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1. Let/O0 be a measurable function satisfying the conditions;

(1. 1) f{t + 1) =f(t), ff(t)dt = 0 and ff(t)dt < + ~.
•Ό Jo

In [1] M.Kac proved that if f(t) is a function of Lip a, a> 1/2, or of bounded
variation, then it is seen that, for — oo < ω < + oo,

(1.2)

provided that the following limit is positive;

At the end of that paper he proposed the problem to replace the sequence {2k}
in (1. 2) by a sequence of real numbers satisfying the Hadamard's gap condition.
In this direction R.Salem and A.Zygmund proved the central limit theorem of
lacunary trigonometric series (c.f. [2]). Also they showed that if f(t) = cos 2πt
+ cos 4τrt and nk = 2k — 1, k = 1,2, ,then

Λ. I ί 1 Λ . . ) \ 1 Γ l . Γ ω/2|co8 Λ a J |

lim
n-»oo 1

In this note we consider the sequence ϊf(qkt)}, where q is any real number
greater than 1. To state our result we need some definitions. For any mea-
surable set A in ( - oo? oo) we define its relative measure μB{A} as follows

μB{A}=\im^\Af\(-T,T)\,
T—>oo £j Ji

and for any measurable function g(t) defined on (— oo? oo) its relative mean
M{g(t)} as follows;

M{g(t)} = l i m ^ Γ g(t)dt,
-T

provided the two limits exist (cf. [4]). It is easily seen that if g(t) is
periodic with period 1 and integrable on the interval (0, 1), then
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M{g(t)} = I g(t)dt, and that if f(t) satisfies the condition (1.1), then for each n

n

the set { t ^2f(qkt) ^ ω] has the relative measure for any q and ω.
A;=0

The purpose of the present note is to prove the following

THEOREM. Let q be any real number greater than 1 andf(t) satisfy the
condition (1. 1) and, for some £ > 0,

(1. 3) [ £ I flt) - Sn(t) I >dt] ̂  = 0 [(log «)-«+ >], as n - + «>,

where Sn(t) denotes the n-th partial sum of the Fourier series of f{t). Then
the following limit

exists and if σ2 is positive, we have for any ω,

linm \t -~ Σ A<ft) < «[ = -^r Γ e'US2 du.

REMARK 1. If qk is an irrational number for any positive integer k, then

we have σ2 = / {f(t)}2dt (cf. the proof of Lemma 1).
Jo

REMARK 2. If q = 2, then we have, for each n,

Hence if σ2 > 0, then (1. 2) holds under the conditional. 3) which is weaker
than that of M.Kac.

To prove (1. 2) Kac approximated Σ/(2*t) by sums of independent func-
tions using the system of Rademacher functions. To prove our theorem we
approximate Σf(qkt) by sums of gap sequences with infinite gaps (cf. [3]).

2. From now on let fit) and q satisfy the conditions of the theorm. Further
without loss of generality we may assume that the Fourier series of f{t) con-
tains cosine terms only. This assumption is introduced solely for the purpose of
shortening the formulas. Let us put

f(f) ~~ Σ akcos2τrkt, and Sn(t) — ^ akcos2τrkt.

From (1. 3) it is seen that

*) σ denotes a non-negative number.
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r 1 ηl/2 , -, χl/2

[f \βt) - Sn(t)\ %dt\ = ( y Σ β ί ) ^^dog «)

Further let us put, for k = 0,1, ,# and n = 1,2, ,

(2. 2) iV*,w = *[*'], N \ n = N fc+1)W - [log1*],

(2. 3) Tfc)Λ(ί) = Σ ^(g'ί), and Λ i f t(ί) = £

where

(2.4) g»(.t)

and /9 is a constant such that

(2. 5) 0 < β < 1/3.

Then we have
nPl2 eβ 1/2

(2. 6) 10.(01 ̂  Σ WΛ ̂  (Σβί «*'*

LEMMA 1. The following limit exists

P R O O F . We have

M

fciBθ r = 1 fc=0

By (2. 1), we have

= ff\t)dt + 2Σ(l - £
Jo r = 1 \ "

^ (Σ

Hence Σ I-WίΛO/(ί^)} I < + °°> an<l this proves the lemma.
r

LEMMA 2. We have

!ε M = °
and

235

*) Now and later A will denote a constant not necessarily the same.
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P R O O F . We have

