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Introduction. A contact manifold is an odd dimensional differentiable
manifold M?"+! with a 1-form 5 over M®"*! such that n A (dnp)"<=0. If an
infinitesimal transformation X satisfies £(X)y = o, where &(X)n denotes the
Lie derivative of » by X and ¢ is a differentiable function over M*"*!, then X
is called an infinitesimal (strict if & = 0) contact transformation.

On the other hand, if there exist tensor fields ¢}, & and #; such that

7€ =1,

rank |¢}| = 2n,

¢t =0, 7,4, =0,

didi = — & + Ens,
then we say that M®"*' has (¢,£7n)-structure. Moreover, if a positive definite
Riemannian metric ¢ satisfies the following conditions,

7 = g,
GisPhbk = Gne — MM

then ¢ is called an associated Riemannian metric to the (¢,£,)-structure. M>"*!
with (¢,&n)-structure admitting an associated Riemannian metric is said to have
(¢,&m,9)-structure.

S. Sasaki [1] and Y. Hatakeyama [2] proved that if » = 5,dx’ is a 1-form
defining a contact structure, then we can find a differentiable (9,£7,9)-structure
such that 7, is the one given by the coefficients of the 1-form 7 and

!Jm¢>§‘ = ¢ij = 81"’7;:‘ - a:”?i-

A tensor ¢ has a similar property to the fundamental tensor F} of a (or
an almost) complex structure in some sense.

In a compact Kihler manifold, it is known (e.g. A. Lichnérowicz [3]) that an
infinitesimal analytic transformation X (%(X)F;j = 0) is an infinitesimal isometry
under the additional condition that X leaves the volume element, or Chern’s
2-form invariant.

The main purpose of this report is to show that, in a compact contact
manifold, if X leaves ¢ invariant, then X is an infinitesimal isometry and at
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the same time an infinitesimal strict contact transformation.
I should like to express my sincere gratitude to Prof. S. Sasaki and Mr.Y.
Hatakeyama for their valuable suggestions.

1. Elementary properties of infinitesimal transformations. In this re-
port, tensors ¢;;, ¢j, £, n; and g¢,; are those of the (¢,£7,9)-structure associated
to a given contact structure.

We begin with some simple Lemmas.

LEMMA 1. If an infinitesimal transformation X satisfies [§(X)n]; =0,
then X satisfies [§(X)$);; = 0.

PrOOF. First we notice that
1.1 dn = _;— ¢ dxt N\ da?,
and that the Lie differentiation and exterior differentiation are commutative.
Then we have easily [&(X)¢];; = 0.

LEMMA 2. If an infinitesimal transformation X satisfies [§(X)n]; = 0,
then X satisfies [§(X)E]' = 0.

PROOF. By taking the Lie derivative of (¢;; + 5,,)& = 5; we get
(d’w + mm)[ig(X)E]j =0.
Lemma 2 follows from this, since (¢;; + 7:7;) is regular.

PROPOSITION 1. Let M**! be a contact manifold. If an infinitesimal
transformation X over M*"*! satisfies two of the following conditions, then
X satisfies also the remainning one:

(1. 2) [£(Xm]. = 0,
(1. 3) [%(X)¢l; = 0,
1. 9 X : infinitesimal isometry (Killing vector).

ProoF. (i)[(1. 2) and (1. 3) > (1. 4)].
Next relations hold good

[&(X)n]; = [&(X)(gB)]; = [&H(X)gl& + il &H(X)EL.
So, by Lemma 2, we get

1. 5) [&(X)gli € = 0.
On the other hand,
[&(X)pli = (LX) glisdi + gilS(X)Pl.



418 S. TANNO

So, by Lemma 1, we get
(1. 6) [&(X)glispk = 0.
Two relations (1. 5) and (1. 6) yield
[&(X)gli(r + Em) = 0.
(1. 4) follows from this.
(i) [(1. 3) and (1. 4) — (1. 2)]. From
[£(X)n)]; = [&(X)nlid; + 0l &(X)T;,
and (1. 3), we see that
a7 [£(X)mlig; = 0.

So, X is seen to be an infinitesimal contact transformation. Moreover, if we

consider &(X)(nE) = 0, using (1. 4) we have
(1. 8) [£(X)ml:E = 0.

