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Introduction. Let Mn be an ^-dimensional differentiable manifold of class C°°.
Take a point x of Mn and consider the set Fx of all non-zero covectors at x. Then,
Fx with the natural topology is homeomorphic with F = En — O, where En is a
Euclidean space and O is a point of En. We can easily see that the set

°T(M»)=\JFX

with the natural topology is a fibre bundle with the standard fibre F and
the structural group GL(n, R). We shall call this fibre bundle as the cotangent
bundle of Mn.

In this paper, I want so show that cotangent bundles play an important
role for the study of homogeneous contact transformations of differentiable
manifolds. The classical Laguerre's geometry of (n — l)-spheres in En can be
regarded as a geometry of cT(En)^En X F under a certain group of homogeneous
contact transformations and the classical Lie's higher (n — l)-sphere geometry in
En can be regarded as a geometry of cT(Sn) under a certain group of homo-
geneous contact transformations, where Sn is the n-dimensional sphere. Therefore,
it is natural to study cT(Mn) in connection with homogeneous contact trans-
formations of Mn.

On the background of Lie's works L.P. Eisenhart [4] [5] [6] founded the
theory of homogeneous contact transformations of a differentiable manifold Mn

in 1929 and T.Hosokawa [7], K.Yano [2] [9] [10], Y. Mutό [8] [9], T.C.Doyle
[3], E.T.Davies [1] [2] and others followed him. From our stand point of view,
their theories are local theories of cT(Mn) or tensor calculus of 2n dimensional
manifolds under local contact coordinate transformations. It seems to me that
their theories can be understood the meaning well by studying the cotangent
bundle cT(Mn) globally.

1. Homogeneous contact transformations. Let Mn be a differentiable

About half of this paper was done when the author was a visiting professor of the National
Taiwan University and stayed at the Academia Sinica, Nankang, Formosa from Oct. 1961 to
March 1962.
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manifold of class C°° and cT(Mn) be its cotangent bundle. We denote by π the
natural projection

7r: cT(Mn) -> Mn.

Every point z of cT(Mn) can be expressed as a pair (x, p), where x = πz and
/> is a covector at x. We shall call p as ί/ie covector of z. We sometimes call
the pair (x, p) as an element in Mn.

We take an open covering of Mn by coordinate neighborhoods {Uλ} (λ € Λ)
and denote local coordinates in Uλ by .ri. If we denote the components of a

covector /> at any point x{λ) in Uλ with respect to the natural frame ^—^ at xiλ)

OX{λ)

by /><?>, then the set of all (jc(i} , pψ) (χ{λ) <Ξ Uλ, p{}] € F) constitutes local co-
ordinates in τr~\Uλ). This mapping

is a diffeomorphism and its inverse mapping is usually denoted by φλ. So, we
have

We denote the map which transfers z to p{λ) by pλ Then, we have

Px: π-KUλ)-*F,

{TΓ'^CΛ)}^ ^ A) is an open covering of cT(Mn) by coordinate neighborhoods.

On every neighborhood Ti -^ίΛ) (λ € Λ) of cT(Mn) we consider a 1-form

(1. 1) Viλ) = ^ λ ) ^ .

As the right hand side is a scalar, it does not depend upon the coordinate
transformation. So, the set of all ηλ(\ € Λ) constitutes a global 1-form η over
cT(Mn). We shall call η as the homogeneous contact form of Mn.

A diffeomorphism

is said to be a homoge?ιeous contact transformation of Mn if and only if f
leaves invariant the 1-form η, i.e.

(1. 2) /*77 = V,

where / * is the dual map induced by / on differential forms over cT(Mn). f is
denoted by

z=f(z), zz

or by
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where z = (x, p) and z = (x, p).

From the definition, we can immediately see that the following theorem is

true.

THEOREM 1.1 The totality of homogeneous contact transformations of

a differentiable manifold Mn forms a group.

EXAMPLE. Suppose f0 be a diffeomorphism of Mn onto itself. Then f0

naturally induces a diffeomorphism / of the cotangent bundle cT(Mn) onto itself.

It is easy to see that / is a homogeneous contact transformation. This map / is

called to be an extension of the diffeomorphism f0 of Mn.

THEOREM 1.2 A homogeneous contact transformation f of cT(Mn) onto

itself is an extension of a diffeomorphism of Mn onto itself if and only if f

is a fibre preserving map.

The proof is easy.

2. Analytic expressions of homogeneous contact transformations. Let

U be a coordinate neighborhood of Mn with local coordinates x\ We denote

components of a covector p at a point x of U with respect to the natural frame

by pi. For the sake of convenience, we now put

(2. 1) xn+ί = xι* ΞΞ pi9 i* = n + i

and consider xλ = (x\xn+ί) (λ, μ = 1,. . .,2n) as local coordinates of cT(Mn) in

τr~ι(U). Then the contact form η over cT(Mn) can be written as

(2.2) v = ηλdx"

in π~ι(U), where we have put

(2. 3) Vλ = (pi9 0).

ηλ determines a (2n — l)-dimensional vector subspace of the tangent space of
cT(Mn) at Or, p) containing the tangent space of the fibre at the point.

Now, we consider the exterior differential dη of the contact form η. In

π~~ι(U), it is given by

(2.4) dv = ~

where we have put

(2. 5) φλfl =

We can easily see that (φχμ) has the following numerical components:
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/ 0 - 8 ,

(2. 6) (φλμ) =
\ 8« 0 • ) •

The entity which has components of the form (2. 6) for every coordinate neigh-

borhood π~ι(U) of an open covering of cT(Mn) is a skew-symmetric tensor field of
cT(Mn). Geometrically, it gives a null-system in every tangent space of cT(Mn).

We shall call it the fundamental null-system of cT(Mn).

We define φλμ for every coordinate neighborhood of the type τr~1(U) in
cT(Mn) by

then φλμ's are components of a skew-symmetric tensor field over cT(Mn) and

are given by

/ 0

(2. 8) (φλΌ =
o /\ 8"

We define also

(2. 9) ξλ = ψ ^ μ

in every π~ι(U), then fλ defines a vector field over cT{Mn). Its components in

π~ι(U) are rewritten as

(2.10) f =(0,A).

We can easily see that (2. 9) is equivalent to

(2.11) φx^ = -ηχ.

