the above relation and (5. 1), we can prove the theorem.
The author thanks Professors S.Izumi and T.Tsuchikura for their help and corrections.

References

[1] M. Kac, On the distribution of values of sums of the type $\Sigma f\left(2^{k} t\right)$, Ann. Math., 47 (1946), 33-49
[2] R. SAlem and A. Zygmund, On lacunary trigonometric series, I and II, Proc. Nat. Acad. U. S. A., 33(1947), 333-338 and 34(1948), 54-62.
[3] S. Takahashi, A gap sequence with gaps bigger than the Hadamard's, Tôhoku Math. Journ., 13(1961), 105-111.
[4] A. Wintner, Asymptotic distributions and infinite convolutions, Inst. for Advanced Study, Lecture, 1937-38. Princeton University.

Department of Mathematics, Kanazawa University.

[^0]: *) σ denotes a non-negative number.

[^1]: *) Now and later A will denote a constant not necessarily the same.

[^2]: $\left.{ }^{*}\right)$ Since $\boldsymbol{\rho}_{\varepsilon}^{ \pm}\left(Q_{n}(t)\right)$ are uniformly almost periodic, $M\left\{\boldsymbol{\varphi}_{\varepsilon}{ }^{ \pm}\left(Q_{n}(t)\right)\right\}$ exist.