Hence, by (1. 7) and the last equation, we have (1. 2).

(iii) [(1. 4) and (1. 2)— (1. 3)].

This is clear. (q.e.d.)

As we see from the proof of [(1. 3) and (1. 4) — (1. 2)], if an -infinitesimal
contact transformation X is an infinitesimal isometry, then X is necessarily an
infinitesimal strict contact transformation.

However, more precisely we have

PROPOSITION 2. Let M®**! be a contact manifold. If an infinitesimal
contact transformation X preserves the volume element of the associated Rie-
mannian metric, then X is an infinitesimal strict contact transformation.

PROOF. The volume element of M+ (See [1]) is given by

n(no—])

1.9 dv =(-1) (2;!"_;11) NPsPese « Panansny AT NAZ N+ oo Ndx*" 1.

By the two relations &(X)p = o and

(1.10) [8(X)$li; = Dian; — Djom + abj,

where the last equation follows from £&(X)dn = d$(X)n = d(on), we have
(o (X))12ew0mt1 = (1 + D)oL 1uansrs

where we have put

n(n+1)
T2 (@n+l
$raetner = (— 1) ( onp | ,) M PasPuse « *Prnansil

Thus, Proposition 2 is valid.
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2. Separation Tensors. In a (or an almost) complex manifold M?** with
complex structure F}, if a tensor, for example T, satisfies

OBTA = Tifor = 0), OF = — (&8} — FiF),

then T}, is said to be pure (or hybrid) in two indices 7 and j; (K. Yano [4]).
With respect to the adapted frame (A. Lichnérowicz [5]) pure and hybrid
tensors are expressed respectively as follows :

( Thy, 0 \'\l (/O T)\-TL
\0 Tx,:/ "\ Tw O
As for a differentiable manifold AM®"*' with (¢,&7,9)-structure, M?>**' has

Ap=12....0: A =n+2N)

an orthonormal adapted frame (¢u),Em,éa; N =1,--., n: A = n + A) such that
m = PiEh, EL =& (A=2n+1)
If we operate a linear transformation to this frame given by
1 n i n P
TétE /\/TE 0 E;\, (2}
1 n i n - = —
N/"'E ,\/Z—E O &A eA
0 0 1/ \E&a E
where E" denotes a unit matrix of order #, and :* = —1, then the new

frame (e) ,e1,£) satisfies the relations
¢'€1 = iel, ¢‘€X = — Zﬁex, d)f =0.

Thus, with respect to this frame, ¢ takes the following form :

k" 0 0
0 —iE" 0].
0 0 0

We call a tensor T';; (IV;;) pure (resp. hybrid) if it has components of the
following form with respect to this frame

T;L,,, 0 0 0 N;q,_ NAA
Tij = 0 TX,I 0 > M.i = NXM O NXA
0 O TAA NAP- NAT‘- 0

In order to determine an operator analogous to Ojj of the complex -case,
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we start to decompose vector fields XY as

X' = @k — En) X" + EeX),

Y = - En)Y' + Ej(WlYL)-
Then the tensor 7';; can be decomposed as

TuX*Y' = (T + Th + Ta)X*Y"
= T8 — ) — En)XY' + T:,SuX*Y" + T Emfn X Y,
where we have put
Sid = Emdl + 8E'm —2(Emi)(Emy).

As 2n-dimensional subspace of the tangent space at arbitrary point of M?®"*!,
which is orthogonal to & has an induced almost complex structure ¢} the pure
part of T, is easily seen to be

- (% — T,
therefore, the pure part of 7T; is
- (8524 — $5gh)(3L — Em)Bt — Em) + 2T,
1 . .
= - [T ($i9) + 2En)To(Em)— ST i)

We define P%, and H%, as follows and call them the pure part separation
tensor and the hybrid part separaton tensor

2 1) 5 = — (S50 + 2Em)Eme) — i,

@ 2) = 8% — P

Furthermore, we define

(2 3) Ry = = (S + $iol],

2. 4) St = 8] — ($HERGgD) — En,)Ema),

then we have
0 Tz O 0 0 Tha

RT)=|T:, o of, ST)=|o 0 T |.