Now, suppose / be a homogeneous contact transformation of Mn. For every

pair of coordinate neighborhoods U and U with local coordinates xι and xa

such that f{τr'ι(U)) Π TΓ"^tT) is not empty, the restriction map f\τr-ι(U) (1 f ' 1

(π^iU)) can be expressed analytically by

(2.12) ? "P

i.e.

(2.13) xa = ^ α

The condition f*η = η i.e.

(2.14) ηa{x

can be written as

(2.15) £ & * " = /*,

From (2.14), we get easily
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(2.16) φjdχardμa* = φλμ.

( — 3 \

3 γ — —z^ \

with (2.16) we get
(2.17) φyδdμX

Sφ^= -3yX\

Contracting φaydvx
8 with the last equation we then get

(2.18) φaβ = φλ»dλx
adμΞ

β.

From (2.16) we get the following

THEOREM 2.1. The fundamental null-system of the cotangent bundle
cT(Mn) is transformed to itself by homogeneous contact transformations.

Now, from the definition we have

F(χ) = φaβrjβ(x).

Putting (2.14) and (2.18) into the last equation, and making use of (2. 9) we get

(2.19) ξ*(x) = dλx«ξ\x).

The last equation gives an important theorem:

THEOREM 2.2. The functions xa(x,p) and pa(x,p) of a homogeneous
contact transformation (2.13) are homogoneous of degree 0 and 1 respectively
with respect to pt.

PROOF. By virtue of (2.10), (2.19) is easily seen to be equivalent with

(2.20) ptd
ιx* = 0, p{d% = pa,

which show that xa's and pa's are homogeneous of degree 0 and 1 with respect
to pt.

Two points z = (x,p) and z = (x,p') on the same fibre Fx of cT(Mn) are
said to be equivalent if and only if there exists a constant p =)= 0 such that

(2.21) p\ = pfr.

We call an equivlaence class in Fx as a coray at x. The vector ξλ defined in
(2.10) is geometrically the tangent vector of the coray. Theorem 2.2 can now be
expressed geometrically as follows:

THEOREM 2.3. Every homogeneous contact transformation of Mn is a
coray preserving diffeomorphism of cT(Mn).

THEOREM 2.4. Let xa and pa in (2.13) are functions which define a
homogeneous contact transformation. Then, we have
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ί
(2.22) _ _ _

I dtPa = - 3αA, 3'/>« = ZaX\

PROOF. By virtue of (2.17), we have

(2.23) φμλd^ca = φaydyx
λ.

We can easily see that the last equation is equivalent with (2.22).
Suppose

X = (χ*,χ* ) = (χ',Pi)y

Y = ( r . r ) = or,Qi)
be components of vector fields over cT(Mn). Then, since the numerical compo-
nents (2. 8) of the tensor field φχμ are kept invariant under homogeneous contact
transformations, we see that

(2.24) φχ,XλY" = - XΏt + Y'Pi

is an invariant under homogeneous contact transformations. Especially, if we
take ξλ and X1 instead of Xλ and Yλ, we see that

(2.25) Φχμξ
λX" =V,X" =PιXι

is an invariant under homogeneous contact transformations.
If U is a function defined over cT(Mn), then

(2.26) dλU=(βiU, Θ'CT)

is a covector field over cT(Mn). However,

(2.27) Φλμ3μU = ( - 3'C7, diU)

is a vector field over cΊ\Mn).

Let U,V be differentiable functions defined over CT(M71). We define the so-
called Poisson's bracket of U and V by

(2.28) (uy) - Φλ»dλUdμv = Wdy - diU&v.

Then, (U,V) is also a function defined over cT(Mn). It is evident that if U,V are
invariant under homogeneous contact transformation f, then (ί7,V) is also invar-
iant under f.

3. Fundamental varieties. Suppose that

/ : cT(Mn)-*cT(Mn)

be a homogeneous contact transformation. Denoting the fibre of cT(Mn) at a
point x of Mn by Fx, we put

(3. 1) Sx = 7ro/(Fx),

(3. 2) Sx = τrof-\Fx\
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and call Sx and Sx as the fundamental varieties at x o f / a n d / " 1 respectively.
If / is an extension of a diffeomorphism / of Mn onto itself, then it is evident
that all fundamental varieties of / and f~ι reduce to points.

THEOREM 3.1. / / a point y belongs to Sx. then the point x belongs to

~SV. The converse is also true.

PROOF, y € Sx means that y £ τr°f(Fx) and it is equivalent to Fy Π f(Fx)

4= φ The last equation can be written also as f~λ(Fy) Π Fx^p φ, and so it is

equivalent to π°f~ι(Fy) ^ x. Therefore, x £ Sy. The converse can be proved

easily by the process inverse to the above.

C O R O L L A R Y , (i) If y z Mn, then

(3. 3) Sy = {x\y € Sx}.

(ii) If x z Mn, then

(3.4) Sx={y\xzSy}.

Now, from (2.15)2 we can see that the rank of the matrix (dlxa) is smaller
than n — 1. Geometrically, it is nothing but the number of linearly independent
tangent vectors at x = π°f(x,p). We shall call it rank of Sx at the point x. So, it
is independent upon the choice of coordinate neighborhoods. The variety Sx may
have singularities in the sense that at some points the rank of Sx is less than
that of generic points on Sx. We can see that

dim Sx = max {rank of Sx at ~x}.
xeSx

For every point z = (x,p) of cT(Mn) we make correspond an integer rf by

(3. 5) rf(z) = rank of Sx at x = π°f(z).

Then, we get an integral valued function rf over cT(Mn) such that

(3. 6) 0 ^ rf ^ n - 1.

We call rf as the rank function of the first kind of the homogeneous contact

transformation / .

THEOREM 3.2. The necessary and sufficient condition that a homogeneous

contact transformation f of Mn is an extension of a diffeomorphism of Mn is

that the rank function of the first kind rf of f is identically equal to zero.

PROOF. Necessity. If / is an extension of a diffeomorphism of Mn, then
Sx is a point. So rf is equal to zero.

Sufficiency. As Sx is arcwise connected, if 77 = 0, then every Sx reduces to
a point. So, / is a fibre-preserving diffeomorphism of cT(Mn). Hence, by Theorem
1.3 we can see that / is an extension of a diffeomorphism of Mn.
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In the next place, we fix a point z in cT(Mn) and take a coordinate neigh-
borhood Uλ of {Uλ} (λ € Λ) such that f(z) € π-\Uλ). We denote the subset of
indices of Λ which satisfy the last property by A2. For every λ £ A2 we put

(3. 7) Λ M ( W = pλ {/(F^) Π TΓ-XCΛ)},

(3. 8) r'f(z,Uλ) = rank of RλyHz) at fro/fc).

