HOMOGENEOUS CONTACT TRANSFORMATIONS

Shigeo Sasaki

(Received July 5, 1962)

Introduction. Let M^n be an *n*-dimensional differentiable manifold of class C^{∞} . Take a point x of M^n and consider the set F_x of all non-zero covectors at x. Then, F_x with the natural topology is homeomorphic with $F = E^n - O$, where E^n is a Euclidean space and O is a point of E^n . We can easily see that the set

$${}^{c}T(M^{n}) = \bigcup_{x \in M^{n}} F_{x}$$

with the natural topology is a fibre bundle with the standard fibre F and the structural group GL(n, R). We shall call this fibre bundle as the *cotangent* bundle of M^n .

In this paper, I want so show that cotangent bundles play an important role for the study of homogeneous contact transformations of differentiable manifolds. The classical Laguerre's geometry of (n-1)-spheres in E^n can be regarded as a geometry of ${}^{c}T(E^{n}) \approx E^{n} \times F$ under a certain group of homogeneous contact transformations and the classical Lie's higher (n-1)-sphere geometry in E^{n} can be regarded as a geometry of ${}^{c}T(S^{n})$ under a certain group of homogeneous contact transformations, where S^{n} is the *n*-dimensional sphere. Therefore, it is natural to study ${}^{c}T(M^{n})$ in connection with homogeneous contact transformations of M^{n} .

On the background of Lie's works L.P. Eisenhart [4] [5] [6] founded the theory of homogeneous contact transformations of a differentiable manifold M^n in 1929 and T.Hosokawa [7], K.Yano [2] [9][10], Y. Mutô [8][9], T.C.Doyle [3], E.T.Davies [1] [2] and others followed him. From our stand point of view, their theories are local theories of ${}^{c}T(M^{n})$ or tensor calculus of 2n dimensional manifolds under local contact coordinate transformations. It seems to me that their theories can be understood the meaning well by studying the cotangent bundle ${}^{c}T(M^{n})$ globally.

1. Homogeneous contact transformations. Let M^n be a differentiable

About half of this paper was done when the author was a visiting professor of the National Taiwan University and stayed at the Academia Sinica, Nankang, Formosa from Oct. 1961 to March 1962.

manifold of class C^{∞} and ${}^{c}T(M^{n})$ be its cotangent bundle. We denote by π the natural projection

$$\pi: {}^{c}T(M^{n}) \to M^{n}.$$

Every point z of ${}^{c}T(M^{n})$ can be expressed as a pair (x, p), where $x = \pi z$ and p is a covector at x. We shall call p as the covector of z. We sometimes call the pair (x, p) as an *element* in M^{n} .

We take an open covering of M^n by coordinate neighborhoods $\{U_{\lambda}\}$ ($\lambda \in \Lambda$) and denote local coordinates in U_{λ} by x_{λ}^i . If we denote the components of a covector p at any point $x_{(\lambda)}$ in U_{λ} with respect to the natural frame $\frac{\partial}{\partial x_{(\lambda)}^i}$ at $x_{(\lambda)}$ by $p_i^{(\lambda)}$, then the set of all $(x_{(\lambda)}^i, p_i^{(\lambda)})$ $(x_{(\lambda)}^i \in U_{\lambda}, p_i^{(\lambda)} \in F)$ constitutes local coordinates in $\pi^{-1}(U_{\lambda})$. This mapping

$$\pi^{-1}(U_{\lambda}) \to U_{\lambda} \times F$$

is a diffeomorphism and its inverse mapping is usually denoted by ϕ_{λ} . So, we have

$$oldsymbol{z} = oldsymbol{\phi}_{\lambda}(x_{(\lambda)}, p^{(\lambda)}).$$

We denote the map which transfers z to $p^{(\lambda)}$ by ρ_{λ} . Then, we have

$$\rho_{\lambda}: \pi^{-1}(U_{\lambda}) \to F$$

 $\{\pi^{-1}(U_{\lambda})\}(\lambda \in \Lambda)$ is an open covering of ${}^{c}T(M^{n})$ by coordinate neighborhoods.

On every neighborhood $\pi^{-1}(U_{\lambda})$ ($\lambda \in \Lambda$) of ${}^{c}T(M^{n})$ we consider a 1-form

(1. 1)
$$\eta_{(\lambda)} \equiv p_{i}^{(\lambda)} dx^{i}.$$

As the right hand side is a scalar, it does not depend upon the coordinate transformation. So, the set of all $\eta_{\lambda}(\lambda \in \Lambda)$ constitutes a global 1-form η over ${}^{c}T(M^{n})$. We shall call η as the homogeneous contact form of M^{n} .

A diffeomorphism

$$f: {}^{c}T(M^{n}) \rightarrow {}^{c}T(M^{n})$$

is said to be a homogeneous contact transformation of M^n if and only if f leaves invariant the 1-form η , i.e.

$$(1. 2) f^*\eta = \eta,$$

where f^* is the dual map induced by f on differential forms over ${}^{c}T(M^{n})$. f is denoted by

$$\overline{z} = f(z), \qquad z \in {}^cT(M^n)$$

or by

$$(\overline{x},\overline{p}) = f(x,p),$$

where z = (x, p) and $\overline{z} = (\overline{x}, \overline{p})$.

From the definition, we can immediately see that the following theorem is true.

THEOREM 1.1 The totality of homogeneous contact transformations of a differentiable manifold M^n forms a group.

EXAMPLE. Suppose f_0 be a diffeomorphism of M^n onto itself. Then f_0 naturally induces a diffeomorphism f of the cotangent bundle ${}^{c}T(M^n)$ onto itself. It is easy to see that f is a homogeneous contact transformation. This map f is called to be an *extension* of the diffeomorphism f_0 of M^n .

THEOREM 1.2 A homogeneous contact transformation f of ${}^{c}T(M^{n})$ onto itself is an extension of a diffeomorphism of M^{n} onto itself if and only if fis a fibre preserving map.

The proof is easy.

2. Analytic expressions of homogeneous contact transformations. Let U be a coordinate neighborhood of M^n with local coordinates x^i . We denote components of a covector p at a point x of U with respect to the natural frame by p_i . For the sake of convenience, we now put

$$(2. 1) x^{n+i} \equiv x^{i^*} \equiv p_i, i^* = n+i$$

and consider $x^{\lambda} = (x^i, x^{n+i})$ $(\lambda, \mu = 1, \dots, 2n)$ as local coordinates of ${}^{c}T(M^{n})$ in $\pi^{-1}(U)$. Then the contact form η over ${}^{c}T(M^{n})$ can be written as

(2. 2)
$$\eta = \eta_{\lambda} dx^{\lambda}$$

in $\pi^{-1}(U)$, where we have put

$$(2. 3) \eta_{\lambda} = (p_i, 0).$$

 η_{λ} determines a (2n-1)-dimensional vector subspace of the tangent space of ${}^{c}T(M^{n})$ at (x, p) containing the tangent space of the fibre at the point.

Now, we consider the exterior differential $d\eta$ of the contact form η . In $\pi^{-1}(U)$, it is given by

$$(2. 4) d\eta = \frac{1}{2} \phi_{\lambda\mu} dx^{\lambda} \wedge dx^{\mu},$$

where we have put

(2. 5)
$$\phi_{\lambda\mu} = \partial_{\lambda}\eta_{\mu} - \partial_{\mu}\eta_{\lambda}, \ \partial_{\lambda} = \frac{\partial}{\partial x^{\lambda}}.$$

We can easily see that $(\phi_{\lambda\mu})$ has the following numerical components:

(2. 6)
$$(\phi_{\lambda\mu}) = \begin{pmatrix} 0 & -\delta_{ij} \\ \delta_{ij} & 0 \end{pmatrix}.$$

The entity which has components of the form (2.6) for every coordinate neighborhood $\pi^{-1}(U)$ of an open covering of ${}^{c}T(M^{n})$ is a skew-symmetric tensor field of ${}^{c}T(M^{n})$. Geometrically, it gives a null-system in every tangent space of ${}^{c}T(M^{n})$. We shall call it the *fundamental null-system* of ${}^{c}T(M^{n})$.

We define $\phi^{\lambda\mu}$ for every coordinate neighborhood of the type $\pi^{-1}(U)$ in ${}^{c}T(M^{n})$ by

(2. 7)
$$\phi^{\lambda\mu}\phi_{\mu\nu} = -\delta^{\lambda}_{\nu},$$

then $\phi^{\lambda\mu}$'s are components of a skew-symmetric tensor field over ${}^{\circ}T(M^n)$ and are given by

(2.8)
$$(\phi^{\lambda\mu}) = \begin{pmatrix} 0 & -\delta^{ij} \\ \delta^{ij} & 0 \end{pmatrix}.$$

We define also

(2. 9)
$$\xi^{\lambda} = \phi^{\lambda \mu} \eta_{\mu}$$

in every $\pi^{-1}(U)$, then ξ^{λ} defines a vector field over ${}^{c}T(M^{n})$. Its components in $\pi^{-1}(U)$ are rewritten as

$$(2.10) \qquad \qquad \boldsymbol{\xi}^{\lambda} = (0, \boldsymbol{p}_i).$$

We can easily see that (2, 9) is equivalent to

(2.11)
$$\phi_{\lambda\mu}\xi^{\mu} = -\eta_{\lambda}.$$

Now, suppose f be a homogeneous contact transformation of M^n . For every pair of coordinate neighborhoods U and \overline{U} with local coordinates x^i and \overline{x}^a such that $f(\pi^{-1}(U)) \cap \pi^{-1}(\overline{U})$ is not empty, the restriction map $f|\pi^{-1}(U) \cap f^{-1}(\pi^{-1}(\overline{U}))$ can be expressed analytically by

(2.12)
$$\overline{x^{\lambda}} = \overline{x^{\lambda}}(x),$$

i.e.

(2.13)
$$\overline{x}^a = \overline{x}^a(x, p), \ \overline{p}_a = \overline{p}_a(x, p).$$

The condition $f^*\eta = \eta$ i.e.