0 0 0 Ta, Tsi O

Obviously, following relations hold good
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(P*=P, H*=H, R*=R, S?=S,

2. 5) P + H = Identity, R+ S=H, RH=R, SH=3,
PH=HP=0, RS=SR=0.
2. 6) Py} = ¢4 Prigi; = 0.

PROPOSITION 3. For any infinitesimal transformation X over M®"*,
we have Pil&(X)¢]} = 0.

PROOF. This will be seen by simple calculation.
Let’s call a differentiable function ¢ such that &(X)y = oy, an associated
function to an infinitesimal contact transformation X.

THEOREM 1. Let M**' be a contact manifold and X be an infinitesi-
mal contact transformation. Then, concerning an associated function o, the
Sfollowing four conditions are mutually equivalent :

2.7 o = constant,

2. 8) [£(X)lis = obij,
2.9 [&(X)E) = — oF,
(2.10) Sil$(X)¢l; = 0.

PrROOF. (i) [(2. 7)— (2. 8)].
From (1.10) and (2. 7) we have (2. 8).

(i) [(2. 8)— (2. 9)].

By £&(X)(#E) = 0, we get

(211) nl&(X)E) = — o,
and by [&(X)(¢)]; = 0, we get
(2.12) il So(X)E) = — [§(X)p];:E = 0.

(2.11) multiplied by & and (2.12) yield
(¢ + En)&(X)E) = — oF.

Therefore, we have (2. 9).
(ii1) [(2. 9) — (2.10)].
As we can easily show that

Sin = 88 — (¢rdp) (i) — (E'np)(Ema)
= E,8; + 85 — 2(En,)(Ena),
we get

Sl &(X)pl = [&(X)PLiE e + [£(X)PleEn, — 208(X)b T ,(E'E n0)-

If we notice that
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NplEo(X)P1E = [£(X)nP)le — [£(Xm], b7 = O,
we can see that (2.10) is equivalent to [£(X)$]iE = 0.
On the other hand, under the condition (2. 9), the relation
[£(X)(PE)]" = [&(X)pliE — ¢i(0E)) = 0

reduces to [&(X)$liE = 0. This shows (2.10).

(iv) [(2.10) — (2. 7).
(2.10) is equivalent to [£(X)¢li&’ = 0, and the latter is equivalent to ¢i[£(X)E)
=0, and also to ¢;;[§(X)E) = 0, furthermore to [(X)p];;& = 0. By virtue of
(1.10) and the last relation, we have

(2-13) 00 = (fjajo')ni = (gn(":‘)a')"?i-

Therefore, we have do A\ 5 = 0.
And if we take the exterior derivative, do A dp = 0, that is (& (&)a)y A dn = 0.
However, 7 is a contact form, and so 5 A (dn)" does not vanish. Consequently,

$(E)a = 0.
Then (2.13) means that ¢ is constant. (q.e.d.)

REMARK: (2.10) is equivalent to RE[&(X)¢]? = [&(X)¢), this follows
from Proposition 3 and (2. 5).

EXAMPLE: Let E**!' — O be a (27 + 1)-dimensional Euclidean space re-
moved one point (origin O) and (2*,y*,2: A = 1,.. .,n) be its coordinate system,
n

then n = dz — »_ y*dx* defines a contact structure. We define an infinitesimal
A=1

transformation X of the form
X=“ix"a—‘+ﬁiyla—+mi (a,8,0: constant, @ + 8 = )
A=1 axh e ayl az 59 . y .

Then X is an infinitesimal contact transformation such that the associated
function is ¢ (constant).

Just the similar consideration as in the proof of Theorem 1 leads us to the
following

PROPOSITION 4. If an infinitesimal contact transformation X leaves ¢,;
invariant, then X is an infinitesimal strict contact transformation.

3. Compact case

LEMMA 3. Let M**' be a contact manifold. If an infinitesimal trans-
formation X leaves ¢} invariant, then X is an infinitesimal contact
transformation such that the associated function o is constant.
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PROOF. By the relation
[£(X)nP)]; = [&(Xnlid) + m[&(X)]5,
we have [£(X)n];¢; = 0. This means that X is an infinitesimal contact transfor-
mation. And since Si[&(X)¢p)? = 0, the associated function to X must be
constant.