Analytically, if we denote the coordinate neighborhood of the point z by

τr"ι(U) (TΓZ € [/) and denote / restricted to π~\U) Π fZιττ~ι{Uλ) by

then we see easily that

r}(z,U) = rank (3ψ2) at (*,/>).

However, contrary to the rank of Sx at a point of Sxyrf(z,U\) depends upon

the choice of coordinate neighborhoods. So, we define r'^z) by

(3. 9) //(*) - max /,(*,£/* )•
λA

If we vary 2; over cT(Mn), we get again an integral valued function rf over
cT(Mn) depending upon f and such that

(3.10) 0 ^ r'f ^ w.

The function ry generally depends upon the open covering {Uλ} of Mn. However,
if we consider a covering which contains all possible fine neighborhoods and all
possible coordinate systems in them, then rf is a well defined function over
cT(Mn) by the homogeneous contact transformation / . We shall call rf the rank
function of the second kind of the homogeneous contact transformation f.

THEOREM. 3.3 At every point z of cT(Mn) and for every homogeneous
contact transformation f of Mn, we have

(3.11) rf(z) + rX*) ^ n.

PROOF. We denote the tangent space of cT(Mn) at f(z) by Tm and Uλ

be a coordinate neighborhood such that πof(z) € Uλ. Then, the maximal subspace
V (vertical space) of Tm such that every vector of V is mapped to zero by π
and the maximal subspace Hλ of T/Cβ) such that every vector of Hλ is mapped
to zero by p\ are disjoint and complementary.

Now, the dimension oif(Fm{z)) at f(z) is n. If dim Snof{z) is n — s at π°f(z), then
the 5-dimensional subspace of Tf{z) which is spanned by 5 independent vectors of
T/(β) such that each of them is mapped to zero by ir is mapped to 5-dimensional
subspace of the standard fibre F by pλ. Therefore, the dimension of Rλ%7C(z) is at
least 5. Hence, we get (3.11).

As we have proved it in Theorem 3.1, if a point x belongs to Sx, then
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the point x belong to Sx. Any pair of points x and 5 which are in such rela-
tion is called to be in the relation S.

Now, suppose Mn is a copy of Mn and we consider the point x as a point

in Mn. Then, the set Σ of all pairs (x,x) in the relation S can be regarded as a

submanifold of Mn X Mn. It may have some singularities. It is clear that

(3.12) 2 = \ J {x,Sx} = \ J {&,*}.
self11 a eiϋf"

When (xo,xo) belongs to 2, we take coordinate neighborhoods U of x0 and U
of x0 and we express the homogeneous contact tranrformation / restricted to

T Γ - ^ Π Z - V - ^ C O ) by

(3.13) xa = xa(x,p\ pa = pa(x,p).

If Sx(x € {7) has a constant rank for every (x,x) over a subdomain of Σ
which contains (xo,po), then equations of Σ in a neighborhood of (x0, x0) are
given by

(3.14) Fσ(x\. . .,xn χ\. . .,xn) = 0 (σ = 1, . .,5)

which are obtained by eliminating pa's from the first equation of (3.13). It is
evident that the number s is equal to n minus the constant rank of Sx, x £ U.

THEOREM 3.4. If (x,x) be a pair of points in the relation S, then the

rank of Sx at x is equal to the rank of Sx at x.

PROOF. We consider the rank of 2 at the point (x,x). Then, we can easily see
that it is equal to (rank of Sx at x) + n and (rank of Sx at x) + n. So we have

rank of Sx at x = rank of Sx at x.

4. Integral submanifolds. The homogeneous contact form η of Mn deter-

mines an (2n — l)-dimensional distribution defined by

(4. 1) η = 0.

We shall call it the fundamental distribution of the cotangent bundle cT(Mn).

Suppose N be a differentiate submanifold of cT(Mn) and

i: N->cT(Mn)

be the injection map. If

(4. 2) A, = 0,

then N is said to be an integral submanifold of the fundamental distribution
of an integral submanifold|for brevity.
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THEOREM 4.1. A submanifold N of cT(Mn) is an integral submanifold

if and only if every point z0 of N has the property that its covector p0 is

tangent to TΓN at x0 = τrz0.

PROOF. Take a coordinate neighborhood U of Mn with coordinates xι so
that π'XU) contains the point z0 of N. We also take a coordinate neighborhood
V of N with coordinates (u\- . ,ur), r = dim N, so that V contains the point
z0. Then, a sufficiently small neighborhood of z0 with respect to N can be
expessed analytically as

(4. 3) xι = x\u\. X), A = pt(u1,. .,<)•

The condition (4.2) can now be written as

(4.4) A ( M ) J | - = o (λ = l,.. ,r).

As (4. 3)t is the equation of πN in the neighborhood of x0, the last equation
shows that p0 is tangent to πN at x0.

Conversely, if p0 is tangent to TΓN at x0 for every point 2:0 of N, then we
have (4. 4) identically. So, we see that (4. 2) is true. Hence, N is an integral
submanifold.

EXAMPLE 1. Every point of cT(Mn) is a zero dimensional integral submanifold.
EXAMPLE 2. Every fibre Fx(x € M71) of cT(Mn) is an rc-dimensional inte-

gral submanifold.

THEOREM 4.2. Let N be an integral submanifold in cT(Mn). If f is a
homogeneous contact transformation of Mn, then fN is also an integral sub-
manifold in cT(Mn).

PROOF. We denote the injection map of N into cT{Mn) by i. Then, the
injection map of fN into cT(Mn) is given by f°ι.
As

= L*η = 0,

we can see that fN is an integral submanifold.

COROLLARY. If f is a homogeneous contact transformation of Mn, then

the images f(Fx) and f~ι(Fx) of a fibre Fx at x e Mn are integral submani-

folds.

An important consequence of the last corollary is the following

THEOREM 4.3. Let z be a point of cT(Mn) and ~z be the image of it

under a homogeneous contact transformation f. Then the covector p of z is
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tangent to Sx at x — πz and the covector p of z is tangent to Sx at x — πz.

