
NOTE ON INFINITESIMAL TRANSFORMATIONS

OVER CONTACT MANIFOLDS

SHUKICHI TANNO

(Received August 7, 1962)

Introduction. A contact manifold is an odd dimensional differentiable
manifold M2n+1 with a 1-form η over M2n+1 such that η Λ {dη)n 4 s 0. If an
infinitesimal transformation X satisfies L(X)η = ση, where !L(X)η denotes the
Lie derivative of η by X and σ is a differentiable function over M 2 n + 1, then X
is called an infinitesimal (strict if σ = 0) contact transformation.

On the other hand, if there exist tensor fields φj, ξ* and ηs such that

VtF = 1,

rank \φ)\ = 2n,

Φjξj = 0, ηjφ', = 0,

ΦJΦi = - K + f V
then we say that M2n + 1 has (φ,£,?7)-structure. Moreover, if a positive definite
Riemannian metric g satisfies the following conditions,

then g is called an associated Riemannian metric to the (φ,|,?7)-structure. M 2 n + 1

with (φ,f,?;)-structure admitting an associated Riemannian metric is said to have
(Φi,«7,ί/)-structure.

S. Sasaki [1] and Y. Hatakeyama [2] proved that if η — ηόdxj is a 1-form
defining a contact structure, then we can find a differentiable (Φ,ζ9η,g)-structure
such that ηι is the one given by the coefficients of the 1-form η and

A tensor φ) has a similar property to the fundamental tensor F] of a (or
an almost) complex structure in some sense.

In a compact Kahler manifold, it is known (e.g. A. Lichnerowicz [3]) that an
infinitesimal analytic transformation X (L(X)Fj = 0) is an infinitesimal isometry
under the additional condition that X leaves the volume element, or Chern's
2-form invariant.

The main purpose of this report is to show that, in a compact contact
manifold, if X leaves φj invariant, then X is an infinitesimal isometry and at
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the same time an infinitesimal strict contact transformation.

I should like to express my sincere gratitude to Prof. S. Sasaki and Mr. Y.
Hatakeyama for their valuable suggestions.

1. Elementary properties of infinitesimal transformations. In this re-

port, tensors φi}, φj, ξ\ η} and gtj are those of the (φ,ξ,η,g)~structure associated

to a given contact structure.

We begin with some simple Lemmas.

LEMMA 1. If an infinitesimal transformation X satisfies [S^(X)η]) = 0,

then X satisfies [&CX)φ]o = 0.

PROOF. First we notice that

(1. 1) dη = ~φίjdxi Λdx\

and that the Lie differentiation and exterior differentiation are commutative.

Then we have easily [L(X)φ]ij = 0.

LEMMA 2. If an infinitesimal transformation X satisfies [!L(X)η\j = 0,

then X satisfies [£>(X)£Γ =? 0.

PROOF. By taking the Lie derivative of (φ^ + ηtη^ξ3 = ηt we get

(Φu + W7;)[&(X)£]' = 0.

Lemma 2 follows from this, since (φtj + η^j) is regular.

PROPOSITION 1. Let M2n+ι be a contact manifold. If an infinitesimal

transformation X over M2n+1 satisfies two of the following conditions, then

X satisfies also the remainning one:

(1. 2) [&(X>7]< = 0,

(1. 3) [&(X)Φ1J = 0,

(1. 4) X: infinitesimal isometry {Killing vector).

PROOF. ( i ) [(1. 2) and (I. 3) -> (1. 4)].
Next relations hold good

So, by Lemma 2, we get

(1. 5) [ & ( X W = 0.

On the other hand,
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So, by Lemma 1, we get

(1. 6) [£.(X)5Ί,jψi = 0.

Two relations (1. 5) and (1. 6) yield

φί + fηk) = 0.

(1. 4) follows from this.

(ii) [(1. 3) and (1. 4) -> (1. 2)]. From

and (1. 3), we see that

(1. 7) [UX)ηlΦ'j = 0.

