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1. In this note we give, in Theorem A, necessary and sufficient conditions
for a sequence of real numbers {£n} to be such that Σαn£w is absolutely
convergent whenever Σαn is summable (R, λ, K), /e g: 0. The case K = 0, i.e. (R, λ, 0)
equivalent to convergence, was dealt with by Fekete [3]. If we take \n = n in
Theorem A, then the known equivalence of (R, n, K) and (C, K) summability
yields a result due to Bosanquet [1], Theorem 3 (the case p = 0, tc > 0).

Jurkat [6], Satz 1, has given a matrix method of summability which, with
certain restrictions on λw, is equivalent to (R, λ, K) summability for all K ̂  0. We
shall employ this method of summability to give a necessary condition for
ΣI an8n I < oo whenever Σ# n is summable (R, λ, K).

In what follows we shall refer to a number of summability methods.

(i) Suppose that {λn} is a sequence of non-negative numbers increasing to
infinity. Define for tc ̂  0,

λ y <ω

If ω~~κAκ (ω) —> s (ω —> oo), then we say that Σαn is summable (R, λ, /c) to s.

(ii) If in (i) above ω takes only the values λn+1, then we say Σαn is sum-
mable (R, λ, K) to 5. For 0 < K ̂  1, Jurkat [4], Satz 2, has shown that (R, λ, *)
and (R, λ, K) summability are equivalent.

(iii) Let p^ 0 be an integer and /c = p + θ, O < 0 ^ 1 . Define
n

C°n = sn= ^ α f f l , Cκ [sm] = C5, w h e r e

/̂K i V^ A ί\ Λ V ^m-t p + l ~~ ^ m ^ p

Successive applications of this last formula with θ — 1 define C£ a further
application defines C£.

If C t̂̂ OTl/C t̂l] —>5 (w—> oo), then we say Σtfn is summable Cκ to 5.

(iv) We say Σan is summable | B | if Σ |Δί n | < oo, where
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n

tn— Σ bn,mam.
m=0

(v) L e t A " ( ω ) be defined as in (i). T h e n Σ α w is s u m m a b l e \R, λ, κ\, K^ 0,

if

f \d{ω-A*(ω)}\ <oo.

By \R, λ, 0| summability we mean X\an\ < °o.

2. For the proof of Theorem A we shall require some preliminary lem-

mas.

LEMMA 1. Let /c = p + θ(p^0 integral, 0 < θ ^ 1), and suppose that

Λn = λn +i/(λn + 1 — λn) increases. For non-integral K let |Δλ n | be monotonic and

n I Δλn I
θ increase. Then the following are equivalent

Aκ(ω) = o ( 1 ) a n d CK[sm] = Q(1)

ωκ Cκ[l]

This was proved by Jurkat [6], Satz 1.

LEMMA 2. If Aκ(ω) = o(ωκ), κ>0, then

n

sn = Σ, am = o(Λ5), where An = λn+1/(λw+1 — λw).

Lemma 2 is the limitation theorem for Riesz means (see for example Hardy

and Riesz [4], Theorem 22).

LEMMA 3. Let {un} converge, X\an\ < °o and

n->0

This follows from a result due to Chow [2], Lemma 6.

LEMMA 4. Let A and B be normal matrices. If Xanεn is summable \B\>

whenever Σαw is summable A, then

n n

PROOF. Let un = Σ an,mam, tn= Σ bn,mflπβm> and <xn = tn — £„_!. Then{wn}
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is convergent, and

W - l

where

for 0 ^ m ^ w — 1. Here (ar,m) is the reciprocal matrix obtained by solving for
an in terms of wn. Since dn,n = α̂ l», we have on applying Lemma 3,

This proves the lemma.

3. We now prove the main result.

THEOREM A. Suppose that the conditions of Lemma 1 are satisfied.
Then ΣanSn is absolutely convergent whenever Han is summable (R, λ, ΛΓ), K ̂  0,
if and only if

S|£j < oo, where An = λn+i/(λn+1 - λn).

PROOF. Necessity. By Lemma 1 we may employ Cκ summability in place
of (i?, λ, K) summability. For positive integers p, we have

1 n

P m = 0

Hence

m=0 m=0

It is readily shown by induction on r, that for integers r 2^ 1,

where

(1) c£,n = (λ n + r — λ n )(λ n + r - 1 — λn)

Thus it follows from (1) that
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n

m=0

where

Hence we have dn,n = (λB+1 - Xn)
κ/Γ(κ + 1) if 0 < K ̂  1, and

dn,n = (λn+1 - λn/(λn + p + 1 - λB)(λn+p - λn). .(λn+2 - Xn)/(p + 1)!

if /c > 1.

Let us now consider the C" transform of Σα n :

Q/Cκ[l] = X)αn,mαm, where αn,n = dn$n/Cκ[l].

Since Σ | an8n \ < oo? whenever Σαn is summable Cκ, we have by Lemma 4 that

(2) Σ|f l ί l ί . | <oo.
Now it was shown by Jurkat in the proof of Lemma 1 that

(3) 0 < a ̂  τ-r-J ̂  A, ayA constants.

Also since An increases we have |Δλn | = O(l) | Δλn_! | . Hence for

r = 2, 3,.. ., p + 1,

n 1 lΔλ n + 1 1
| Δ λ |λw + 1 - λ n | Δ λ n | |Δλ

(4) (λ^+p+i - λ»). .(λw + 2 - λ n)

Thus by (2), (3) and (4) we have

B«J <oo.

This proves the necessity. We note that the above proof can be used to esta-

blish a rather stronger result. For let us take, in Lemma 4, bn>m = (1 — Xm/\n+iγ,

μ>0. Then if Έ,an€„ is summable \R,\μ\ it is summable | B | . Hence by Lemma 4,

(5) Σ Λ ^ I α ^ S j <oo.

By (2), (3),(4) and (5) .we then have

(6) ΣΔ5-" |θ n |<oo.
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Thus (6) is necessary for Xanβn to be summable | R, λ, μ \, μ^O, whenever Έ,an

is summable Cκ.
We note that when 0 < K ̂  1, no restriction on λn is required, since Cκ is

equivalent to (R, λ, re), which is equivalent to (R> λ, K) by an earlier remark (Sec-
tion l,(ii)).

Sufficiency. Suppose that ΣΛ£|£n| < oo. Since Xan is summable (R,X,κ) and
Λn increases, we have by Lemma 2,

an =

Hence

2 | α A | =O(1) ΣAίlθnl < oo.
This proves the theorem.
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