PROOF. AS a point of cT(Mn\ z = (x,p) belongs to Fx and so z = (x9p)

belongs to f(Fx). However, by virtue of the last Corollary, f(Fx) is an integral

submanifold in cT(Mn). Therefore, p is tangent to τrof(Fx) — Sx.

In the same way, p is tangent to π°f~ι(Fi) = Sx.

THEOREM 4.4. The dimensions of integral submanifolds of the homoge-
neous contact form η of a differentiable manifold Mn can not be greater than
n.

PROOF. Let N be an integral submanifold and z € N. We denote the rank
of πN at irz by r. Then the dimension of the set of covectors which are
tangent to πN at z is clearly n — r. Hence, the dimension of N is at most
r + (n — r), which is to be proved.

Now, we define FX}X by

FxΓx= {z\z € FX9fiz) € Ft}.

Then, we get the following

THEOREM 4.5. Suppose f is a homogeneous contact transformation.

Then, in order that a covector p at a point ~χ be tangent to Sx = π°f(Fx\ it is

necessary and sufficient that z — (x,p) is the image under f of an element of
FTt~x.

PROOF. Necessity. If p is tangent to Sx at x, then

z = (x,J) e Fx Π f(Fx).

Therefore,

z = (x,p) = f-'(z) ^ Fx

Hence,

z € FxΓx

Sufficiency. If z = f(z), z £ Fx~x, then z e f(Fx). As f(Fx) is an integral

submanifold, p is tangent to Sx at x.
Suppose Nn~ι be an {n — 1)-dimensional orientable submanifold of Mn. At

every point of Nn~ι we take a unit tangent covector of N71'1 with respect to an
arbitrary but fixed Riemannian metric of Mn. Then, all such unit covectors
constitute a differentiable field over IV^^and the set of elements (x,px), where
x e Nn~ι and px is the unit tangent covector at x defined above, determines an
in - lydimensional submanifold in cT(Mn). We shall call it the lift of Nn~ι

and denote it by lNn~ι. I may be regarded as a diffeomorphism
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I: Nn-l->lNn-1

whose inverse is the restriction map π\lNn~\ It is evident that lNn~ι is an
integral submanifold oί Mn.

Now, suppose that / i s a homogeneous contact transformation. Ύhen, f° IN71 ~ι

is also an (n — l)-dimensional integral submanifold. However,

N = πofolN71-1

is not necessarily (n — l)-dimensional. N is said to be the image of Nn~ι under

/.

EXAMPLE. Consider a dilatation / in Euclidean space En. Then, for any

point y € En,Sy = π°f~ι(Fy) is an (n — l)-dimensional sphere in En. If we take

Sy with unit tangent covectors as Nn~ι

N = irofoloN71-1

= πof°l°π°f~λFy — y.

So, JSί is a point. Therefore, N is 0-dimensional.

Now, if we put

then px is tangent to N at x, as folNn~ι is an integral submanifold in cT{Mn).
Suppose Nγ

n~\ N2

n~1 be two (n — l)-dimensional orientable submanifolds in
Mn such that they are tangent at a point x0. Then, we may construct unit
covector fields over NΛ

n~ι and ΛAg72"1 so that they have (xo,pXo) in common. If
we construct IN^'1, lN2

n~\ then they have a point in common and so/WiV^"1,
folN2

n~ι have a point in common too. Therefore,

N, == TΓofolN^-1, N2 = 7rofolN2

n~ι

have a common tangent covector at the point x0 = πf(xo,po). Hence, we get
the following

THEOREM 4.6. Let N^'1 and N2

n~ι be two (n — 1)-dimensional orientable
submanifolds in Mn such that they are tangent at a point. Then, the images
of Nx

n~ι and N2

n~ι under a homogeneous contact transformation have a
tangent covector in common.

If the images Nx and N2 are both (n — l)-dimensional at π°f(xo,po), then
they are tangent to each other in the proper sense and this is the reason why
our diffeomorphism of cT(Mn) is called to be a (homogeneous) contact transfor-
mation.

In the above argument, the fact that N^'1 and N2

n~ι are submanifolds of
Mn in the proper sense is not essential. To get the same result, it is essential
that ZiVi71"1 and lN2

n~ι have only a point in common. So, instead of lNx

n~ι and
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lN2

n~ι we may take lNγ

n~ι and F*Xo as they have just a point in common,
where F*xo is the submanifold of FXo whose points consist of units covectors. This
leads us to the following

THEOREM 4.7. Let N71'1 be an (n — 1)-dimensional orientable submani-
fold in Mn. If x0 £ Nn~\ then the image of N71'1 under a homogeneous
contact transformation has a tangent covector in common with SXo.

Therefore, in the favourable case when the image Noί N71'1 and Sx(x £ Nn~ι)

are all (n — l)-dimensional, N is an envelope of *Sx's x € Nn~λ.

5. Lie algebra of infinitesimal homogeneous contact transformations.

A vector field Xλ = (X\Pt) over cT(Mn) is said to be an infinitesimal
homogeneous contact transformation if it satisfies

(5. 1) L(X)Vλ = 0,

where £>(X) means the operator of Lie derivation with respect to the vector
field X.

THEOREM 5.1. The set L of all infinitesimal homogeneous contact trans-
formations of Mn constitutes a Lie algebra with respect to the usual bracket
operation.

PROOF. By virtue of the property of the Lie derivative

(5. 2) &(X)£,(Y) - &(Y)£>(X) - &([X,Y]),

it is clear that if X and Y are infinitesimal homogeneous contact transformation,
then [X,Y] is also an infinitesinal homogeneous contact transformation. Therefore,
we can easily see that our theorem is true.

The equation (5. 1) is equivalent to

(5.3)

If we put

(5.4)

then we have

and

(5. 5)

piόjX = — fh

U = ηλX
λ =

OjU = piOjΛ. -

d}u = Xs + pt<

pβV = pJt>

pi&X1 = <

= PiX\

-- - p»
yχι = x}

= u.
So, U is a coray function of degree 1 over cT(Mn) and Xλ can be written

as
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(5. 6) Xλ = - φλμdμU = (3«C7, - ^ t / ) .