(2.14)
$$\eta_{\alpha}(\overline{x})\partial_{\lambda}\,\overline{x^{\alpha}}\,=\,\eta_{\lambda}(x)$$

can be written as

(2.15)
$$\overline{p}_a \partial_i \overline{x}^a = p_i, \quad \overline{p}_a \partial^i \overline{x}^a = 0 \quad \left(\partial^i = \frac{\partial}{\partial p_i}\right).$$

From (2.14), we get easily

(2.16)
$$\phi_{\alpha\beta}\partial_{\lambda}\,\overline{x}^{\alpha}\,\partial_{\mu}\,\overline{x}^{\beta} = \phi_{\lambda\mu}.$$

Of course $\phi_{\lambda\mu}$ and $\phi_{\alpha\beta}$ are numerical constants. Contracting $\phi^{\mu\nu}\overline{\partial_{\gamma}}x^{\lambda}\left(\overline{\partial}_{\gamma}=\frac{\partial}{\partial \overline{x}^{\gamma}}\right)$ with (2.16) we get

(2.17)
$$\phi_{\gamma\delta}\partial_{\mu}\bar{x}^{\delta}\phi^{\mu\nu} = -\bar{\partial}_{\gamma}x^{\nu}.$$

Contracting $\phi^{\alpha\gamma}\partial_{\nu}\bar{x}^{\beta}$ with the last equation we then get

(2.18)
$$\phi^{\alpha\beta} = \phi^{\lambda\mu} \partial_{\lambda} \, \overline{x}^{\alpha} \, \partial_{\mu} \, \overline{x}^{\beta}.$$

From (2.16) we get the following

THEOREM 2.1. The fundamental null-system of the cotangent bundle ${}^{c}T(M^{n})$ is transformed to itself by homogeneous contact transformations.

Now, from the definition we have

$$\boldsymbol{\xi}^{\alpha}(\bar{\boldsymbol{x}}) = \boldsymbol{\phi}^{\alpha \boldsymbol{\beta}} \eta_{\boldsymbol{\beta}}(\bar{\boldsymbol{x}}).$$

Putting (2.14) and (2.18) into the last equation, and making use of (2.9) we get (2.19) $\xi^{\alpha}(x) = \partial_{\lambda} \overline{x}^{\alpha} \xi^{\lambda}(x).$

The last equation gives an important theorem:

THEOREM 2.2. The functions $\overline{x}^{a}(x,p)$ and $\overline{p}_{a}(x,p)$ of a homogeneous contact transformation (2.13) are homogeneous of degree 0 and 1 respectively with respect to p_{i} .

PROOF. By virtue of (2.10), (2.19) is easily seen to be equivalent with

(2.20)
$$p_i \partial^i \overline{x}^a = 0, \qquad p_i \partial^i \overline{p}_a = \overline{p}_a,$$

which show that \overline{x}^{a} 's and \overline{p}_{a} 's are homogeneous of degree 0 and 1 with respect to p_{i} .

Two points z = (x,p) and z' = (x,p') on the same fibre F_x of ${}^cT(M^n)$ are said to be equivalent if and only if there exists a constant $\rho \neq 0$ such that

$$(2.21) p'_i = \rho p_i.$$

We call an equivlaence class in F_x as a *coray at x*. The vector ξ^{λ} defined in (2.10) is geometrically the tangent vector of the coray. Theorem 2.2 can now be expressed geometrically as follows:

THEOREM 2.3. Every homogeneous contact transformation of M^n is a coray preserving diffeomorphism of ${}^{c}T(M^n)$.

THEOREM 2.4. Let \overline{x}^a and \overline{p}_a in (2.13) are functions which define a homogeneous contact transformation. Then, we have

Ŝ. SASAKĪ

(2.22)
$$\begin{cases} \partial_i \overline{x}^a = \overline{\partial}^a p_i, \qquad \partial^i \overline{x}^a = -\overline{\partial}^a x^i, \\ \partial_i \overline{p}_a = -\overline{\partial}_a p_i, \qquad \partial^i \overline{p}_a = \overline{\partial}_a x^i. \end{cases}$$

PROOF. By virtue of (2.17), we have

(2.23)
$$\phi^{\mu\lambda}\partial_{\mu}\overline{x}^{\alpha} = \phi^{\alpha\gamma}\overline{\partial}_{\gamma}x^{\lambda}.$$

We can easily see that the last equation is equivalent with (2.22). Suppose

$$X = (X^i, X^{i^*}) = (X^i, P_i),$$

 $Y = (Y^i, Y^{i^*}) = (Y^i, Q_i)$

be components of vector fields over ${}^{c}T(M^{n})$. Then, since the numerical components (2.8) of the tensor field $\phi_{\lambda\mu}$ are kept invariant under homogeneous contact transformations, we see that

(2.24)
$$\phi_{\lambda\mu}X^{\lambda}Y^{\mu} = -X^{i}Q_{i} + Y^{i}P_{i}$$

is an invariant under homogeneous contact transformations. Especially, if we take ξ^{λ} and X^{λ} instead of X^{λ} and Y^{λ} , we see that

(2.25)
$$\phi_{\lambda\mu}\xi^{\lambda}X^{\mu} = \eta_{\mu}X^{\mu} = p_{i}X^{i}$$

is an invariant under homogeneous contact transformations.

If U is a function defined over
$${}^{c}T(M^{n})$$
, then

$$(2.26) \qquad \qquad \partial_{\lambda}U = (\partial_{i}U, \ \partial^{i}U)$$

is a covector field over ${}^{c}T(M^{n})$. However,

(2.27)
$$\phi^{\lambda\mu}\partial_{\mu}U = (-\partial^{i}U, \partial_{i}U)$$

is a vector field over ${}^{c}T(M^{n})$.

Let U,V be differentiable functions defined over ${}^{c}T(M^{n})$. We define the socalled Poisson's bracket of U and V by

(2.28)
$$(U,V) = \phi^{\lambda\mu} \partial_{\lambda} U \partial_{\mu} V = \partial^{i} U \partial_{i} V - \partial_{i} U \partial^{i} V.$$

Then, (U,V) is also a function defined over ${}^{c}T(M^{n})$. It is evident that if U,V are invariant under homogeneous contact transformation f, then (U,V) is also invariant under f.

3. Fundamental varieties. Suppose that

$$f: {}^{c}T(M^{n}) \to {}^{c}T(M^{n})$$

be a homogeneous contact transformation. Denoting the fibre of ${}^{c}T(M^{n})$ at a point x of M^{n} by F_{x} , we put

- $(3. 1) S_x = \pi \circ f(F_x),$
- $\overline{S}_x = \pi \circ f^{-1}(F_x),$

and call S_x and \overline{S}_x as the *fundamental varieties* at x of f and f^{-1} respectively. If f is an extension of a diffeomorphism f of M^n onto itself, then it is evident that all fundamental varieties of f and f^{-1} reduce to points.

THEOREM 3.1. If a point y belongs to S_x , then the point x belongs to \overline{S}_y . The converse is also true.

PROOF. $y \in S_x$ means that $y \in \pi \circ f(F_x)$ and it is equivalent to $F_y \cap f(F_x)$ $\neq \phi$. The last equation can be written also as $f^{-1}(F_y) \cap F_x \neq \phi$, and so it is equivalent to $\pi \circ f^{-1}(F_y) \ni x$. Therefore, $x \in \overline{S}_y$. The converse can be proved easily by the process inverse to the above.

COROLLARY. (i) If
$$y \in M^n$$
, then
(3. 3) $\overline{S}_y = \{x | y \in S_x\}$.
(ii) If $x \in M^n$, then
(3. 4) $S_x = \{y | x \in \overline{S}_y\}$.

Now, from $(2.15)_2$ we can see that the rank of the matrix $(\partial^i \bar{x}_a)$ is smaller than n-1. Geometrically, it is nothing but the number of linearly independent tangent vectors at $\bar{x} = \pi \circ f(x,p)$. We shall call it rank of S_x at the point \bar{x} . So, it is independent upon the choice of coordinate neighborhoods. The variety S_x may have singularities in the sense that at some points the rank of S_x is less than that of generic points on S_x . We can see that

dim
$$S_x = \max_{\overline{x} \in S_x} \{ \text{rank of } S_x \text{ at } \overline{x} \}.$$

For every point z = (x,p) of ${}^{\circ}T(M^n)$ we make correspond an integer r_f by (3. 5) $r_f(z) = \text{rank of } S_x$ at $\overline{x} = \pi \circ f(z)$.

Then, we get an integral valued function r_f over ${}^{c}T(M^{n})$ such that

$$(3. 6) 0 \leq r_f \leq n-1.$$

We call r_f as the rank function of the first kind of the homogeneous contact transformation f.

THEOREM 3.2. The necessary and sufficient condition that a homogeneous contact transformation f of M^n is an extension of a diffeomorphism of M^n is that the rank function of the first kind r_f of f is identically equal to zero.

PROOF. Necessity. If f is an extension of a diffeomorphism of M^n , then S_x is a point. So r_f is equal to zero.

Sufficiency. As S_x is arcwise connected, if $r_f \equiv 0$, then every S_x reduces to a point. So, f is a fibre-preserving diffeomorphism of ${}^{c}T(M^{n})$. Hence, by Theorem 1.3 we can see that f is an extension of a diffeomorphism of M^{n} .