So, X is seen to be an infinitesimal contact transformation. Moreover, if we

consider L(X)(ηξ) = 0, using (1. 4) we have

(1. 8) ίUX)vUι = 0.

Hence, by (1. 7) and the last equation, we have (1. 2).

(Hi) [(I- 4) and (1. 2) - (1. 3)].

This is clear, (q.e.d.)

As we see from the proof of [(1. 3) and (1. 4) -> (1. 2)], if an infinitesimal

contact transformation X is an infinitesimal isometry, then X is necessarily an

infinitesimal strict contact transformation.

However, more precisely we have

PROPOSITION 2. Let M2 n + 1 be a contact manifold. If an infinitesimal

contact transformation X preserves the volume element of the associated Rie-

mannian metric•, then X is an infinitesimal strict contact transformation.

PROOF. The volume element of M 2 n + 1 (See [1]) is given by

W(Wfi)

(1.9) <fo = ( - l ) 2 2

By the two relations L(X)η — ση and

(1.10) [&>(X)φ]ij = diσηj — djσηt + σφih

where the last equation follows from b(X)dη = d&>(X)η = d(ση)y we have

where we have put

y -( Ί N ~ " g ~ " ( 2
bl2 2n + l — V ~ -L; OrϊZΠ

& n .

Thus, Proposition 2 is valid.
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2. Separation Tensors. In a (or an almost) complex manifold M2n with

complex structure Fj, if a tensor, for example TA, satisfies

OίfΓΛ = n (or = 0), OS = \ (SΓδJ - FtFf),

then T/j is said to be pure (or hybrid) in two indices i and j (K. Yano [4]).

With respect to the adapted frame (A. Lichnerowicz [5]) pure and hybrid

tensors are expressed respectively as follows:

IT Π \ '0 T-\
, . (λ,/i = l,2, ..,w: λ = τ ι + λ )

\0 Tλ-/ \Tχμ 0 /
As for a differentiate manifold M2n+1 with (φ,ξ,η,^-structure, M 2 n + 1 has

an orthonormal adapted frame (ξ{X),ξ(χhξA λ = 1,- . ., n : λ = n + λ) such that

f!x) = ΦJ&), i i = f*. (A = 2n + 1)

If we operate a linear transformation to this frame given by

/ 1

h^En -A-i

0 0 1/

eλ

ex

where En denotes a unit matrix of order n, and z2 = — 1, then the new

frame (eλ,eχ,ξ) satisfies the relations

φeλ = ίeλ, φe\ = — ie%, φξ = 0.

Thus, with respect to this frame, φ takes the following form :

ίiEn 0 ON

0 -iEn 0

l θ 0 0/

We call a tensor Ti} (ΛΓO ) pure (resp. hybrid) if it has components of the

following form with respect to this frame

/ T λ μ 0 0 \ 0 Nλ-μ

 A r *

Tu = \θ TXμ 0 , Λ/i^lΛ^ 0

Vθ 0 Ύj WA, NΔ ί 0 /

In order to determine an operator analogous to O " of the complex case,
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we start to decompose vector fields X,Y as

X1 = (Si - f SfcXX* + MvtX"),

YJ = (δ | _ ξiηι)γl + ξ>(ηιγιy

Then the tensor Ti} can be decomposed as

TkiX
kYι = (Tu + Ί% + Tk't)XΎι

= Ttβl - r^)(δ! - ξ%)XkYι + TtjS&XΎ

where we have put
5a = f W ί + δ&'ifc -2{ξlηk)(l;\).

As 2n-dimensional subspace of the tangent space at arbitrary point of M2n*\
which is orthogonal to ξ, has an induced almost complex structure φ), the pure
part of Tίi is easily seen to be

therefore, the pure part of Ttj is

We define P% and Hp, as follows and call them the pure part separation
tensor and the hybrid part separaton tensor

(2. l) pa = \ mψ XΦiΦϊ) + 2(r%X£V) - ΦW,ι

(2.2) m - m - PU.