Conversely, every vector field over cT(Mn) of the form (5. 6), where U is

a coray function of degree 1 over cT(Mn) is easily seen to be an infinitesimal

homogeneous contact transformation. Hence, we get the

THEOREM 5.2. Every infinitesimal homogeneous contact transformation

X of a differentiable manifold Mn can be written as (5. 6), where U is a

coray function of degree 1. The converse is also true.

The function U is said to be the characteristic function of the infinitesimal

homogeneous contact transformation X.

N.B. We can easily verify that (5. 3) is equivalent to any one of the three

equations

(5. 7) UX)tλ = 0, [ξ,X] = 0, Uξ)Xλ = 0

and

(5. 8) &(X)φ^ = 0.

THEOREM 5.3. Let Xλ = (X',Pt), Yλ = (Y\Qι) be infίnitetimal homoge-

neous contact transformations and U,V be characteristic functions of them.

Then, the characteristic function of the infinitesimal homogeneous contact

transformation [X,Y] is given by the Poisson bracket

(5. 9) (U,V) =

PROOF. By virtue of (5. 6), we can easily verify that

[X,γf = - φ^dμ(φ*?daudβv),

which shows that our assertion is true.

THEOREM 5.4. The set C of all coray functions of degree 1 over

the cotangent bundle cT(Mn) constitutes a Lie algebra with respect to the

natural addition and the bracket operation (5. 9).

PROOF. AS we can easily see that

(U,V) = - (V,U),

(17,(7 + W)) = (17,7) + (U,W)

hold good, we only need to show that the Jacobi identity

(5.10) (ffJ,V),W) + ((7,W),C7) + ((W,C7),7) = 0

holds good. However, as

P Udμv + dλ Udμdp V)dv w,
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adding other two similar terms, we can easily see that (5.10) is true. Hence, the
theorem is proved.

THEOREM 5.5. If we define the map

h: C-^L

by

(5.11) U — - φλ"3μE7, U € C,

then h is an isomorphism of C onto L.

PROOF. First it is clear that h is an homomorphism of C onto L if we
regard them merely as additive groups. So, to prove that h is a homomorphism
of the Lie algebra C onto the Lie algebra L, it is sufficient to show

(5.12) h(U,V) = [hU,hV].

However, the last equation can be written as

- φ^iψ^daUdβV) = [φλ"daU,φλβdβV]

and its equality is already verified in the proof of Theorem 5.2. So, h is a homo-
morphism.

Now, the kernel of h is equal to zero, because if

φ^dμU = 0

we have U — const, and hence U has to be equal to zero.

COROLLARY 1. If we have k parametric hie group Gk of homogeneous

contact transformations of a dijferentiable manifold Mn, we denote k infini-

tesimal homogeneous contact transformations which generate Gk by Xp (/>=1
...,£) and their characteristic functions by Uv. Then, Up's are linearly

independent with respect to constant coefficients and satisfy the relation

(5.13) (UP,UQ) = cp([Ur (p,q,r - 1,. . .,*)

where cPι

r are constant.

N.B. (jJp,Uq) = 0 is the necessary and sufficient condition for the commu

tativity of the group generated by Ul9 9Uk.

COROLLARY 2. The Lie algebra L of all infinitesimal homogeneous

contact transformations of Mn is infinite dimensional.

PROOF. AS the Lie algebra L and C are isomorphic and dim C is infinity,

so dim L is equal to infinity.

Now, we shall prove the

THEOREM 5.6. If a dijferentiable manifold Mn is compact, then every
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infinitesimal homogeneous contact transformation X generates a global one
parameter group of global homogeneous contact transformations of Mn.

PROOF. We take a point z0 e cT(Mn) and a coordinate neighborhood
Uix1) of 7rz0. In 7r~ *([/), we consider the set of differential equations of the type

(5.14) ^ Γ

Then, by virtue of the classical existence theorem on ordinary differential
equations we can find a neighborhood V(z0) in iτ~ι(U) and a positive constant
€(z0) SO that

(a) (5.14) admits a solution

(5.15) x* =β(z*) \t\<ε(z0)

with the initial condition /<,(**) = z* for every point z* of V(z0) and
(b) ft for every 11| < ε(z0) is a diffeomorphism of V(z0) onto its image

under ft and

(c) if tjb' and t + t' belong to the interval ( - €(z0), + B(zo))9 then

(5.16) ftof,=ft+t,

holds good.
The number S(zQ) generally depends upon the choice of z0. On account of

this fact, an infinitesimal homogeneous contact transformation generally may not
generate a group of global homogeneous contact transformations. However, it is
known that if we can choose €(z0) so that it does not depend upon the choice
of z0, then the infinitesimal homogeneous contact transformation generates a
global one parameter group Gx of global homogeneous contact transformations.

Now, we define a transformation Tc by

(5.17) Te(x,p) = (x,cp\

where c is a positive constant. Tc for 0 < c < oo is the one parametric multi-
plicative group generated by ξλ. So by (5. 7), X is invariant under Tc and hence
we may take €(z0) as £(Tcz0). Accordingly S(z0) depends only upon the coray
on which z0 lies.

Therefore, it is clear that β(z0), z0 €
 cT(Mn) has a positive greatest lower bound

if Mn is compact. Hence, our theorem is proved.
Now, let us introduce a positive definite Riemannian metric g over Mn.

Then, the set of all unit covariant vectors of Mn constitutes a submanifold of
cT(Mn\ which we denote by cTλ(Mn). Any differentiate function W(x,pO
defined over Tx{Mn) such that W(x, - A) = M ̂ A), where pxz

cT(Mn\ can
be easily extended to a coray function of degree 1 over cT(Mn).

Hence, by virtue of the last theorem, we get the following
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THEOREM 5.7. If Mn is a compact differentiable manifold, then there
always exist homogeneous contact transformations.

6. Contact dstribution of the first kind. The tangent n-space to the fibre
at a point z = (x,p) of cT{Mn) is called to be the vertical space at z. We
consider an n-space which is disjoint and complementary to the vertical
space at z and call it as a transversal space to the vertical space at z.

In a coordinate neighborhood τr~ι(U) with coordinates (x\pi), we put

If λ/3ί + μH

/di are n vectors which span the transversal n-space, then their
natural projections λ/3* have to be linearly independent, so we have Iλ^l + 0 .
Therefore, we may assume that n-vectors which span the transversal n-space
have the form

(6. 2) et = dt + Γtβ>.