LEMMA 4. Let M*™*' be a compact contact manifold. For every in-
finitesimal contact transformation X, the associated function o to X satisfies

f o dv=0.
Han+1

PROOF. We denote by Vv, the covariant derivative with respect to the
Riemannian connection defined by ¢, then we have

o = E{&(X)n]:
= (VX + v X')
= kakal + Vk(ElenL) - VkEle"?L - EleVk"]l
= EOm — 9m)X' + Vi X'n.)
= V(& X'n),

because, we have V& = 0, by virtue of &(&n = 0, Lemma 1 and (1. 9).
Since a contact manifold is always orientable, we see by Green’s Theorem that

L,ﬂ; dv=0.

Lemma 4 tells us that the differentiable function ¢ over a compact M?"*!
vanishes on some compact subset. Especially, ¢ cannot be a non-zero constant.
Thus, we have

PROPOSITION 5. Let M*"*' be a compact contact manifold. If an in-
Sinitesimal contact transformation X satisfies one of the following conditions,
then X is an infinitesimal strict contact transformation :

(2- 8) [tﬁf’(X)¢']1] = ady;,
2,9 [&(X)E = — o,
(2.10) Sul&(X)¢l} = 0.

THEOREM 2. Let M**' be a compact contact manifold. In order that
an infinitesimal transformation X leaves ¢} invariant, it is necessary and
sufficient that X is an infinitesimal isometry and at the same time an
infinitesimal strict contact transformation.

PROOF. (Necessity). By virtue of Lemma 3, X is an infinitesimal contact
transformation such that the associated function o is constant. Lemma 4 shows
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that o must be zero over M?**! so X is an infinitesimal strict contact transfor-
mation. Consequently, by Proposition 1, X is an infinitesimal isometry.

(Sufficiency). If X is an infinitesimal isometry and strict contact transfor-
mation, then by Proposition 1 again, X leaves ¢} invariant. (q.e.d.)

COROLLARY. Let M*"*!' be a (compact) contact manifold. Any non-zero
vector field X which belongs to the 2n-dimensional distribution orthogonal to
& with respect to the associated Riemannian metric ¢ cannot satisfiy the

relation [§(X)$li = 0.

Here we notice that compactness in Theorem 2 cannot be omitted. To see
this, we need only to consider an infinitesimal transformotion X over E***! —O
(former example) which is given as follows :

_in 2 L‘L” ca o .
= ZAZﬂxl@x"-l_ 2}§y 8y"+o-z e (¢ : const.).

This X satisfies [&(X)nl, = o,
[&(X)¢]; = 0,

where
0 3 0
s=|-% 0 o
0 y= 0

with respect to the coordinate system (2*,3*,2).

4. Linear transformation VY. The sets of all infinitesimal isometries and
of all infinitesimal (strict) contact transformations over any contact manifold
constitute Lie algebras with respect to the usual bracket operation. We give
them the notations L; and L, (°L,) respectively. This is the same about the set
of all infinitesimal transformations (Ls;) whose element leaves ¢} invariant,

because
LHIX YD = {&(X)&(Y) — HT)&H(X)}p =0 XY € Ly.
Then, Theorem 2 says that, if M*"*! is compact

L¢ = ch ﬂ Li.
The linear transformation ¥} defined bellow, is regular:
4. 1) Vi = ¢j + En;.

LEMMA 5. An infinitesimal transformation X of the form af is an
infinitesimal contact transformation, if and only if a is constant.

PROOF. As we can easily see
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[&o(abmli = Six + a[&(El.

The second term of the right hand side vanishes, and we have [&(af)n]; =2.a.
If [§(af)y]; is proportional to 7, then ¢;o,a = 0. By the same argument as in
the proof of Theorem 1 [(2.10) — (2.7)], we can see that « is constant.

Conversely if @ is constant, then «f is an infinitesimal (strict) contact
transformation.

THEOREM 3. Let M**' be a contact manifold and X be an element of
L.. In order that ¥X belongs to L, again, it is necessary and sufficient that
X is of the form af where a is constant.

PROOF. (Necessity). By assumption, there exist differentiable functions o,p
over M?*"*! such that

[&(X)")]k = O, [cﬁs(‘le)"?]k = Pn.