Š. SAŠAKĪ

In the next place, we fix a point z in ${}^{c}T(M^{n})$ and take a coordinate neighborhood U_{λ} of $\{U_{\lambda}\}$ ($\lambda \in \Lambda$) such that $f(z) \in \pi^{-1}(U_{\lambda})$. We denote the subset of indices of Λ which satisfy the last property by Λ_{z} . For every $\lambda \in \Lambda_{z}$ we put

(3. 7)
$$R_{\lambda,\pi(z)} = \rho_{\lambda} \{ f(F_{\pi(z)}) \cap \pi^{-1}(U_{\lambda}) \},$$

(3. 8) $r'_{f}(z,U_{\lambda}) = \operatorname{rank} \operatorname{of} R_{\lambda,\pi(z)} \operatorname{at} \rho_{\lambda} \circ f(z).$

Analytically, if we denote the coordinate neighborhood of the point z by $\pi^{-1}(U)$ ($\pi z \in U$) and denote f restricted to $\pi^{-1}(U) \cap f_{\circ}^{-1}\pi^{-1}(U_{\lambda})$ by

$$x^{a}_{(\lambda)} = x^{a}_{(\lambda)}(x,p), \ p^{(\lambda)}_{a} = p^{(\lambda)}_{a}(x,p),$$

then we see easily that

$$r'_{f}(z,U) = \operatorname{rank} (\partial^{i} \overline{p}^{(\lambda)}_{a}) \text{ at } (x,p).$$

However, contrary to the rank of S_x at a point of $S_x, r'_f(z, U_\lambda)$ depends upon the choice of coordinate neighborhoods. So, we define $r'_f(z)$ by

(3. 9)
$$r'_{f}(z) = \max_{\lambda \in \Lambda} r'_{f}(z, U_{\lambda}).$$

If we vary z over ${}^{c}T(M^{n})$, we get again an integral valued function r'_{f} over ${}^{c}T(M^{n})$ depending upon f and such that

$$(3.10) 0 \le r'_f \le n.$$

The function r'_{f} generally depends upon the open covering $\{U_{\lambda}\}$ of M^{n} . However, if we consider a covering which contains all possible fine neighborhoods and all possible coordinate systems in them, then r'_{f} is a well defined function over ${}^{c}T(M^{n})$ by the homogeneous contact transformation f. We shall call r'_{f} the rank function of the second kind of the homogeneous contact transformation f.

THEOREM. 3.3 At every point z of ${}^{c}T(M^{n})$ and for every homogeneous contact transformation f of M^{n} , we have

$$(3.11) r_f(z) + r'_f(z) \ge n.$$

PROOF. We denote the tangent space of ${}^{c}T(M^{n})$ at f(z) by $T_{f(z)}$ and U_{λ} be a coordinate neighborhood such that $\pi \circ f(z) \in U_{\lambda}$. Then, the maximal subspace V (vertical space) of $T_{f(z)}$ such that every vector of V is mapped to zero by π and the maximal subspace H_{λ} of $T_{f(z)}$ such that every vector of H_{λ} is mapped to zero by ρ_{λ} are disjoint and complementary.

Now, the dimension of $f(F_{\pi(z)})$ at f(z) is n. If dim $S_{\pi\circ f(z)}$ is n-s at $\pi\circ f(z)$, then the s-dimensional subspace of $T_{f(z)}$ which is spanned by s independent vectors of $T_{f(z)}$ such that each of them is mapped to zero by π is mapped to s-dimensional subspace of the standard fibre F by ρ_{λ} . Therefore, the dimension of $R_{\lambda,\pi(z)}$ is at least s. Hence, we get (3.11).

As we have proved it in Theorem 3.1, if a point \bar{x} belongs to S_x , then

the point x belong to $\overline{S}_{\overline{x}}$. Any pair of points x and \overline{x} which are in such relation is called to be in the relation S.

Now, suppose M^n is a copy of M^n and we consider the point \overline{x} as a point in \overline{M}^n . Then, the set Σ of all pairs (x,\overline{x}) in the relation S can be regarded as a submanifold of $M^n \times \overline{M}^n$. It may have some singularities. It is clear that

(3.12)
$$\Sigma = \bigcup_{x \in M^n} \{x, S_x\} = \bigcup_{\overline{x} \in M^n} \{\overline{S}_{\overline{x}}, \overline{x}\}.$$

When (x_0, \overline{x}_0) belongs to Σ , we take coordinate neighborhoods U of x_0 and \overline{U} of \overline{x}_0 and we express the homogeneous contact transformation f restricted to $\pi^{-1}(U) \cap f^{-1}(\pi^{-1}(\overline{U}))$ by

(3.13)
$$\overline{x}^a = \overline{x}^a(x,p), \ \overline{p}_a = \overline{p}_a(x,p).$$

If $S_x(x \in U)$ has a constant rank for every (x,\bar{x}) over a subdomain of Σ which contains (x_0, p_0) , then equations of Σ in a neighborhood of (x_0, \bar{x}_0) are given by

(3.14)
$$F_{\sigma}(x^1,\ldots,x^n; \bar{x}^1,\ldots,\bar{x}^n) = 0 \qquad (\sigma = 1,\ldots,s)$$

which are obtained by eliminating p_{α} 's from the first equation of (3.13). It is evident that the number s is equal to n minus the constant rank of S_x , $x \in U$.

THEOREM 3.4. If (x,\overline{x}) be a pair of points in the relation S, then the rank of S_x at \overline{x} is equal to the rank of $\overline{S_x}$ at x.

PROOF. We consider the rank of Σ at the point (x,\overline{x}) . Then, we can easily see that it is equal to (rank of S_x at \overline{x}) + n and (rank of $\overline{S_x}$ at x) + n. So we have

rank of S_x at \overline{x} = rank of $\overline{S}_{\overline{x}}$ at x.

4. Integral submanifolds. The homogeneous contact form η of M^n deter-

mines an (2n - 1)-dimensional distribution defined by

(4. 1)

We shall call it the fundamental distribution of the cotangent bundle ${}^{c}T(M^{n})$. Suppose N be a differentiable submanifold of ${}^{c}T(M^{n})$ and

$$\iota: N \to {}^{c}T(M^{n})$$

 $\eta = 0.$

be the injection map. If

$$(4. 2) \iota^* \eta = 0,$$

then N is said to be an *integral submanifold* of the fundamental distribution of an integral submanifold for brevity.

THEOREM 4.1. A submanifold N of ${}^{\circ}T(M^n)$ is an integral submanifold if and only if every point z_0 of N has the property that its covector p_0 is tangent to πN at $x_0 = \pi z_0$.

PROOF. Take a coordinate neighborhood U of M^n with coordinates x^i so that $\pi^{-1}(U)$ contains the point z_0 of N. We also take a coordinate neighborhood V of N with coordinates (u^1, \dots, u^r) , $r = \dim N$, so that V contains the point z_0 . Then, a sufficiently small neighborhood of z_0 with respect to N can be expessed analytically as

(4. 3)
$$x^i = x^i(u^1, \dots, u^r), \ p_i = p_i(u^1, \dots, u^r).$$

The condition (4.2) can now be written as

(4. 4)
$$p_i(u) \frac{\partial x^i}{\partial u^{\lambda}} = 0 \quad (\lambda = 1, \dots, r).$$

As $(4, 3)_1$ is the equation of πN in the neighborhood of x_0 , the last equation shows that p_0 is tangent to πN at x_0 .

Conversely, if p_0 is tangent to πN at x_0 for every point z_0 of N, then we have (4. 4) identically. So, we see that (4. 2) is true. Hence, N is an integral submanifold.

EXAMPLE 1. Every point of ${}^{c}T(M^{n})$ is a zero dimensional integral submanifold. EXAMPLE 2. Every fibre $F_{x}(x \in M^{n})$ of ${}^{c}T(M^{n})$ is an *n*-dimensional integral submanifold.

THEOREM 4.2. Let N be an integral submanifold in ${}^{c}T(M^{n})$. If f is a homogeneous contact transformation of M^{n} , then fN is also an integral submanifold in ${}^{c}T(M^{n})$.

PROOF. We denote the injection map of N into ${}^{c}T(M^{n})$ by ι . Then, the injection map of fN into ${}^{c}T(M^{n})$ is given by $f \circ \iota$. As

$$(f \circ \iota)^* \eta = \iota^* \circ f^* \eta$$
$$= \iota^* \eta = 0,$$

we can see that fN is an integral submanifold.

COROLLARY. If f is a homogeneous contact transformation of M^n , then the images $f(F_x)$ and $f^{-1}(F_x)$ of a fibre F_x at $x \in M^n$ are integral submanifolds.

An important consequence of the last corollary is the following

THEOREM 4.3. Let z be a point of ${}^{c}T(M^{n})$ and \overline{z} be the image of it under a homogeneous contact transformation f. Then the covector \overline{p} of z is tangent to S_x at $\overline{x} = \pi \overline{z}$ and the covector p of z is tangent to $\overline{S_x}$ at $x = \pi z$.

PROOF. As a point of ${}^{c}T(M^{n})$, z = (x,p) belongs to F_{x} and so $\overline{z} = (\overline{x},\overline{p})$ belongs to $f(F_{x})$. However, by virtue of the last Corollary, $f(F_{x})$ is an integral submanifold in ${}^{c}T(M^{n})$. Therefore, \overline{p} is tangent to $\pi \circ f(F_{x}) = S_{x}$.

In the same way, p is tangent to $\pi \circ f^{-1}(F_{\bar{x}}) = \overline{S}_{\bar{x}}$.

THEOREM 4.4. The dimensions of integral submanifolds of the homogeneous contact form η of a differentiable manifold M^n can not be greater than n.

PROOF. Let N be an integral submanifold and $z \in N$. We denote the rank of πN at πz by r. Then the dimension of the set of covectors which are tangent to πN at z is clearly n - r. Hence, the dimension of N is at most r + (n-r), which is to be proved.

Now, we define $F_{x,\bar{x}}$ by

$$F_{x,\bar{x}} = \{ z \, | \, z \in F_x, \, f(z) \in F_{\bar{x}} \}.$$

Then, we get the following

THEOREM 4.5. Suppose f is a homogeneous contact transformation. Then, in order that a covector \overline{p} at a point \overline{x} be tangent to $S_x = \pi \circ f(F_x)$, it is necessary and sufficient that $\overline{z} = (\overline{x}, \overline{p})$ is the image under f of an element of $F_{x,\overline{x}}$.