We assume that

(6 3) r o = Γ,t,

then we can see that it is independent upon the choice of local coordinates. To
show it, let

(6. 4) x« - x«(x\ pa =

be a coordinate transformation of local coordinates and its extension, then we
can easily verify that

3α + Γαfta
6 = 3αΛ:l(3i + Γ i j30,

where we have put

Therefore, we have Γσδ = Γδα, which shows that our assertion is true.
Hereafter we consider a distribution Dγ of transversal n-spaces such that the

symmetry condition (6. 3) is satisfied at every point of cT(Mn). We call such
distribution as contact distributions of the first kind and each of the set of
w-vectors et as contact frame of the first kind belonging to it and corresponding
to the coordinate neighborhood in consideration. We say that I\/s are
parameters of the contact frame.

EXAMPLE. Let Γϊj be a symmetric affine connection defined over Mn. Then,
we can easily verify that
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(6. 5) Γ o = Γ&A

defines a contact distribution of the first kind.
Now, we consider the vectors et as operators in the sense

for any function / over cT{Mn) and define a quantity defined by

(6. 6) Rίjk = ekTi3 - ejTik.

Then we get the following

THEOREM 6.1. The contact distribution Dx of the first kind is completely
integrable if and only if

(6. 7) Rijk = 0.

PROOF, w-planes of D{ are spanned by vectors et. As eό for fixed j has
components (δ/, Γ^) with respect to natural frames, we can easily see that

[ej9ek]
1 = 0,

[ej9ek]
n+t = - RiJk.

So, [ehek] is a linear combination of er if and only if Rijk = 0. Hence, the theo-
rem follows.

COROLLARY. If the contact distribution Dλ of the first kind is the one
which is associated to a symmetric affine connection by (6. 5). then Dx is
completely integrable if and only if the affine connection is flat.

PROOF. We can easily verify that

(6. 8) Rijk = R\jkph,

where Rhijks are components of the curvature tensor of the affine connection.
As ph's are arbitrary, we have Rh

ijk = 0 if Rijk = 0. Hence, the theorem is
proved.

THEOREM 6.2. The contact distribution Dλ of the first kind is invariant
under the transformation Tc if and only if Yij{x,pfs are coray functions of
degree 1.

PROOF. AS the n-space of the contact distribution of the first kind at
z = (x,p) is spanned by ^-vectors with components (δ«, Taί(x,p)) (a = 1,. . *,n)
we can easily see that it is defined by equations ωn+i = 0, where we have put

(6. 9) ωn+ί = dp, - Tt^x9ρ)dx3.

The equations ωn+ί = 0 at fz = Tcz are satisfied by vectors of the w-space
which is the image of the rc-space of Dγ at z under Tc if and only if
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Vij(x,pys are coray functions of degree 1. Hence, the theorem is proved.

Let Uλ (λ € Λ) be an open covering of Mn and / be a homogeneous contact

transformation of Mn. Suppose foτr'ι(Uλ) Γl *π~ι(JJμ) is not empty, then the rest-

riction map

/ : TΓ-WΛ) n/-1θ7r-1(C/ | 4)->/oτr-1(C7λ) Π T Γ - W ^ )

can be expressed by

(6.10) xα = xα{x,p\ A = ~ρα(x,p\

where {xl,pi) are coordinates in τr~1(Uχ) and (xα,pα) are coordinates in ir~l(JJ^).

Now, in order to get good insight of the complicated calculations, we

introduce matrix notation

( A = (diXa\ B = ( 3 * ) ,
(611)

. I C = (3t/>α), D = (d'Pα)

and

JΛ. — \OαX ) , LJ — \O X ) ,

(6.12) - - - -
( C = Oβ/»t), D = O β A ) .

Then, by virtue of (2.22) and (2.18), we have
A = ιD, B= - %

( 6 Λ 3 ) C--V. D= A

and

\ιA = AιB, £) tC = C t A
(6.14)

' BtC-AtD=-

where t's on the left shoulders of matrices mean their transposes and E is the

unit matrix. It is evident that we have also the identities

(6.15)

( CA + DC = 0, CB + DD= E.

Now, if

(6.16) \A + BΓ\ 4=0

at a point z = (x,p) or π~ι(Uλ) Π f~1°rir'~1(JJμ)9 we say that / is regular at z

with respect to the contact distribution D1. And if/ is regular at every point

of T(Mn), we say that / is regular with respect to Dx. The independence of the

notion of regularity upon coordinate neighborhood comes from the following

THEOREM 6.3. If a homogeneous contact transformation f of Mn is
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regular with respect to a contact distribution of the first kind Dγ at a point

z = (x,p) of cT(Mn), then the image of the n-space of Dί at the point z is

also transversal to the vertical space at the point f(z). The converse is also

true.

PROOF. The transversal n-space of A at the point z is spanned by n

vectors e%.

If we fix z, the components of the vector et with respect to the natural

frame (3j,3j) are (δl,!1^). So, the components of the image of the vector under

the transformation f are easily seen to be given by the z'-th columns of the set

of matrices (A + BY, C + DT). Therefore, the 7r-image of the vector in consi-

deration has as its components the z'-th column of A + BΓ. Hence, the condition

(6.16) is equivalent to the fact that the πof image of the transversal n-space at

the point z spanned by n vectors et (z = 1,. ,n) coincides with the tangent

space of Mn at the point τrof(z). Hence, the condition (6.16) is also equivalent

to the fact that the jf-image of the n-space of A at the point z is again a

transversal n-space at f{z).

It is evident that the converse is also true.

Now, assuming that A is a contact distribution of the first kind and f is a

homogeneous contact transformation we consider equations

(6.17) T(A + BΓ) = C + DT °

for unknowns Γα5.

LEMMA 6.1. In order that (6.17) admits a set of solutions Γαδ at a point

f{z) € f°7r~\Uλ) Π TΓ'̂ C/μ), it is necessary and sufficient that f is regular

with respect to A at the point z z ir~\Uλ) Π f~lQ^'ιQJμ).

PROOF. Sufficiency is evident.

Necessity. By virtue of (2.22), we can write (6.17) as

TQD- ιBΓ)= - *C+ *AT.