Furthermore, we define

(2.3) R& = ~ mΦiMφζ) +

(2.4) SΆ = %% - (ΦΪ

then we have

0

0

0\\

0

o/

, 5(T) = |

1

r
0

IT
\ * Δμ

0

0

T&Γ

ΠΓ
<L λΔ

0

Obviously, following relations hold good
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tP2 = P, H2=H, R2=R, S2=S,

(2. 5) . P + H= Identity, R + S = H, RH = R, SH = S,

PH= HP = 0, RS = SR = 0.

(2. 6) P$tf = φ\. Pϊtφu = 0.

PROPOSITION 3. For any infinitesimal transformation X over M 2 n + 1,
we have P&[L(X)φ]J = 0.

PROOF. This will be seen by simple calculation.
Let's call a differentiable function σ such that Ss,(X)η = ση, an associated

function to an infinitesimal contact transformation X.

THEOREM 1. Let M 2 n + 1 be a contact manifold and X be an infinitesi-
mal contact transformation. Then, concerning an associated function σ, the
following four conditions are mutually equivalent:

(2. 7) σ — constant,

(2. 8) [L(X)Φh = σψij,

(2. 9) [UX)ξf = ~ σξ\

(2.10) 5«[£,(X)ψ]? = 0.

P R O O F , ( i ) [(2. 7)-»(2. 8)].
From (1.10) and (2. 7) we have (2. 8).

(ii) [(2. 8 ) - ( 2 . 9)].
By &(X)G£) = 0, we get

(2.11) ViίUX^Y = - <r,

and by [&(XX#)L = 0, we get
(2.12) φJAUX)ξ]i = - ίUX)ΦUi = 0.

(2.11) multiplied by ξ} and (2.12) yield

Therefore, we have (2. 9).

As we can easily show that

so, = δjδί

we get

If we notice that
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we can see that (2.10) is equivalent to [<&>(X)φ]Jf = 0.
On the other hand, under the condition (2. 9), the relation

ίUXXΦt)]1 = iUX)ΦW - ΦKσfO - o

reduces to [&>(X)φ]i

jξ
3 = 0. This shows (2.10).

(iv) [(2.10)-* (2. 7)].

(2.10) is equivalent to [£>(X)φL | j = 0, and the latter is equivalent to φ%&>(X)ξ]j

= 0, and also to φtJ[is>(X)ξY = 0, furthermore to [&(X)φ]t^ = 0. By virtue of

(1.10) and the last relation, we have

(2.13) dtσ = (pdfihi = (Uξ»Vi.

Therefore, we have dσ f\ η = 0.

And if we take the exterior derivative, dσ Λ dη = 0, that is (<£> (ξ)σ)η Λ dη = 0.

However, 77 is a contact form, and so η Λ (dη)n does not vanish. Consequently,

Uξ)σ = 0.

Then (2.13) means that σ is constant, (q.e.d.)

REMARK: (2.10) is equivalent to i?j/7[£,(X)φ]J = [£,(X)φ]J, this follows

from Proposition 3 and (2. 5).

EXAMPLE: Let E2n+1 — O be a (2w-+ l)-dimensional Euclidean space re-

moved one point (origin O) and (xλ,yλ, z : λ = 1,. ,n) be its coordinate system,
n

then η = dz — Σyλ dxλ defines a contact structure. We define an infinitesimal

transformation X of the form
n 7) n 7) 7)

+ βΣ,yλ ό-Γ + σz^Γ (*β,σ: constant, a + β = σ).λ-i qy . 02;

Then X is an infinitesimal contact transformation such that the associated

function is σ (constant).

Just the similar consideration as in the proof of Theorem 1 leads us to the

following

PROPOSITION 4. / / an infinitesimal contact transformation X leaves φi5

invariant, then X is an infinitesimal strict contact transformation.