PROOF. Necessity. If \overline{p} is tangent to S_x at \overline{x} , then

$$\overline{z} = (\overline{x}, \overline{p}) \in F_{\overline{x}} \cap f(F_x).$$

Therefore,

$$z = (x, p) = f^{-1}(\overline{z}) \in F_x$$

Hence,

$$z \in F_{x,\overline{x}}$$

Sufficiency. If $\overline{z} = f(z)$, $z \in F_{x,\overline{x}}$, then $\overline{z} \in f(F_x)$. As $f(F_x)$ is an integral submanifold, \overline{p} is tangent to S_x at \overline{x} .

Suppose N^{n-1} be an (n-1)-dimensional orientable submanifold of M^n . At every point of N^{n-1} we take a unit tangent covector of N^{n-1} with respect to an arbitrary but fixed Riemannian metric of M^n . Then, all such unit covectors constitute a differentiable field over N^{n-1} and the set of elements (x, p_x) , where $x \in N^{n-1}$ and p_x is the unit tangent covector at x defined above, determines an (n-1)-dimensional submanifold in ${}^{c}T(M^{n})$. We shall call it the *lift* of N^{n-1} and denote it by lN^{n-1} . l may be regarded as a diffeomorphism

$$l: N^{n-1} \rightarrow l N^{n-1}$$

whose inverse is the restriction map $\pi | lN^{n-1}$. It is evident that lN^{n-1} is an integral submanifold of M^n .

Now, suppose that f is a homogeneous contact transformation. Then, $f \circ lN^{n-1}$ is also an (n-1)-dimensional integral submanifold. However,

$$\overline{N} = \pi \circ f \circ l N^{n-1}$$

is not necessarily (n-1)-dimensional. \overline{N} is said to be the *image of* N^{n-1} under f.

EXAMPLE. Consider a dilatation f in Euclidean space E^n . Then, for any point $y \in E^n, \overline{S}_y = \pi \circ f^{-1}(F_y)$ is an (n-1)-dimensional sphere in E^n . If we take \overline{S}_y with unit tangent covectors as N^{n-1}

$$ar{N} = \pi \circ f \circ l \circ N^{n-1} \ = \pi \circ f \circ l \circ \pi \circ f^{-1} F_y = y.$$

So, \overline{N} is a point. Therefore, \overline{N} is 0-dimensional.

Now, if we put

$$(\overline{x},\overline{p}_{\overline{x}}) = f(x,p_x)$$

then $\overline{p_{\overline{x}}}$ is tangent to \overline{N} at \overline{x} , as $f \circ l N^{n-1}$ is an integral submanifold in ${}^{\circ}T(M^n)$.

Suppose N_1^{n-1} , N_2^{n-1} be two (n-1)-dimensional orientable submanifolds in M^n such that they are tangent at a point x_0 . Then, we may construct unit covector fields over N_1^{n-1} and N_2^{n-1} so that they have (x_0, p_{x_0}) in common. If we construct lN_1^{n-1} , lN_2^{n-1} , then they have a point in common and so $f \circ lN_1^{n-1}$, $f \circ lN_2^{n-1}$ have a point in common too. Therefore,

$$\overline{N}_1 = \pi \circ f \circ l N_1^{n-1}, \ \overline{N}_2 = \pi \circ f \circ l N_2^{n-1}$$

have a common tangent covector at the point $\bar{x}_0 = \pi f(x_0, p_0)$. Hence, we get the following

THEOREM 4.6. Let N_1^{n-1} and N_2^{n-1} be two (n-1)-dimensional orientable submanifolds in M^n such that they are tangent at a point. Then, the images of N_1^{n-1} and N_2^{n-1} under a homogeneous contact transformation have a tangent covector in common.

If the images \overline{N}_1 and \overline{N}_2 are both (n-1)-dimensional at $\pi \circ f(x_0, p_0)$, then they are tangent to each other in the proper sense and this is the reason why our diffeomorphism of ${}^{c}T(M^{n})$ is called to be a (homogeneous) contact transformation.

In the above argument, the fact that N_1^{n-1} and N_2^{n-1} are submanifolds of M^n in the proper sense is not essential. To get the same result, it is essential that lN_1^{n-1} and lN_2^{n-1} have only a point in common. So, instead of lN_1^{n-1} and

 lN_2^{n-1} we may take lN_1^{n-1} and $F^*_{x_0}$ as they have just a point in common, where $F^*_{x_0}$ is the submanifold of F_{x_0} whose points consist of units covectors. This leads us to the following

THEOREM 4.7. Let N^{n-1} be an (n-1)-dimensional orientable submanifold in M^n . If $x_0 \in N^{n-1}$, then the image of N^{n-1} under a homogeneous contact transformation has a tangent covector in common with S_{x_0} .

Therefore, in the favourable case when the image \overline{N} of N^{n-1} and $S_x(x \in N^{n-1})$ are all (n-1)-dimensional, \overline{N} is an envelope of S_x 's $x \in N^{n-1}$.

5. Lie algebra of infinitesimal homogeneous contact transformations.

A vector field $X^{\lambda} = (X^{i}, P_{i})$ over ${}^{c}T(M^{n})$ is said to be an *infinitesimal* homogeneous contact transformation if it satisfies

where $\mathcal{L}(X)$ means the operator of Lie derivation with respect to the vector field X.

THEOREM 5.1. The set L of all infinitesimal homogeneous contact transformations of M^n constitutes a Lie algebra with respect to the usual bracket operation.

PROOF. By virtue of the property of the Lie derivative

(5. 2)
$$\mathfrak{L}(X)\mathfrak{L}(Y) - \mathfrak{L}(Y)\mathfrak{L}(X) = \mathfrak{L}([X,Y]),$$

it is clear that if X and Y are infinitesimal homogeneous contact transformation, then [X,Y] is also an infinitesimal homogeneous contact transformation. Therefore, we can easily see that our theorem is true.

The equation (5. 1) is equivalent to

(5. 3)
$$p_i \partial_j X^i = -P_j, \ p_i \partial^j X^i = 0.$$

If we put

(5. 4)
$$U = \eta_{\lambda} X^{\lambda} = p_i X^i,$$

then we have

$$egin{aligned} \partial_j U &= p_i \partial_j X^i = - P_j, \ \partial^j U &= X^j + p_i \partial^j X^i = X^j. \end{aligned}$$

and

$$(5. 5) \qquad \qquad p_j \partial^j U = p_j X^j = U.$$

So, U is a coray function of degree 1 over ${}^{c}T(M^{n})$ and X^{λ} can be written as

(5. 6)
$$X^{\lambda} = -\phi^{\lambda\mu}\partial_{\mu}U = (\partial^{i}U, -\partial_{i}U).$$

Conversely, every vector field over ${}^{c}T(M^{n})$ of the form (5. 6), where U is a coray function of degree 1 over ${}^{c}T(M^{n})$ is easily seen to be an infinitesimal homogeneous contact transformation. Hence, we get the

THEOREM 5.2. Every infinitesimal homogeneous contact transformation X of a differentiable manifold M^n can be written as (5. 6), where U is a coray function of degree 1. The converse is also true.

The function U is said to be the *characteristic function* of the infinitesimal homogeneous contact transformation X.

N.B. We can easily verify that (5. 3) is equivalent to any one of the three equations

(5. 7)
$$\&(X)\xi^{\lambda} = 0, \ [\xi,X] = 0, \ \&(\xi)X^{\lambda} = 0$$

and

THEOREM 5.3. Let $X^{\lambda} = (X^{i}, P_{i}), Y^{\lambda} = (Y^{i}, Q_{i})$ be infinitetimal homogeneous contact transformations and U,V be characteristic functions of them. Then, the characteristic function of the infinitesimal homogeneous contact transformation [X,Y] is given by the Poisson bracket

(5. 9)
$$(U,V) = \varphi^{\lambda\mu} \partial_{\lambda} U \partial_{\mu} V.$$

PROOF. By virtue of (5. 6), we can easily verify that

$$[X,Y]^{\lambda} = - \phi^{\lambda \mu} \partial_{\mu} (\phi^{\alpha \beta} \partial_{\alpha} U \partial_{\beta} V),$$

which shows that our assertion is true.

THEOREM 5.4. The set C of all coray functions of degree 1 over the cotangent bundle ${}^{\circ}T(M^{n})$ constitutes a Lie algebra with respect to the natural addition and the bracket operation (5. 9).

PROOF. As we can easily see that

$$(U,V) = -(V,U),$$

 $(U,(V + W)) = (U,V) + (U,W)$

hold good, we only need to show that the Jacobi identity

((U,V),W) + ((V,W),U) + ((W,U),V) = 0

holds good. However, as

$$((U,V),W) = \phi^{\lambda\mu}\phi^{\rho\nu}(\partial_{\lambda}\partial_{\rho}U\partial_{\mu}V + \partial_{\lambda}U\partial_{\mu}\partial_{\rho}V)\partial_{\nu}W,$$

adding other two similar terms, we can easily see that (5.10) is true. Hence, the theorem is proved.

THEOREM 5.5. If we define the map

$$h: C \to L$$

by

(5.11)
$$U \to -\phi^{\lambda_{\mu}} \partial_{\mu} U, \quad U \in C,$$

then h is an isomorphism of C onto L.

PROOF. First it is clear that h is an homomorphism of C onto L if we regard them merely as additive groups. So, to prove that h is a homomorphism of the Lie algebra C onto the Lie algebra L, it is sufficient to show

(5.12)
$$h(U,V) = [hU,hV].$$

However, the last equation can be written as

$$-\phi^{\lambda\mu}\partial_{\mu}(\phi^{\alpha\beta}\partial_{\alpha}U\partial_{\beta}V) = [\phi^{\lambda\alpha}\partial_{\alpha}U,\phi^{\lambda\beta}\partial_{\beta}V]$$

and its equality is already verified in the proof of Theorem 5.2. So, h is a homomorphism.