So we have

(6.18) T(A + ΰT) = C + DιT

1) If we consider homogeneous contact transformation (2. 13) as a coordinate transformation
and introduce an object Γ which is transformed by

(*) T(A + BΓ) = C + Dt
under such coordinate transformation, then we have

dp - Ydx = (P - VB) {dp - Tdx).
So we may define a parallel displacement of pi which is invariant under homogeneous contact
transformations by dp— Tdx = 0. The object Γ and the equation (*) were first introduced by
T. Hosokawa [7] in this way. The word contact frame was first used by L. P. Eisenhart [6]
without explicit mention of the vectors
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which is similar to (6.17).

On the other hand, we have

(A + BΓ)(A + B£T)

= AA + ABΎ + BY (A + B£T).
f /

The right hand side is easily transformed to

E - B{C + DΎ - T{Ά + B'f)}.
r f

Therefore, by (6.18), we get

(6.19) (A + J3Γ)(A + B T) = K

Hence, we have (6.16) which shows that / is regular at the point z = (x,p).

LEMMA 6.2. If (6.17) admits a set of solutions Γαδ, then Γab's are

symmetric.

PROOF. We multiply Ά+ B'V to both sides of (6.17). Then, we see first

that the left hand side reduces to Γ by virtue of (6.19). Secondly, the right

hand side is transformed to

(C + DΓXA + BT)

= (C + DY)Ά + CB'T + DTBΎ.

Putting (6.18) into the last term of the right hand side of the last eqation, we

see that the right hand side reduces to Γ. Hence, replacing c by b, we get

(6.20) Γab = Γ J

which is to be proved.

THEOREM 6.4. If a homogeneous contact transformation f of Mn is

regular at a point z of cT(Mn) with respect to a contact distribution Όx of

the first kind determined by Γ, then the image of the n-space of Dx at z

under f is the n-space determined by Γ at z — f{z)

PROOF. AS the vector e% for fixed i has components (δί,Γtj) with respect

to the natural frame (dj,d}), we can easily see that the image of this vector has

as its components the z'-th columns of the set of matrices (A + BΓ, C •+- DΓ)

with respect to the natrual frame (da,d
a). We consider n such vectors, and take

a linear combinations of these vectors by multiplying A + BΎ, then we get

(δ?,Γαδ), i.e. we have n vectors

(6.21) ~e~b =db + T δ c 3 l

Hence, the image of the transversal n-space determined by Γ at z is the

transversal n-space determined by Γ at f(z).
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From the proof of Theorem 6.3, we can see that

(6.22) eb =
b

where /(^) is the vector which is the image of e% under f.

From Theorems 6.3 and 6.4 we get the following

THEOREM 6.5. Let Dγ be a contact distribution of the first kind of
cT(Mn) deter?nined by Γ and f be a homogeneous contact transformation of

Mn. Iff is regular at every point of cT(Mn) with respect to Du then f

induces a new contact distribution fDx of the first kind in cT(Mn).

Of course, the /2-plane of fDλ at f(z) is spanned by ea. We denote the

vectors of / A at z by dt + Γ t β\

If a homogeneous contact transformation f satisfies the relation

(6.23) Γ = Γ,

then we say that the contact distribution Dx determined by Γ is invariant under

f We shall study homogeneous contact transformations which leave Γ invariant.

As an example we shall prove the following

THEOREM 6.6. Suppose Di is the contact distribution of the first kind

associated with a symmetric affine connection Γ of Mn. (i) The extention of

every affine transformation of Mn leaves Dι invariant, (ii) / / the extended

group of a Lie group G of diffeomorphisms of Mn leaves Dλ invariant, G is a

group of affine transformations.

PROOF. Let us take the local expression of f as in (6.10). In order that

the contact distribution of the first kind Dx is invariant under/ it is necessary

and sufficient that

(6.24) Tah(

(i) Suppose f be an extension of an affine transformation of Mn with a

symmetric affine connection Γ. Then, we have

(6.25) xa = xa(x\ pa = p{dax
l

and

(6.26) VMx) = dkχ(dadbχ
k + rfjdax'd^).

Noticing (6. 5) and making use of (6.25)2 and (6.26) we get

(6.27) Tab(x,p) = dadbx
kP. + Tifapjdax'dtx*.

Comparing the last equation with (6.23) we see that Dγ is invariant under/.

(ii) We consider Uμ coincides with Uλ and take an infinitesimal homoge-

neous contact transformation defined by
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(6.28) & = xι + d'USt, ρt = pi- diUδt,

where U is a coray function of degree 1 over cT(Mn). From (6.27), we can

easily see that the transformation (6.28) leaves Dγ invariant if and only if the

equation

(6.29) 3*Γiβ3*E/ - dkΓίadkU + Vrfa&U + ea3tU = 0.

Now, we consider (6. 28) which is the extension of an infinitesimal

diffeomorphism defined by a vector field X1 of Mn.

Putting (6. 5) into (6.29), we have

X\a + RtXk = 0, i.e. £>(X)Γ?α = 0.

So, X1 is an infinitesimal affine transformation. If we take vector fields which

generate the given Lie group G instead of X\ we can see that G is a Lie group

of affine transformations of Mn.

7. Contact distribution of the second kind. We consider another n~

dimensional distribution D2 such that the n-space of D2 is disjoint and comple-

mentary to the w-space of the contact distribution of the first kind D1 at every

point of cT(Mn). As the bases of n-spaces of D2, we may take n vectors of the

form λVj + μ>iβ3- As the n-space of D2 is disjoint and complementary to the

w-space of D1 at every point of cT(Mn), we have \μ)\φ§. So we may assume

that the bases are given by n vectors of the form

(7. 1) eι = 3* - Π"(3, + Tjkd
k).

Here, we assume that

(7. 2) ΓΓj = I F

The assumption (7. 1) is independent upon the choice of local coordinates.

For, if (6. 4) is a coordinate transformation and it extension, then we have

δ(3i + Tbcd
c)

by virtue of an analogous argument for Γ i ; in §6. The last equation is easily

transformed to 3 α ^ f 3 α - Π α δ ( 9 ό + Tbcd
c)}, where we have put

(7. 3) Παδ = WΉ^djxK

Hence, D2 is spanned by ea =Ί)a -Uab(db + Tbcd
c) and Παδ's are symmetric.

We call such distribution D2 as a contact distribution of the second kind

assocciated to the contact distribution of the first kind Dx. The set of n vectors

eι is called a contact frame of the second kind. We say that Π j ΐ ' s are parameters

of the contact frame.

EXAMPLE 1. The distribution determined by the set of all vertical n-spaces
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of cT(Mn).{M).