1 Σ

Ξ§ f \f(t) - gn{t)Ydt + 2 "£ \M[{f(t) - gn(t)}\f(qrt) - gn(grt)}]\.
JO r-X

By (2. 1) and (2. 4), we have

\X W) - 9Jt)\ιdt = \ Σ <

and

\M[{f(t) - gn(t)}{/(ft) - gn(grt)}]\ =

Since Σ ^1 -^ 0 as w-^ 4- oo, it follows that

Σ
l / 2

(2. 7) lim M

On the other hand from (2. 3), we have

Ί = 0.
J

(2. 8) "Σ gn{qH) - E

The maximum frequency of cosine terms of Rk,n(t) is qN^un ι [nβ/2 ] and the minimum
frequency of terms of Rk+l9n(t) is qNίc+ι,rΓ\ and by (2. 2), gw*+i,n+l

> qy

k+un~ι [nβ<2] Ίί n> n0. Therefore the sequence {Rk,n(t)}, k = 0,1, ,n - 1,
is orthogonal on (— oo, + oo) with respect to the relative measure if n > n^

Further we have, by (2. 3), (2. 6) and (2. 2),

# U * ) ^ ( ^ + i , » - ^ U 2 nβ*t

Hence we have, by (2. 5),

(2. 9) = xr— Σ

*) We say that f(i) and g(t) are orthogonal on (— °°, °°) with respect to the relative
measure if M{g\t)f(t) , = 0.



ON THE DISTRIBUTION O$ VALUES OF THE TYPE 2f(gkt) 237

n
,1+0/2

as

By (2. 7), (2. 8), (2. 9) and the Minkowski's inequality, we can prove the first
part of the lemma. By Lemma 1 and the relation just proved it is seen that

lim
) - " •

In the same way as {Rk%n(t)} we can see that [Tk.n(t)} k = 0, 1, ,n— 1, is
orthogonal on the interval (— oo, oo) with respect to the relative measure if
n > n0. Hence we have

lim Mi l :
/λl '

This is the second part of the lemma.

3. LEMMA 3. We have

lim M\ = 0.

PROOF. We have, by (2. 3) and (2. 4),

Σ 9nW f

and

9n(qιt)gn(qι+rt) =

2irq\m — s)t + cos 2ττq\m 4- s)t},

"mas{l + cos 4arqιtnt}

amas {cos 2πqι(m — sqr)t 4- cos 2πqι(m + sqr)t]

0<\m-sqr\<i

tfτrA{cos 2ττq\m — sqr)t + cos 2irq\m + sqr)t},

and then we can write 71;W(ί) in the following form

(3. 1) Ίl^t) = M{TΪ,n(t)} + Uktn{t) + Vk,M

where
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(3.2) *,»(*)= Σ
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Σ Σ amas c o s 2irqι{m—sqr)t,
0 < }m—sqr\ < 1

and Uk)n(t) is the sum of cosine terms whose frequencies are not less than qNkn and
not greater than 2q**>n[nβl%]. Therefore {Uk,n(t)}9 k = 0,1,2, ,n - 1, is ort-
hogonal on (— oo? -f oo) with respect to the relative measure if n > n0. On the
other hand from the definition of Ukitι(t) and (2.3) (2.4), we have

\ak I> ̂  n

Since

(3. 3)

Jfc-1

)} is orthogonal, we have ,by(2.5) and the above relation,

MI —-— Σ Uktn(t) * j = —-—
I ^n,n ka0 I i ^V W ) W kmQ

-0(1), as +
In the same way we have, for any fixed θ and r such that θ 4= 0 and 0 < r

1 n-l<n-r , 1 n-1 <„-»

Changing the order of summation and apply the Minkowski's inequality to (3. 2),
we have, by (2. 1) and the above relation,

(3.4) M( — Σ V^O

,1/2

1/2

^ Σ Σ Wmas\ M\
l

Σ cos sςfit
0< fm-

Jb-0 l -

0< lm-

I β . I {I α [
\}

( Σ <&T ̂
as
From (3. 1), (3. 3) and (3. 4), it is seen that

lim M L(O} Γl = 0.
I J
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Thus by Lemma 2, we can prove the lemma.
Let us put for any real number λ,

(3. 5)
fc-0

Then we have the following

LEMMA 4. There exists an integer n0 depending only on q such that
n> n0 implies

M{ I Pnfr,λ)12) ^ eλU, and M{Pn(t,\)} = 1.