Now, the kernel of h is equal to zero, because if

$$\phi^{\lambda\mu}\partial_{\mu}U=0$$

we have U = const. and hence U has to be equal to zero.

COROLLARY 1. If we have k parametric Lie group G_k of homogeneous contact transformations of a differentiable manifold M^n , we denote k infinitesimal homogeneous contact transformations which generate G_k by X_p (p=1 \ldots,k) and their characteristic functions by U_p . Then, U_p 's are linearly independent with respect to constant coefficients and satisfy the relation

(5.13)
$$(U_p, U_q) = c_{pq} U_r (p, q, r = 1, \dots, k)$$

where $c_{p_1}^r$ are constant.

N.B. $(U_p, U_q) = 0$ is the necessary and sufficient condition for the commutativity of the group generated by U_1, \dots, U_k .

COROLLARY 2. The Lie algebra L of all infinitesimal homogeneous contact transformations of M^n is infinite dimensional.

PROOF. As the Lie algebra L and C are isomorphic and dim C is infinity, so dim L is equal to infinity.

Now, we shall prove the

THEOREM 5.6. If a differentiable manifold M^n is compact, then every

infinitesimal homogeneous contact transformation X generates a global one parameter group of global homogeneous contact transformations of M^n .

PROOF. We take a point $z_0 \in {}^cT(M^n)$ and a coordinate neighborhood $U(x^i)$ of πz_0 . In $\pi^{-1}(U)$, we consider the set of differential equations of the type

(5.14)
$$\frac{dx^{\lambda}}{dt} = X^{\lambda}.$$

Then, by virtue of the classical existence theorem on ordinary differential equations we can find a neighborhood $V(z_0)$ in $\pi^{-1}(U)$ and a positive constant $\mathcal{E}(z_0)$ so that

(a) (5.14) admits a solution

(5.15)
$$x^{\lambda} = f_t^{\lambda}(z_*) \qquad |t| < \varepsilon(z_0)$$

with the initial condition $f_0(z_*) = z_*$ for every point z_* of $V(z_0)$ and

(b) f_t for every $|t| < \varepsilon(z_0)$ is a diffeomorphism of $V(z_0)$ onto its image under f_t and

(c) if t,t' and t + t' belong to the interval $(-\mathcal{E}(z_0), + \mathcal{E}(z_0))$, then

(5.16)
$$f_t \circ f_{t'} = f_{t+t'}$$

holds good.

The number $\mathcal{E}(z_0)$ generally depends upon the choice of z_0 . On account of this fact, an infinitesimal homogeneous contact transformation generally may not generate a group of global homogeneous contact transformations. However, it is known that if we can choose $\mathcal{E}(z_0)$ so that it does not depend upon the choice of z_0 , then the infinitesimal homogeneous contact transformation generates a global one parameter group G_1 of global homogeneous contact transformations.

Now, we define a transformation T_c by

(5.17)
$$T_c(x,p) = (x,cp),$$

where c is a positive constant. T_c for $0 < c < \infty$ is the one parametric multiplicative group generated by ξ^{λ} . So by (5. 7), X is invariant under T_c and hence we may take $\mathcal{E}(z_0)$ as $\mathcal{E}(T_c z_0)$. Accordingly $\mathcal{E}(z_0)$ depends only upon the coray on which z_0 lies.

Therefore, it is clear that $\mathcal{E}(z_0), z_0 \in {}^cT(M^n)$ has a positive greatest lower bound if M^n is compact. Hence, our theorem is proved.

Now, let us introduce a positive definite Riemannian metric g over M^n . Then, the set of all unit covariant vectors of M^n constitutes a submanifold of ${}^{c}T(M^n)$, which we denote by ${}^{c}T_1(M^n)$. Any differentiable function $W(x,p_1)$ defined over $T_1(M^n)$ such that $W(x, -p_1) = W(x,p_1)$, where $p_1 \in {}^{c}T(M^n)$, can be easily extended to a coray function of degree 1 over ${}^{c}T(M^n)$.

Hence, by virtue of the last theorem, we get the following

THEOREM 5.7. If M^n is a compact differentiable manifold, then there always exist homogeneous contact transformations.

6. Contact distribution of the first kind. The tangent *n*-space to the fibre at a point z = (x, p) of ${}^{c}T(M^{n})$ is called to be the *vertical space* at z. We consider an *n*-space which is disjoint and complementary to the vertical space at z and call it as a *transversal space* to the vertical space at z.

In a coordinate neighborhood $\pi^{-1}(U)$ with coordinates (x^i, p_i) , we put

(6. 1)
$$\partial_i = \frac{\partial}{\partial x^i}, \ \partial^i = \frac{\partial}{\partial p_i}.$$

If $\lambda_j{}^i\partial_i + \mu_{ji}\partial^i$ are *n* vectors which span the transversal *n*-space, then their natural projections $\lambda_j{}^i\partial_i$ have to be linearly independent, so we have $|\lambda_j{}^i| \neq 0$. Therefore, we may assume that *n*-vectors which span the transversal *n*-space have the form

(6. 2)
$$e_i = \partial_i + \Gamma_{ij} \partial^j.$$

We assume that

(6.3)
$$\Gamma_{ij} = \Gamma_{ji},$$

then we can see that it is independent upon the choice of local coordinates. To show it, let

(6. 4)
$$\overline{x}^a = \overline{x}^a(x), \ \overline{p}_a = p_i \overline{\partial}_a x^i$$

be a coordinate transformation of local coordinates and its extension, then we can easily verify that

$$\overline{\partial}_a + \overline{\Gamma}_{ab}\overline{\partial}^b = \overline{\partial}_a x^i (\partial_i + \Gamma_{ij}\partial^j),$$

where we have put

$$\overline{\Gamma}_{ab} = p_k \overline{\partial}_a \overline{\partial}_b x^k + \overline{\partial}_a x^i \overline{\partial}_b x^j \Gamma_{ij}.$$

Therefore, we have $\overline{\Gamma}_{ab} = \overline{\Gamma}_{ba}$, which shows that our assertion is true.

Hereafter we consider a distribution D_1 of transversal *n*-spaces such that the symmetry condition (6. 3) is satisfied at every point of ${}^{c}T(M^{n})$. We call such distribution as *contact distributions of the first kind* and each of the set of *n*-vectors e_i as *contact frame of the first kind* belonging to it and corresponding to the coordinate neighborhood in consideration. We say that Γ_{ij} 's are parameters of the contact frame.

EXAMPLE. Let Γ_{ij}^k be a symmetric affine connection defined over M^n . Then, we can easily verify that

S. SASAKİ

(6.5)
$$\Gamma_{ij} = \Gamma^k_{ij} p_k$$

defines a contact distribution of the first kind.

Now, we consider the vectors e_i as operators in the sense

$$e_i f = \partial_i f + \Gamma_{ij} \partial^j f$$

for any function f over ${}^{c}T(M^{n})$ and define a quantity defined by

Then we get the following

THEOREM 6.1. The contact distribution D_1 of the first kind is completely integrable if and only if

(6. 7)
$$R_{ijk} = 0.$$

PROOF. *n*-planes of D_1 are spanned by vectors e_i . As e_j for fixed j has components $(\delta_j^i, \Gamma_{ji})$ with respect to natural frames, we can easily see that

$$[e_{j}, e_{k}]^{i} = 0,$$

 $[e_{j}, e_{k}]^{n+i} = -R_{ijk}.$

So, $[e_{j}e_k]$ is a linear combination of e_r if and only if $R_{ijk} = 0$. Hence, the theorem follows.

COROLLARY. If the contact distribution D_1 of the first kind is the one which is associated to a symmetric affine connection by (6.5). then D_1 is completely integrable if and only if the affine connection is flat.

PROOF. We can easily verify that

where R^{h}_{ijk} 's are components of the curvature tensor of the affine connection. As p_{h} 's are arbitrary, we have $R^{h}_{ijk} = 0$ if $R_{ijk} = 0$. Hence, the theorem is proved.

THEOREM 6.2. The contact distribution D_1 of the first kind is invariant under the transformation T_c if and only if $\Gamma_{ij}(x,p)$'s are coray functions of degree 1.

PROOF. As the *n*-space of the contact distribution of the first kind at z = (x,p) is spanned by *n*-vectors with components $(\delta_a^i, \Gamma_{ai}(x,p))$ $(a = 1, \dots, n)$ we can easily see that it is defined by equations $\omega_{n+i} = 0$, where we have put

(6. 9)
$$\boldsymbol{\omega}_{n+i} = d\boldsymbol{p}_i - \Gamma_{ij}(\boldsymbol{x},\boldsymbol{p}) d\boldsymbol{x}^j.$$

The equations $\omega_{n+i}=0$ at $z = T_c z$ are satisfied by vectors of the *n*-space which is the image of the *n*-space of D_1 at z under T_c if and only if

 $\Gamma_{ij}(x,p)$'s are coray functions of degree 1. Hence, the theorem is proved.

Let $U_{\lambda}(\lambda \in \Lambda)$ be an open covering of M^n and f be a homogeneous contact transformation of M^n . Suppose $f \circ \pi^{-1}(U_{\lambda}) \cap \pi^{-1}(U_{\mu})$ is not empty, then the restriction map

$$f: \pi^{-1}(U_{\lambda}) \cap f^{-1} \circ \pi^{-1}(U_{\mu}) \to f \circ \pi^{-1}(U_{\lambda}) \cap \pi^{-1}(U_{\mu})$$

can be expressed by

(6.10)
$$\overline{x}^a = \overline{x}^a(x,p), \ \overline{p}_a = \overline{p}_a(x,p),$$

where (x^i, p_i) are coordinates in $\pi^{-1}(U_{\lambda})$ and (\bar{x}^a, \bar{p}_a) are coordinates in $\pi^{-1}(U_{\mu})$.