From the first relation, it follows

4. 2 70k X’ = o, — O X0,
By (4. 1), the second one is rewritten as

4. 3) [£(pX i + [&{E@X)Inle = P
And

[£(pXDnle = Omei X’ + Ou(3 X )m,
= O i X’ — (¢';Xj>alc7]r
= (O — Ok X’
= i X’ = (gr; — memi) X
[&{E0X)}n)e = OmEn; X7 + Ou(Em; X,
= om; X’ + njaka
= 0, X’ + on — Om X’ (by(4.2))
= ¢, X7 + oy
Putting these two relations into (4. 3)
(& Xl = (ges — nen) X + X7 + ome.
Contracting with ¢*, we get
pE = X' — En X + X + of,
therefore
(4. 4) X' = — ¢iX0 + E(n, X + p — o).
If we operate V¥ to (4. 4), we have
GXt + EnX = & — )X’ + E0 X + p — o)
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= X* + E(p — o).
Eliminating ¢;X’ from (4. 4) by the last equation, we have
Xt = EnX".
By Lemma 5, a = 7,X* must be constant, this completes the proof of necessity.
(Sufficiency) This is clear. (q.e.d.)
COROLLARY. L, N «PSLC =L, N¥L,.

THEOREM 4. Let M**' be a contact manifold. If & is an infinitesimal
isometry, then Ly NV¥Ls = (a€: a € R) where R is a real line). If & is
not so, then L, N Ly = (0).

PROOF. It is easy to see that every element X of Ly is an infinitesimal
contact transformation. If ¥X belongs to L4, then ¥X is also an infinitesimal
contact transformation. Therefore, by the last Theorem, X must be of the
form af (a: constant), this means

L¢ n'\l/‘L¢ C(dg a € R)

Now, we suppose that £ is an infinitesimal isometry, then af (a: const.) is
also an infinitesimal isometry, and also an infinitesimal strict contact transfor-
- mation. Hence, by Proposition 1, a& € L. Here, if we notice that af is
invariant under the linear transformation v}, we have

Ls N¥Ls = (a&: a < R).

Next we suppose that & is not so, then for any real number (a==0), af
does not belong to Ls. Thus, we have

Ly N¥Ly =(0). (qed)

LEMMA 6. Suppose & be an infinitesimal isometry. An infinitesimal
transformation X of the form af belongs to L, if and only if a is constant.

PROOF. Because, by [£(£)¢]; = 0, we get
[&(af)dli = — OradiE'.
From ¢f0,a = 0 it follows that a is constant. (q.e.d.)

Of course, Lemma 6 follows also from Lemma 5 or Theorem 4. Above
Lemma 6 and subsequent part of this section are appendices.

The most specialized contact manifold may be a normal contact manifold
which is characterized by

(4. 5) &: infinitesimal isometry,
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(4. 6) Piv.d,; =0 (.eVipi; is hybrid w.rt. Z and 7).

LEMMA 7. If & is an infinitesimal isometry, then Vi, = %(ﬁk,.

PROOF. By assumption Vin, + Vi = 0 and ¢y, = Vi, — Vi, then
Lemma 7 is clear.

PROPOSITION 6. Let M*"'' be a normal contact manifold. Then the
Sfollowing important formula holds good : [6]

1

4.7 Vipi; = R (g — n39ux)-

PROOF. By the condition (4. 6),
(¢£'¢‘;)Vk¢u(¢g¢i) + 2(§i77p)Vk¢ij(§j"7q) - ¢;Vk¢ij¢é =0.
Evidently, the second term vanishes, and the third term is equal to the first
term, because

—¢3Vidibi = — ¢oVi(diidi) + ¢ Vi)
= — $pVi( — gia + 7m0) + (o5 — 7m)Vii
= — ¢Vinime + Vidpa — 7,m:Veha
= ViPpa — ViPpiflng — ViPiampE:
= (_ &% + gnp)v,c(b”(— 8?1 + g"?a)-

Namely, (4. 6) is eqivalent to

(4. 8) Vidi(8p — En,)(8) — E'ng) = 0.
ViPos — ViPpiEng — VidiampE = Vidbpa + ¢, ViE'na + ¢iam, Vi

1 1
= Vidpa — 5 PoPrina + - Din,brs (Lemma 7)