3. Compact case

LEMMA 3. Let M2n+1 be a contact manifold. If an infinitesimal trans-

formation X leaves φ) invariant, then X is an infinitesimal contact

transformation such that the associated function σ is constant.
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PROOF. By the relation

we have [L(X)η]iφj = 0. This means that X is an infinitesimal contact transfor-

mation. And since *5̂ [«&>(X)φ]J = 0, the associated function to X must be

constant.

LEMMA 4. Let M2n+1 be a compact contact manifold. For every in-

finitesimal contact transformation X, the associated function σ to X satisfies

L σ dv = 0.
Jf2n-M

PROOF. We denote by V* the covariant derivative with respect to the

Riemannian connection defined by g, then we have

because, we have V*^ = 0, by virtue of &>(ξ)η — 0, Lemma 1 and (1. 9).

Since a contact manifold is always orientable, we see by Green's Theorem that

L σ dv = 0.

Lemma 4 tells us that the differentiable function σ over a compact M 2 n + 1

vanishes on some compact subset. Especially, σ cannot be a non-zero constant.

Thus, we have

PROPOSITION 5. Let M2n+1 be a compact contact manifold. If an in-

finitesimal contact transformation X satisfies one of the following conditions,

then X is an infinitesimal strict contact transformation :

(2. 8) ίUX)Φh = σφi,,

(2, 9) [L(X)ξY = - σξ\

(2.10) S%[UX)ΦΊ? =*= 0.

THEOREM 2. Let M2n+1 be a compact contact manifold. In order that

an infinitesimal transformation X leaves φ] invariant, it is necessary and

sufficient that X is an infinitesimal isometry and at the same time an

infinitesimal strict contact transformation.

PROOF. (Necessity). By virtue of Lemma 3, X is an infinitesimal contact

transformation such that the associated function σ is constant. Lemma 4 shows
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that σ must be zero over M2w + 1, so X is an infinitesimal strict contact transfor-
mation. Consequently, by Proposition 1, X is an infinitesimal isometry.

(Sufficiency). If X is an infinitesimal isometry and strict contact transfor-
mation, then by Proposition 1 again, X leaves φ) invariant, (q.e.d.)

COROLLARY. Let M2n+1 be a {compact) contact manifold. Any non-zero
vector field X which belongs to the 2n-dimensional distribution orthogonal to
ξ with respect to the associated Riemannian metric g cannot satisfiy the
relation [£>(X)φ]j = 0.

Here we notice that compactness in Theorem 2 cannot be omitted. To see
this, we need only to consider an infinitesimal transformotion X over E2n+1 — O
(former example) which is given as follows:

xr σ \~̂  \ 9 σ v̂ » i 9 , 9 / , x
X = — > ;rΛ ^-X + -77 > j>Λ ^-j[ + σz -^— (σ : const.).

This X satisfies [L>(X)η]i = σηu

where

φ} = I -δj; 0 0

0 3"* 0

with respect to the coordinate system (a* ,yλ ,z).

4. Linear transformation ψ]. The sets of all infinitesimal isometries and
of all infinitesimal (strict) contact transformations over any contact manifold
constitute Lie algebras with respect to the usual bracket operation. We give
them the notations Lt and Lc (SLC) respectively. This is the same about the set
of all infinitesimal transformations (Lφ) whose element leaves φ) invariant,
because

a /r γ \7"\\ J r p / y \ a /Λ/Λ P /Λ/Λ P / γ \ Ί » r\ \?" ~\τ - T

Then, Theorem 2 says that, if M2n+1 is compact

L _ sT f\ T

The linear transformation ψj defined bellow, is regular:

(4. 1) ψ J = Φί + ̂ 77,-.

LEMMA 5. An infinitesimal transformation X of the form ctξ is an
infinitesimal contact transformation, if and only if oi is constant.

PROOF. AS we can easily see
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= dtOt +

The second term of the right hand side vanishes, and we have [$s>(otξ)η]i=diCt.

If [£s>(ctξ)η]i is proportional to ηi9 then φβta = 0. By the same argument as in

the proof of Theorem 1 [(2.10) —> (2.7)], we can see that a is constant.