Now, in order to get good insight of the complicated calculations, we introduce matrix notation

(6.11)
$$\begin{cases} A = (\partial_i \overline{x}^a), \qquad B = (\partial^i \overline{x}^a), \\ C = (\partial_i \overline{p}_a), \qquad D = (\partial^i \overline{p}_a) \end{cases}$$

and

(6.12)
$$\begin{cases} \overline{A} = (\overline{\partial}_a x^i), \quad \overline{B} = (\overline{\partial}^a x^i), \\ \overline{C} = (\overline{\partial}_a p_i), \quad \overline{D} = (\overline{\partial}^a p_i). \end{cases}$$

Then, by virtue of (2.22) and (2.18), we have

(6.13)
$$\begin{cases} A = {}^{t}\overline{D}, \qquad B = -{}^{t}\overline{B}, \\ C = -{}^{t}\overline{C}, \qquad D = {}^{t}\overline{A} \end{cases}$$

and

(6.14)
$$\begin{cases} B^{t}A = A^{t}B, \quad D^{t}C = C^{t}D, \\ B^{t}C - A^{t}D = -E, \end{cases}$$

where t's on the left shoulders of matrices mean their transposes and E is the unit matrix. It is evident that we have also the identities

(6.15)
$$\begin{cases} A\overline{A} + B\overline{C} = E, & A\overline{B} + B\overline{D} = 0, \\ C\overline{A} + D\overline{C} = 0, & C\overline{B} + D\overline{D} = E. \end{cases}$$

Now, if

$$(6.16) |A + B\Gamma| \neq 0$$

at a point z = (x,p) or $\pi^{-1}(U_{\lambda}) \cap f^{-1} \circ \pi^{-1}(U_{\mu})$, we say that f is regular at z with respect to the contact distribution D_1 . And if f is regular at every point of $T(M^n)$, we say that f is regular with respect to D_1 . The independence of the notion of regularity upon coordinate neighborhood comes from the following

THEOREM 6.3. If a homogeneous contact transformation f of M^n is

Ś. SASAKİ

regular with respect to a contact distribution of the first kind D_1 at a point z = (x,p) of ${}^{c}T(M^{n})$, then the image of the n-space of D_1 at the point z is also transversal to the vertical space at the point f(z). The converse is also true.

PROOF. The transversal *n*-space of D_1 at the point z is spanned by *n* vectors e_i .

If we fix *i*, the components of the vector e_i with respect to the natural frame $(\partial_{i}, \partial^{j})$ are $(\delta_{i}^{i}, \Gamma_{ij})$. So, the components of the image of the vector under the transformation f are easily seen to be given by the *i*-th columns of the set of matrices $(A + B\Gamma, C + D\Gamma)$. Therefore, the π -image of the vector in consideration has as its components the *i*-th column of $A + B\Gamma$. Hence, the condition (6.16) is equivalent to the fact that the $\pi \circ f$ image of the transversal *n*-space at the point z spanned by n vectors e_i $(i = 1, \dots, n)$ coincides with the tangent space of M^n at the point $\pi \circ f(z)$. Hence, the condition (6.16) is also equivalent to the fact that the n-space of D_1 at the point z is again a transversal *n*-space at f(z).

It is evident that the converse is also true.

Now, assuming that D_1 is a contact distribution of the first kind and f is a homogeneous contact transformation we consider equations

(6.17)
$$\overline{\Gamma}(A + B\Gamma) = C + D\Gamma^{(1)}$$

for unknowns Γ_{ab} .

LEMMA 6.1. In order that (6.17) admits a set of solutions Γ_{ab} at a point $f(z) \in f \circ \pi^{-1}(U_{\lambda}) \cap \pi^{-1}(U_{\mu})$, it is necessary and sufficient that f is regular with respect to D_1 at the point $z \in \pi^{-1}(U_{\lambda}) \cap f^{-1} \circ \pi^{-1}(U_{\mu})$.

PROOF. Sufficiency is evident.

Necessity. By virtue of (2.22), we can write (6.17) as

$$\overline{\Gamma}_{f}({}^{t}\overline{D}-{}^{t}\overline{B}\Gamma)=-{}^{t}\overline{C}+{}^{t}\overline{A}\Gamma.$$

So we have

(6.18)
$$\Gamma(\overline{A} + \overline{B}{}^{t}\overline{\Gamma}) = \overline{C} + \overline{D}{}^{t}\overline{\Gamma}_{f}$$

(*) $\vec{\mathbf{r}}(A+B\mathbf{r})=C+\overline{D}\mathbf{r}$ under such coordinate transformation, then we have

 $dp - \overline{\Gamma}dx = (D - \overline{\Gamma}B)(dp - \Gamma dx).$

¹⁾ If we consider homogeneous contact transformation (2.13) as a coordinate transformation and introduce an object \mathbf{r} which is transformed by

So we may define a parallel displacement of p_i which is invariant under homogeneous contact transformations by $dp - \mathbf{r} dx = 0$. The object \mathbf{r} and the equation (*) were first introduced by T. Hosokawa [7] in this way. The word contact frame was first used by L. P. Eisenhart [6] without explicit mention of the vectors $\partial_i + \mathbf{r}_{ij}\partial^j$.

which is similar to (6.17).

On the other hand, we have

$$(A + B\Gamma)(\overline{A} + \overline{B}^{i}\overline{\Gamma}) = A\overline{A} + \stackrel{f}{A}\overline{B}^{i}\overline{\Gamma} + B\Gamma(\overline{A} + \overline{B}^{i}\overline{\Gamma}),$$

The right hand side is easily transformed to

$$E - B\{\overline{C} + \overline{D}^{i}\overline{\Gamma}_{f} - \Gamma(\overline{A} + \overline{B}^{i}\overline{\Gamma}_{f})\}.$$

Therefore, by (6.18), we get

(6.19) $(A + B\Gamma)(\overline{A} + \overline{B}{}^{t}\overline{\Gamma}) = E.$

Hence, we have (6.16) which shows that f is regular at the point z = (x, p).

LEMMA 6.2. If (6.17) admits a set of solutions $\overline{\prod}_{fab}$, then $\overline{\prod}_{fab}$'s are symmetric.

PROOF. We multiply $\overline{A} + \overline{B^i} \overline{\Gamma}$ to both sides of (6.17). Then, we see first that the left hand side reduces to $\overline{\Gamma}_f$ by virtue of (6.19). Secondly, the right hand side is transformed to

$$(C + D\Gamma)(\overline{A} + \overline{B}{}^{i}\overline{\Gamma}) = (C + D\Gamma)\overline{A} + C\overline{B}{}^{i}\overline{\Gamma} + D\Gamma\overline{B}{}^{i}\overline{\Gamma}.$$

Putting (6.18) into the last term of the right hand side of the last equation, we see that the right hand side reduces to $\overline{\Gamma}$. Hence, replacing c by b, we get (6.20) $\overline{\Gamma}_{fab} = \overline{\Gamma}_{fba}^{f}$,

which is to be proved.

THEOREM 6.4. If a homogeneous contact transformation f of M^n is regular at a point z of ${}^{\circ}T(M^n)$ with respect to a contact distribution D_1 of the first kind determined by Γ , then the image of the n-space of D_1 at zunder f is the n-space determined by $\overline{\Gamma}$ at $\overline{z} = f(z)$

PROOF. As the vector e_i for fixed *i* has components $(\delta_i^j, \Gamma_{ij})$ with respect to the natural frame (∂_j, ∂^j) , we can easily see that the image of this vector has as its components the *i*-th columns of the set of matrices $(A + B\Gamma, C + D\Gamma)$ with respect to the natural frame $(\overline{\partial}_a, \overline{\partial}^a)$. We consider *n* such vectors, and take a linear combinations of these vectors by multiplying $\overline{A} + \overline{B}_f^{\dagger}\overline{\Gamma}$, then we get $(\delta_b^a, \overline{\Gamma}_{ab})$, i.e. we have *n* vectors

(6.21)
$$\overline{e}_b = \overline{\partial}_b + \overline{\Gamma}_{bc} \overline{\partial}^c.$$

Hence, the image of the transversal *n*-space determined by Γ at z is the transversal *n*-space determined by $\overline{\Gamma}_{f}$ at f(z).

From the proof of Theorem 6.3, we can see that

(6.22)
$$\overline{e}_b = (\overline{\partial}_b x^i + \overline{\partial}^c x^i \overline{\Gamma}_{bc}) f(e_i),$$

where $f(e_i)$ is the vector which is the image of e_i under f.

From Theorems 6.3 and 6.4 we get the following

THEOREM 6.5. Let D_1 be a contact distribution of the first kind of ${}^{\circ}T(M^n)$ determined by Γ and f be a homogeneous contact transformation of M^n . If f is regular at every point of ${}^{\circ}T(M^n)$ with respect to D_1 , then f induces a new contact distribution fD_1 of the first kind in ${}^{\circ}T(M^n)$.

Of course, the *n*-plane of fD_1 at f(z) is spanned by \overline{e}_a . We denote the vectors of fD_1 at z by $\partial_i + \prod_{i,j} \partial^j$.

If a homogeneous contact transformation f satisfies the relation

(6.23)
$$\Gamma_f = \Gamma,$$

then we say that the contact distribution D_1 determined by Γ is invariant under f. We shall study homogeneous contact transformations which leave Γ invariant. As an example we shall prove the following

THEOREM 6.6. Suppose D_1 is the contact distribution of the first kind associated with a symmetric affine connection Γ of M^n . (i) The extention of every affine transformation of M^n leaves D_1 invariant. (ii) If the extended group of a Lie group G of diffeomorphisms of M^n leaves D_1 invariant, G is a group of affine transformations.