PROOF. By the definition of Tktn(t) and Lemma 2, we have

it £
Further by (2. 1) and (3. 2), we have

WUt)\ ^Σ, Σ Σ Wmas\
0< Im-s

Σ a
m>gr-l

Hence we have, by (3. 1) and Lemma 2 and the above relations,

TJI.fr) ^ A t7fc,(Q

This implies, by (3. 5),

(3. 6) |F.fr,λ)l2 3§ Π ί
jfc-0 (

ί l

Now let djcos2τrujt be a term of C7Λnfr), then g^ - ̂ ku5^ 2nmqN'»\ Therefore
by (2. 2), it follows that for any k < n,

fc-l ft-1

J«0 j - 0

(
fc-1

1 - 2 ^ / 2 q-*°<™ J2 q-*-*-ι>t*λ > 0, if n > n0.

This implies that for any O^gjo <jι< <jι<n, we have

MIΠ cos 2τraimί I = 0, for n > n«.

Thus we have
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= ( 1+ λ2 ^ V ^ £λM, for rc > n0.

In the same way we can prove the second assertion of the lemma.

4. LEMMA 5. If σ2 > 0, then we have for any fixed λ,

lim Mίexpj

P R O O F . If we put

then by Lemma 3 and the Tchebyschev's inequality, it follows that

(4. 1) lim uLB{En] = 1.

By (2. 3), (2. 5) and (2. 6), we have

Tktn(t
(4. 2) Max

Therefore if t £ Eny then it is seen that
w-i

(4. 3) Σ
fc=0

and

(4. 4)

AMax

as n—> +

as n—* + oo(

/ \ \ 2 „ / T2 (f)\

We have by (4. 1) and the fact that the integrand is less than one,

Tk,n(t)\ dt
1

- lim ^ = r Γ
Γ->co 2 i J(_Ti

exp

where E'n = (— oo, CXD) — £ w and μR(E'n)-+ 0, as w
Using the relation exp s = (1 + s) exp {*2/2 +
(4. 3) and (4. 4), we have

as |«|->0, and (4. 2),

Γ — 2 i Λ-i ,
exp
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= lim ^
21

Pn U ~) exp
nink=0

dt

as n—> +

By (4. 4) and (4. 1), it is seen that if t € Em then

where Bχ is a constant depending on λ.
By Lemma 3, the relative mean of the right hand side of the above formula
tends to zero as n—* + oo. Hence for the proof of lemma it is sufficient to show
that

lim ^ψ [ Pn (t, —)dt = l+ o(l), as n-> 4- oo,

and by the second assertion of Lemma 4, the above relation reduces to
N

lim ^ r f Pn (t, —) dt = o(l), as n-> + oo.

By (4. 1) and the first part part of Lemma 4, we have

as

LEMMA 6. If σ2 > 0, have for any ω,

-^du-

PROOF. Let us put

Further let φt(t) ( or φϊif) ) be the familar trapezoidal function equal to 1 in the
interval (ω b ω2) (or (ωx 4- £, ω2 — θ) ) vanishing outside the interval (G>I — 6,

ω2 + 6) (or ( ωu ω2) ) and linear elsewhere, where € is a real number such that
0 < 28 < ω2 — ωlβ Then we have

(4. 5) M{φε-(Qn(t))} ^ μR{t; ωi ^ Q w « ^ ω2} ^

If we put

*) Since 9Γ(Qn(t)) are uniformly almost periodic, M{9ε±(Qn(t))} exist.
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Φf(ξ) = f φf(t)e-itξdt,

then Φf(ξ) are absolutely integrable on (— <*>, oo). Therefore we have

(4. 6) M{φ7(Qn(t))} = -±- Γ Φr(£)M[exp {iξQn(t)}λ dξ.
ΔlΓ J-co

Since φf(f) are absolutely integrable and M[exp{/£Qw(i)}] converges bounbedly
to e~^12 as n-> + oo, we have by (4. 5), (4. 6) and the PranchereΓs relation,

^ lim μR{t ωx ^ Qn(ί) ^ ω2} ^ Em μB{t ω i ^ Qn(t) ^ ω2}

Since £ is arbitrary we can prove the lemma.

5. Proof of the Theorem. By Lemma 1, we can prove the first part of
the theorem. By the first assertion of Lemma 2 and Lemma 6, we obtain

< 5

On the other hand we have, by (2. 2),

l i m μ = L

By the above relation and Lemma 1, we have for any m such that Nmn < m

t + lιTO+1 i y n>n
as m^' +

and

m = o{L),

as m-H

Hence we have
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W - l

fe ± Aft) - Ί = as

By the above relation and (5. 1), we can prove the theorem.

The author thanks Professors S.Izumi and T.Tsuchikura for their help and

corrections.
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