Conversely if <x is constant, then aξ is an infinitesimal (strict) contact

transformation.

THEOREM 3. Let M2n+ι be a contact manifold and X be an element of

Lc. In order that ψX belongs to Lc again, it is necessary and sufficient that

X is of the form aξ where a is constant.

PROOF. (Necessity). By assumption, there exist differentiable functions σ,ρ

over M 2 n + 1 such that

From the first relation, it follows

(4. 2) ηβkX> = σηk -

By (4. 1), the second one is rewritten as

(4. 3)

And

= (gkj -

J + ηβkX
J

σηk - 3jVkX
j (by(4.2))

= φkjX
3 + σηk.

Putting these two relations into (4. 3)

[L(fX)η\k - (ffkJ ~ ηkηj)XJ + φkjX
j + σηk.

Contracting with gk\ we get

& = Xι- ξ%XJ + φjX} + σ?,

therefore

(4. 4) X = - φjX + P(ηjX> + P-σ).

If we operate ψ* to (4. 4), we have

φ\X + pmX* = (8J - ξ
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- σ).

Eliminating φ]Xj from (4. 4) by the last equation, we have

X* =

By Lemma 5, a = ηLXι must be constant, this completes the proof of necessity.
(Sufficiency) This is clear, (q.e.d.)

COROLLARY. SLC Π ΨSLC = LCΓ) ψLc.

THEOREM 4. Let M2n+1 be a contact manifold. If ξ is an infinitesimal
isometry, then Lφ Γ) ψLφ = (aξ: a <z R) where R is a real line). If ξ is
not so, then Lφ Π ψLφ = (0).

PROOF. It is easy to see that every element X of Lφ is an infinitesimal
contact transformation. If ψX belongs to Lφ, then ψX is also an infinitesimal
contact transformation. Therefore, by the last Theorem, X must be of the
form aξ (a: constant), this means

Lφ Π ψLφ cz(aξ: a s R).

Now, we suppose that ξ is an infinitesimal isometry, then ccξ (a: const.) is
also an infinitesimal isometry, and also an infinitesimal strict contact transfor-
mation. Hence, by Proposition 1, aξ € Lφ. Here, if we notice that aξ is
invariant under the linear transformation ψ1}, we have

Lφ ΠψLφ =(pcξ: a z R).

Next we suppose that ξ is not so, then for any real number (a 4= 0), aξ
does not belong to Lφ. Thus, we have

Lφ Π ΨLΦ = (0). (q.e.d.)

LEMMA 6. Suppose ξ be an infinitesimal isometry. An infinitesimal
transformation X of the form aξ belongs to Lφ, if and only if a is constant.

PROOF. Because, by [L(ξ)φ]) = 0, we get

From φkjdka = 0 it follows that a is constant, (q.e.d.)

Of course, Lemma 6 follows also from Lemma 5 or Theorem 4. Above
Lemma 6 and subsequent part of this section are appendices.

The most specialized contact manifold may be a normal contact manifold
which is characterized by

(4. 5) ξ: infinitesimal isometry,
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(4. 6) PmVkφij = 0 (i.e.VkΦίj is hybrid w.r.t. i and ).

LEMMA 7. J/* £ z*5 an infinitesimal isometry, then VkVi = ~~FΓ ΦM-

PROOF. By assumption V*^ + ViV* = 0 and φkι = VkVi — ViVk, then
Lemma 7 is clear.

PROPOSITION 6. Let M2nU be a normal contact manifold. Then the
following important formula holds good: [6]

(4. 7) γ (viffjk Vjffik)-

PROOF. By the condition (4. 6),

ΐ = 0.

Evidently, the second term vanishes, and the third term is equal to the first
term, because

= — φpVkViVQ + VkφpQ —

= VkΦpq —

Namely, (4. 6) is eqivalent to

(4. 8) Vtφtβ'p ~ ?VPM - ξJVa) = 0.