PROOF. Let us take the local expression of f as in (6.10). In order that the contact distribution of the first kind D_1 is invariant under f it is necessary and sufficient that

(6.24)
$$\Gamma_{ab}(\overline{x},\overline{p})(\partial_i\overline{x}^b + \partial^j\overline{x}^b\Gamma_{ji}) = \partial_i\overline{p_a} + \partial^j\overline{p_a}\Gamma_{ji}.$$

(i) Suppose f be an extension of an affine transformation of M^n with a symmetric affine connection Γ . Then, we have

(6.25)
$$\overline{x}^a = \overline{x}^a(x), \ \overline{p}_a = p_i \overline{\partial}_a x^i$$

and

(6.26)
$$\Gamma^{c}_{ab}(\overline{x}) = \partial_{k}\overline{x}^{c}(\overline{\partial}_{a}\overline{\partial}_{b}x^{k} + \Gamma^{k}_{ij}\overline{\partial}_{a}x^{i}\overline{\partial}_{b}x^{j}).$$

Noticing (6. 5) and making use of $(6.25)_2$ and (6.26) we get

(6.27)
$$\Gamma_{ab}(\overline{x},\overline{p}) = \overline{\partial}_a \overline{\partial}_b x^k p_k + \Gamma_{ij}(x,p) \overline{\partial}_a x^i \overline{\partial}_b x^j.$$

Comparing the last equation with (6.23) we see that D_1 is invariant under f.

(ii) We consider U_{μ} coincides with U_{λ} and take an infinitesimal homogeneous contact transformation defined by

(6.28)
$$\overline{x}^i = x^i + \partial^i U \delta t, \ \overline{p_i} = p_i - \partial_i U \delta t,$$

where U is a coray function of degree 1 over ${}^{c}T(M^{n})$. From (6.27), we can easily see that the transformation (6.28) leaves D_{1} invariant if and only if the equation

(6.29)
$$\partial_k \Gamma_{ia} \partial^k U - \partial^k \Gamma_{ia} \partial_k U + \Gamma_{ij} e_a \partial^j U + e_a \partial_i U = 0.$$

Now, we consider (6.28) which is the extension of an infinitesimal diffeomorphism defined by a vector field X^i of M^n .

Putting (6.5) into (6.29), we have

$$X^{h}{}_{ia} + R^{h}_{iak}X^{k} = 0$$
, i.e. $\mathcal{L}(X)\Gamma^{h}_{ia} = 0$.

So, X^i is an infinitesimal affine transformation. If we take vector fields which generate the given Lie group G instead of X^i , we can see that G is a Lie group of affine transformations of M^n .

7. Contact distribution of the second kind. We consider another *n*-dimensional distribution D_2 such that the *n*-space of D_2 is disjoint and complementary to the *n*-space of the contact distribution of the first kind D_1 at every point of ${}^{c}T(M^{n})$. As the bases of *n*-spaces of D_2 , we may take *n* vectors of the form $\lambda^{j}{}_{i}e_{j} + \mu_{ij}\partial^{j}$. As the *n*-space of D_2 is disjoint and complementary to the *n*-space of D_1 at every point of ${}^{c}T(M^{n})$, we have $|\mu_{j}^{i}| \neq 0$. So we may assume that the bases are given by *n* vectors of the form

(7. 1)
$$e^{i} = \partial^{i} - \Pi^{ij} (\partial_{j} + \Gamma_{jk} \partial^{k}).$$

Here, we assume that

 $(7. 2) \qquad \qquad \Pi^{ij} = \Pi^{ji}$

The assumption (7. 1) is independent upon the choice of local coordinates. For, if (6. 4) is a coordinate transformation and it extension, then we have

$$\begin{aligned} \partial^{i} &- \Pi^{ij} (\partial_{j} + \Gamma_{jk} \partial^{k}) \\ &= \partial^{i} \overline{p_{a}} \, \overline{\partial_{a}} - \Pi^{ij} \partial_{j} \overline{x}^{b} (\overline{\partial_{b}} + \overline{\Gamma}_{bc} \overline{\partial^{c}}) \end{aligned}$$

by virtue of an analogous argument for Γ_{ij} in §6. The last equation is easily transformed to $\overline{\partial}_a x^i \{\overline{\partial}^a - \overline{\Pi}^{ab}(\overline{\partial}_b + \overline{\Gamma}_{bc}\overline{\partial}^c)\}$, where we have put

(7. 3)
$$\overline{\Pi}^{ab} = \Pi^{ij} \partial_i \overline{x}^a \partial_j \overline{x}^b.$$

Hence, D_2 is spanned by $e^a = \overline{\partial}{}^a - \overline{\Pi}{}^{ab}(\overline{\partial}_b + \overline{\Gamma}_{bc}\overline{\partial}{}^c)$ and $\overline{\Pi}{}^{ab}$'s are symmetric.

We call such distribution D_2 as a contact distribution of the second kind assocciated to the contact distribution of the first kind D_1 . The set of *n* vectors e^i is called a *contact frame of the second kind*. We say that Π^{ji} 's are parameters of the contact frame.

EXAMPLE 1. The distribution determined by the set of all vertical n-spaces

of $^{c}T(M^{n})$.

EXAMPLE 2. We endow a positive definite Riemannian metric g to M^n and define

(7. 4)
$$\Gamma_{ij} = \begin{cases} k \\ ij \end{cases} p_k, \quad \Pi^{ij} = g^{ij} / \sqrt{g^{hk} p_h p_k}$$

at every coordinate neighborhood $\pi^{-1}(U)$ of ${}^{c}T(M^{n})$, where U is a coordinate neighborhood of M^{n} and g^{ij} , ${k \atop ij}$ are the fundamental tensors and the Christoffel's symbols of the Riemannian manifold M^{n} . Then, Γ_{ij} and Π^{ij} determine contact distributions of the first and second kind.

THEOREM 7.1. Suppose the contact distribution D_1 of the first kind is invariant under the transformation T_c . Then, the contact distribution D_2 of the second kind is invariant under T_c , if and only if $\Pi^{ij}(x,p)$'s are coray functions of degree -1.

PROOF. As the *n*-space of D_i at a point z = (x, p) is spanned by *n* vectors e^a with components $(-\Pi^{ai}, \delta_i^a - \Pi^{ab} \Gamma_{bi})$, we can easily verify that it is defined also by *n* equations $\boldsymbol{\omega}_i = 0$, where we have put

(7.5)
$$\omega_i = dx^i + \Pi^{ij}(x,p) \{ dp_j - \Gamma_{jk}(x,p) dx^k \}.$$

The equations of the type $\omega_i = 0$ at $T_c z$ are satisfied by vectors of the *n*-space which is the image of the *n*-space of D_1 at z under T_c if and only if Π^{ijs} are coray functions of degree -1 as Γ_{ij} 's are coray functions of degree +1 by assumption. Hence, our theorem is proved.

Now, we consider the vectors e^i as operators in the sense

$$e^i f = \partial^i f - \Pi^{ij} (\partial_j f + \Gamma_{jk} \partial^k f)$$

and put

(7. 6)
$$R^{ijk} = e^k \Pi^{ij} - e^j \Pi^{ik} + \Pi^{ih} (\Pi^{aj} e^k \Gamma_{ah} - \Pi^{ak} e^j \Gamma_{ah})$$

Then, we get the following

THEOREM 7.2. The contact distribution of the second kind D_2 is completely integrable if and only if there exist the relations

PROOF. *n*-spaces of D_2 are spanned by *n* vectors e^i defined by (7. 1). As e^a for fixed *a* has components $(-\Pi^{ia}, \delta^a_i - \Pi^{ab}\Gamma_{bi})$ with respect to natural frames, we can easily see that

$$\begin{split} & [e^{j}, e^{k}]^{i} = e^{k} \Pi^{ij} - e^{j} \Pi^{ik}, \\ & [e^{j}, e^{k}]^{n+i} = e^{k} (\Gamma_{ia} \Pi^{aj}) - e^{j} (\Gamma_{ia} \Pi^{ak}). \end{split}$$

On the other hand, by the theory of distributions the distribution D_2 is completely integrable if and only if there exist functions $\lambda^{jk}{}_h$ such that

$$[e^{j},e^{k}]=\lambda^{jk}{}_{h}e^{h},$$

i.e.

$$\begin{split} e^{k}\Pi^{ij} - e^{j}\Pi^{ik} &= -\lambda^{jk}{}_{h}\Pi^{hi}, \\ e^{k}(\Gamma_{ia}\Pi^{aj}) - e^{j}(\Gamma_{ia}\Pi^{ak}) &= \lambda^{jk}{}_{h}(\delta^{h}_{i} - \Pi^{hl}\Gamma_{li}). \end{split}$$

Eliminating λ_{h}^{jk} from the last two equations we see that our assertion is true.

COROLLARY. If the distribution of the second kind D_2 can be transformed to the distribution determined by vertical n-spaces by a homogeneous contact transformation f, then (7.7) holds good.

PROOF. The distribution determined by the vertical *n*-spaces are completely integrable. So, its inverse image D_2 by f^{-1} is also completely integrable. Hence, by virtue of Theorem 7.3, we see that our assertion is true.

Let f be a homogeneous contact transformation which is regular with respect to the contact distribution D_1 . We consider now the equations

(7. 8)
$$\overline{\Pi}({}^{t}\overline{A} + \overline{\Gamma}{}^{t}\overline{B}) = (A + B\Gamma)\Pi - B.^{2}$$

Then, \prod_{f}^{ab} 's are defined in $f \circ \pi^{-1}(U_{\lambda}) \cap \pi^{-1}(U_{\mu})$ uniquely, as

$$(7. 9) |\overline{A} + \overline{B} |_{f}^{i}| \neq 0$$

by virtue of (6.19).

LEMMA 7.1. \prod_{f}^{ab} 's defined by (7.8) are symmetric with respect to a and b.