= Vibpa — % 1oax = 1agpe)-
Therefore, (4. 8) is equivalent to (4. 7), under the condition (4. 5). (q.e.d.)
As an application we reprove directly the following :
Let M**! be a normal contact manifold. Then, Ly N\ ¥Ly= (aé: a € R).
PROOF. The condition X € L, is written as
4. 9) VX"t = XVl + V. X 1.
Straightforward calculation of £&(¢pX + &(3nX))¢ yields
(— ¢hv, X"¢] + ¢V, X"df — Enuv, X ¢))
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+ (Viidh — Vibudl — EVndl + Vidhd))X™
In the first bracket, ¥,X™ can be eliminated by (4. 9), and after arranging
by virtue of Lemma 7 and (4. 7), we have

<l’Lm}(m - gth"‘ + nmmX'" = O
This means
X' = (gl + Emm) X"

Therefore, X is invariant by ¥, and of the form a¢ (a = (X)). Furthermore,
a is constant by Lemma 6, Thus we have

Ly NYLy c(at: a € R).
Since the converse is known by Lemma 6, Proof is over.
5. Conformal and projective Killing vectors. An infinitesimal transfor-
mation X is said to be a conformal Killing vector, if X satisfies
6.1 [&(X)gli; = 2ngi;
where M\ is a differentiable function over M?®"*!,

THEOREM 5. A conformal Killing vector X over a contact manifold
M+ is an infinitesimal isometry, if X leaves invariant any one of the four
tensors n,&,¢} and ;.

PrROOF. (i) [[&(X)m]; = 0— A =0].

By assumption, we have
. 2) 7L (X)€" = 0.
And by the relation

[&(Xm)i = [%(X)(gE)): = 2hg: " + g1, &(X)EY
we have
[L(X)E) = — 28

(5. 2) and the last relation shows A = 0.

(i) [[&(X)EY =0—r = 0].

Proof for this will be done by similar way.

(iii) [[&(X)gli = —r = 0].

By Lemma 3, there exists a constant ¢ such that

(Xl = o, [S(X)EY = — o',

By taking the Lie derivative of 7; = ¢,;£/, we have A = o.
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On the other hand, we have
[&(X)plis = [$(X)glindf + gul&(X)PI} = 2Nebi.
Therefore, by (1.10) 2\¢;; = o¢p;;, that is A = 0.
(iv) [&(X)¢i; = 0—n = 0]

We can see easily that X is an infinitesimal contact transformation. And
so, by Proposition 4, X is an infintesimal strict contact transformation. Conse-
quently, this case is reduced to (i). (q.e.d.)

LEMMA 8. In a contact manifold, we have
(5' 3) Vz¢; = — nmj.

PROOF. Easily we have
. 1 .
(GREY (Vi) + e’ = =iV + n = — —- Vi, — Vom) + 7
S U
== 5 ¢’ +n=0,

and
(Vi) + nn)di = Vi(— & + &) — Vbt = — ¢"'Vidy,,
Using Vi¢; + Vi + Vidi; = 0, we have
— $'Viby = ¢V + Vb = — Vb = $PVid, = 0.
Thus, we have
(5. 5) (Vi) + nm;)pl = 0.

From (5. 4) and (5. 5), Lemma 8 follows.
An infinitesimal transformation X is said to be a projective Killing vector,
if it satisfies

(5. 6) (SO = S+ Sk,
where T, is the Christoffel’s symbol and
__ 1 .
M = 2n + 2 ak(VTX )'

THEOREM 6. If a projective Killing vector X over a contact manifold
M2+t leqves ¢§ invariant, then X is an infinitesimal strict contact transfor-
mation and therefore an infinitesimal isometry.

PROOF. By the well known formula (e.g.K.Yano [4]), we get
(&) — Vil&(X)plh = [L(X)T]¢i — [T Tndr
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The second term of the left hand side vanishes, and contracting with respect
to Z and j, we have

(5.7 [S(X)VP)m = [S(X)T i — [L(X)T Tinhs

By Lemma 8, the left hand side is equal to — n[£(X)»],, moreover by Lemma 3
the latter is equal to — non, for some constant o. Then, by virtue of (5. 6),
(5. 7) reduces to

— non, = 2n + Dy, P,

That is, & = 0. So, X is an infinitesimal strict contact transformation and, by
Proposition 1, also an infinitesimal isometry.
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