VkΦpq - VkΦpiξ% - VkΦiqrjpξ1 = VkΦpq + ΦpiV'kfyq + Φi

φφ + -γΦlvpΦu (Lemma 7)

= VkφpQ — 7Γ (VpffQk

Therefore, (4. 8) is equivalent to (4. 7), under the condition (4. 5). (q.e.d.)

As an application we reprove directly the following:

Let M2n+1 be a normal contact manifold. Then, LΦ Γ)ψLφ= (aξ: a <= R).

PROOF. The condition X € Lφ is written as

(4. 9) VtXmΦt = XkVkφT + VιXkφk.

Straightforward calculation of L(φX + ξ(ηX))φ yields
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In the first bracket, V jXm can be eliminated by (4. 9), and after arranging
by virtue of Lemma 7 and (4. 7), we have

φιmXm - gίmXm + VlVmXm = 0.

This means

xι = (φin + f V)X*.

Therefore, X is invariant by ψ, and of the form aξ {a = (97X)). Furthermore,
# is constant by Lemma 6, Thus we have

Lφ Π ΨLΦ c (Λf: α € jR).

Since the converse is known by Lemma 6, Proof is over.

5. Conformal and protective Killing vectors. An infinitesimal transfor-
mation X is said to be a conformal Killing vector, if X satisfies

(5. l) [UX)gh = 2\ffij

where λ is a differentiable function over M2714"1.

THEOREM 5. A conformal Killing vector X over a contact manifold
M2n+1 is an infinitesimal isometry, if X leaves invariant any one of the four
tensors ηι,ξj,φ) and φjk.

P R O O F , (i) [[UX)vl = 0 -> λ = 0].

By assumption, we have

(5. 2) ηi[UX)ξY = 0.
And by the relation

we have

(5. 2) and the last relation shows λ = 0.

(ii) [[&(X)£l' = 0->λ = 0].

Proof for this will be done by similar way.

(iii) [[£,(X)φ]J = -*λ = 0].

By Lemma 3, there exists a constant σ such that

By taking the Lie derivative of ηt = Qijξ\ we have λ = σ.
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On the other hand, we have

Therefore, by (1.10) 2λφu = σφih that is λ = 0.

(iv) [[&(X)φf, = 0->λ = 0].

We can see easily that X is an infinitesimal contact transformation. And
so, by Proposition 4, X is an innntesimal strict contact transformation. Conse-
quently, this case is reduced to (i). (q.e.d.)

LEMMA 8. In a contact manifold, we have

(5. 3) ViΦ) = - nVj.

PROOF. Easily we have

(5. 4) (ViΦ) + riηW = -φ)Viξj + n = - |

and

(Viφ}.+ nηj)φ{ = v*(- δ{ + fV)

Using Viφji + Vjφu + VzΦo = 0? we have

- Φί5Viφn = φi5Vόφu + φijVιφij - - φi5Vόφu = φi5ViΦn = 0.

Thus, we have

(5. 5) (Viφj + Λ^)φ/ = 0.

From (5. 4) and (5. 5), Lemma 8 follows.

An infinitesimal transformation X is said to be a projective Killing vector,
if it satisfies

(5. 6)

where rjfc is the ChristoffeΓs symbol and

THEOREM 6. If a projective Killing vector X over a contact manifold
M 2 n + 1 leaves φ) invariant, then X is an infinitesimal strict contact transfor-
mation and therefore an infinitesimal isometry.

PROOF. By the well known formula (e.g.K.Yano [4]), we get
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The second term of the left hand side vanishes, and contracting with respect
to i and j , we have

(5. 7) [&(X)(Vφ)]ί* = [&(X)Γ]!r# - [&(X)Γ]fΛφί.

By Lemma 8, the left hand side is equal to — n[Ss>(X)η]h, moreover by Lemma 3
the latter is equal to — nσηh for some constant σ. Then, by virtue of (5. 6),
(5. 7) reduces to

- nσηh = (2n + ΐ)μrφ£.

That is, σ = 0. So, X is an infinitesimal strict contact transformation and, by
Proposition 1, also an infinitesimal isometry.
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