PROOF. We multiply $A + B\Gamma$ to both sides of (7.8) and contract with respect to *i*. Then the left hand side reduces to $\overline{\prod}_{f}$ by virtue of (6.19), the right hand side reduces to

$$(A + B\Gamma)\Pi({}^{t}A + \Gamma {}^{t}B) - B{}^{t}A - B\Gamma {}^{t}B.$$

It is evident that the first term and the third term of the last formula are symmetric. The second term is also symmetric by virtue of $(6.14)_1$. So the right hand side is symmetric. Hence we can see that

(7.10)
$$\overline{\prod}_{f}^{ab} = \overline{\prod}_{f}^{ba}.$$

²⁾ Considering the homogeneous contact transformation (2.13) as a coordinate transformation, Y. Muto [8] and T. C. Doyle [3] independently introduced the object π which is transformed by an equation of the form (7.8).

The geometric meaning of \prod_{r}^{ab} is given by the following

THEOREM 7.3. If a homogeneous contact transformation f of M^n is regular with respect to the contact distribution D_1 determined by Γ , then the image of the n-space spanned by e^i under f is the n-space spanned by $\overline{\partial}^a - \prod_{f}^{ab}(\overline{\partial}_b + \overline{\Gamma}_{bc}\overline{\partial}^c)$.

PROOF. As the vector e^j for a fixed j has components $(-\Pi^{ij}, \delta^i_j - \Gamma_{ik}\Pi^{kj})$ with respect to the natural frame (∂_i, ∂^i) , the image of the vector under the homogeneous contact transformation f has as its components the j-th columns of the set of matrices

$$\{B - (A + B\Gamma)\Pi, D - (C + D\Gamma)\Pi\}$$

with respect to the natural frame $(\overline{\partial}_a, \overline{\partial}^a)$. By virtue of (7.18), this is transformed to

$$\{-\prod_{f}({}^{t}\overline{A}+\overline{\Gamma}_{f}{}^{t}\overline{B}), D-(C+D\Gamma)\Pi\}.$$

Now, we take linear combinations of these *n* vectors by multiplying ${}^{t}(A + B\Gamma)$ and summing up for *j*, we get by (6.17)

(7.11)
$$\{-\prod_{\tau} D^{t}(A+B\Gamma) - (C+D\Gamma)\Pi^{t}(A+B\Gamma)\}.$$

On the other hand we have

$$\overline{\prod}_{f} = (A + B\Gamma)\Pi \ {}^{\iota}(A + B\Gamma) - B \ {}^{\iota}(A + B\Gamma),$$
$$\overline{\prod}_{J}(A + B\Gamma) = C + D\Gamma.$$

So, we have

$$\widehat{\prod}_{f} \ \overline{\prod}_{f} = (C + D\Gamma) \Pi^{t} (A + B\Gamma) - \overline{\prod}_{f} B^{t} (A + B\Gamma).$$

By virtue of the last equation (7.11) can be written as

$$\{ - \overline{\prod}_{f}, D^{t}(A + B\Gamma) - \overline{\prod}_{f}B^{t}(A + B\Gamma) - \overline{\prod}_{f}\overline{\prod}_{f} \}$$

$$= \{ - \overline{\prod}_{f}, (D - \overline{\prod}_{f}B)^{t}(A + B\Gamma) - \overline{\prod}_{f}\overline{\prod}_{f} \}$$

$$= \{ - \overline{\prod}_{f}, {}^{t}(\overline{A} + \overline{B}\overline{\Gamma})^{t}(A + B\Gamma) - \overline{\prod}_{f}\overline{\prod}_{f} \}$$

$$= \{ - \overline{\prod}_{f}, E - \overline{\prod}_{f}\overline{\prod} \}$$

by virtue of $(6.13)_{1,2}$ and (6.17). Therefore, the image of the *n*-space spanned by e^i is spanned by

(7.12)
$$\overline{e}^a = \overline{\partial}^a - \overline{\prod}_{f}^{ab} (\overline{\partial}_b + \overline{\prod}_{f}^{bc} \overline{\partial}^c).$$

From the proof of Theorem 7.1, we can see that

(7.13)
$$\bar{e}^b = (\partial_j \bar{x}^b + \Gamma_{hj} \partial^h \bar{x}^b) f(e^j),$$

where $f(e^{i})$ is the vector which is the image of e^{i} under f.

From Theorems 6.5, 7.3 and Lemma 7.1 we get the following

THEOREM 7.4. Let D_1 and D_2 be contact distributions of the first and second kind of ${}^{\circ}T(M^n)$ determined by Γ and Π and f be a homogeneous contact transformation of M^n . If f is regular at every point of D_1 , then finduces new contact distribution of the second kind fD_2 associated to fD_1 .

 \prod_{j}^{ab} 's are parameters which define fD_2 in $f \circ \pi^{-1}(U_{\lambda}) \cap \pi^{-1}(U_{\mu})$. We denote the parameters which define fD_2 generally by Π^{ij} .

If a homogeneous contact transformation f satisfies the relation

$$(7.14) \qquad \qquad \Pi_{\tau} = \Pi,$$

then we say that the contact distribution D_2 determined by Γ and Π is invariant under f.

THEOREM 7.5. Suppose that we take the distribution determined by vertical spaces as contact distribution of the second kind. Then every homogeneous contact transformation f which leaves this contact distribution invariant is an extension of a diffeomorphism of M^n .

PROOF. Putting $\Pi = 0$, $\overline{\Pi} = 0$ into (7.8) we get $\partial^i \overline{x}^a = 0$. Noticing that the 1-form $p_i dx^i$ is invariant under f, we can easily see that our contact transformation f is an extension of a diffeomorphism of M^n .

THEOREM 7.6. Let M^n be a Riemannian manifold and suppose that we take the contact distributions determined by (7. 4). Then the extension of an isometry of M^n leaves both distributions D_1 and D_2 invariant. And if G' is the extended group of a Lie group G of diffeomorphisms of M^n such that every transformation of G' leaves D_1 and D_2 invariant, then G is a group of isometries of M^n .

The proof is almost evident from that of Theorem 6.6 and the law of transformation (7.3) of Π^{ij} under an extension of a diffeomorphism of M^n .

THEOREM 7.7. If we denote the components of an arbitrary vector X with respect to the natural frame by (X^i, P_i) , then its components with respect to the contact frame (e_i, e^i) are given by

(7.15)
$$\begin{cases} \Lambda^i = X^i + \Pi^{ij}M_j = X^i + \Pi^{ij}(P_j - \Gamma_{jk}X^k), \\ M_i = P_i - \Gamma_{ij}X^j. \end{cases}$$

PROOF. We can easily verify that

$$\Lambda^i e_i + M_i e^i = X^i \partial_i + P_i \partial^i,$$

which shows that our assertion is true.

THEOREM 7.8. The projection tensors T_1 and T_2 of an arbitrary vector to the distributions D_1 and D_2 are given by

(7.16)
$$T_{1} = \begin{pmatrix} \delta_{j}^{i} - \Pi^{ik} \Gamma_{kj} & \Pi^{ij} \\ \Gamma_{ij} - \Gamma_{ik} \Pi^{kh} \Gamma_{hj} & \Gamma_{ik} \Pi^{kj} \end{pmatrix},$$

(7.17)
$$T = \begin{pmatrix} \Pi^{ik} \Gamma_{kj} & -\Pi^{ij} \\ -\Gamma_{ij} + \Gamma_{ik} \Pi^{kh} \Gamma_{hj} & \delta_{ij} - \Gamma_{ik} \Pi^{kj} \end{pmatrix}$$

respectively with respect to natural frames.

PROOF. The projection of an arbitrary vector $X = (X^i, P_i)$ on D_1 is given by $\Lambda^i e_i$. The components of the last vector with respect to the natural frame are easily seen to be

$$(\delta^i_j - \Pi^{ik} \Gamma_{kj}) X^j + \Pi^{ij} P_j, \ (\Gamma_{ij} - \Gamma_{ik} \Pi^{kh} \Gamma_{hj}) X^j + \Gamma_{ik} \Pi^{kj} P_j.$$

The components of $T_{_1}$ are nothing but the coefficients of X^i, P_j of the last vector. So, (7.16) is proved. The proof of (7.17) can be obtained in the same way.

Now we denote the projections of the image of a vector X at z by a homogeneous conact transformation f on fD_1 and fD_2 by $\overline{\Lambda}^a \bar{e}_a$ and $\overline{M}_a \bar{e}^a$, then as $\Lambda^i e_i$ and $M_i e^i$ are transformed by f to $\overline{\Lambda}^a \bar{e}_a$ and $\overline{M}_a \bar{e}^a$ respectively, we can easily see that

(7.18)
$$\overline{\Lambda} = (A + B\Gamma)\Lambda, \ \overline{M}(A + B\Gamma) = M$$

hold good by (6.22) and (7.13).

BIBLIOGRAPHY

- DAVIES, E. T., On the invariant theory of contact transformations, Math. Zeits., 57 (1953), 415-427.
- [2] DAVIES, E. T. and K. Yano, Contact tensor calculus, Ann. di Mat., 37 (1954), 1-36.
- [3] DOYLE, T. C. Tensor decomposition with applications to the contact and complex groups, Ann. of Math. 42 (1941), 698-721.
- [4] EISENHART, L. P., Contact transformations. Ann. of Math. (2) 30 (1929), 211-249.
- [5] EISENHART, L. P., Continuous groups of transformations. Princeton Univ. Press, 1933.
 [6] EISENHART, L. P. AND M.S. KNEBELMANN, Invariant theory of homogeneous contact
- transformations. Ann. of Math. 37 (1936), 747-765 [7] HOSOKAWA, T., Connections in the manifold admitting contact transformations.
- Journ. Fasc. Sci. Hokkaido Imp. Univ., 2 (1934), 169-176.
 [8] MUTÔ, Y., On the connections in the manifold admitting homogeneous contact transformations. Proc. Phys. Math. Soc. Japan, 20 (1938), 451-457.
- [9] MUTÔ, Y. AND K. YANO, Sur les transformations de contact et les espaces de Finsler, Tôhoku Math. Journ., 45 (1939), 293-307.

[10] YANO, K., On the theory of linear connections in the manifold admitting contact transformations, Proc. Phys. Math. Soc. Japan, 17 (1935), 39-47.

TOHOKU UNIVERSITY