EXAMPLE 2. We endow a positive definite Riemannian metric g to Mn

and define

(7.4) r "

at every coordinate neighborhood τr~ι(U) of cT{Mn), where U is a coordinate

neighborhood of Mn and gru, j .\ are the fundamental tensors and the ChristoffeΓs

symbols of the Riemannian manifold Mn. Then, Yi5 and Tίίj determine

contact distributions of the first and second kind.

THEOREM 7.1. Suppose the contact distribution Dx of the first kind is

invariant under the transformation Tc. Then, the contact distribution D2 of

the second kind is invariant under Tc, if and only if Hίj(x,pys are cor ay

functions of degree — 1.

PROOF. AS the n-space of D2 at a point z = (x,p) is spanned by n vectors

ea with components (— Πα i, δ? — Iίab TH), we can easily verify that it is defined

also by n equations ωt = 0, where we have put

(7. 5) ωt = dxι + WKx,p) {dpj - Tjk(x,p)dxk}.

The equations of the type ωt = 0 at Tcz are satisfied by vectors of the n-space

which is the image of the w-space of Dλ at z under Tc if and only if Π°'s

are coray functions of degree — 1 as Γ t/s are coray functions of degere + 1 by

assumption. Hence, our theorem is proved.

Now, we consider the vectors eι as operators in the sense

and put

(7. 6) Rijk = ekUij - ejUίk + Uίh(UajekTah - ΠαVΓα Λ).

Then, we get the following

THEOREM 7.2. The contact distribution of the second kind D2 is com-

pletely integrable if and only if there exist the relations

(7. 7) RUk = 0

PROOF, ^-spaces of D2 are spanned by n vectors eι defined by (7. 1). As

ea for fixed a has components (— IΓα, δ? — ΠαδΓδi) with respect to natural

frames, we can easily see that

[e\ekY = ekUίj - ejW\

[e\ek]n+ί = β*(ΓiβΠ
αO ~ ej(TiaΠ

ak).
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On the other hand, by the theory of distributions the distribution D2 is

completely integrable if and only if there exist functions λ j \ such that

i.e.

ek(ΓίaU^) - e'(Γ i βIF*) = λ'*Λ(δ? - Π Λ T f l ) .

Eliminating λ j \ from the last two equations we see that our assertion is true.

COROLLARY. If the distribution of the second kind D2 can be transform-

ed to the distribution determined by vertical n-spaces by a homogeneous

contact transformation f, then (7. 7) holds good.

PROOF. The distribution determined by the vertical n-spaces are comple-

tely integrable. So, its inverse image D2 by f~ι is also completely integrable.

Hence, by virtue of Theorem 7.3, we see that our assertion is true.

Let f be a homogeneous contact transformation which is regular with respect

to the contact distribution Dλ. We consider now the equations

(7. 8) UQA + Γ ιB) = (A + 5Γ)Π - BP

Then, Πα ό's are defined in foπ~\Uλ) Π T Γ " 1 ^ ) uniquely, as

(7. 9) \Λ + B T | 4=0

by virtue of (6.19).

LEMMA 7.1. Uab's defined by (7. 8) are symmetric with respect to a

and b.

PROOF. We multiply A + BΓ to both sides of (7. 8) and contract with

respect to i. Then the left hand side reduces to Π by virtue of (6.19), the right

hand side reduces to

(A + £Γ)Π( ίΛ + Γ ιB) - BιA - BΓ ίB.

It is evident that the first term and the third term of the last formula are

symmetric. The second term is also symmetric by virtue of (6.14)!. So the right

hand side is symmetric. Hence we can see that

(7.10) Uab = Πba.

2) Considering the homogeneous contact transformation (2. 13) as a coordinate transforma-
tion, Y. Muto [8] and T. C. Doyle [3] independently introduced the object Π which is transfor-
med by an equation of the form (7. 8).
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The geometric meaning of Παδ is given by the following

THEOREM 7.3. If a homogeneous contact transformation f of Mn is
regular with respect to the contact distribution Dx determined by Γ, then the
image of the n-space spanned by eι under f is the n-space spanned by

da - ψb(db + vbcd
c).

PROOF. AS the vector ej for a fixed j has components(— Π i j, δ' — ΓίkH
kj)

with respect to the natural frame (di9 dι), the image of the vector under the
homogeneous contact transformation f has as its components the j-th columns
of the set of matrices

[B - (A + BΓ)U, D - (C + DΓ)Π}

with respect to the natural frame (da,d
a). By virtue of (7.18), this is transformed

to

{- UQΆ + Γ %~B)9 D - (C + DΓ)U}.

Now, we take linear combinations of these n vectors by multiplying
t{A + BΓ) and summing up for j , we get by (6.17)

(7.11) {- ff,D KA + BΓ) - (C + DΓ)W(A + BΓ)}.

On the other hand we have

+ 5Γ

Γ(A + BΓ) = C + DΓ.
j

So, we have

Γ Π = (C + DΓ)IΓ(A + BΓ) - ΓB \A + BΓ).

By virtue of the last equation (7.11) can be written as

{- U,D\A + BΓ) - ΓB \A +BΓ) - Γ Π )
/ / / /

Π = (A + BΓ)U \A + BΓ) - B L(A 4- BΓ),

= {-Π, (D-ΓBY(A + BΓ)-Γ Π}

= {- Π, \Ά + BΓ) \A + BΓ) - ΓU}

= {-Π, £-ΓΠ}

by virtue of (6.13)1>2 and (6.17). Therefore, the image of the n-space spanned by
eι is spanned by

(7.12) ea = 3α - Παδ(3δ + Γόc 3C).

From the proof of Theorem 7.1, we can see that



HOMOGENEOUS CONTACT TRANSFORMATIONS 395

(7.13) I" = (9^» + Yhβ
hx")f{e'),

where f(ej) is the vector which is the image of ej under f

From Theorems 6.5, 7.3 and Lemma 7.1 we get the following

THEOREM 7.4. Let Dλ and D2 be contact distributions of the first and

second kind of cT(Mn) determined by Γ and Π and f be a homogeneous con-

tact transformation of Mn. If f is regular at every point of Du then f

induces new contact distribution of the second kind fD2 associated to

ΓP '̂s are parameters which define fD2 in foττ~ι(JίJλ) Π 7r"x(i7M). We denote

the parameters which define fD2 generally by Π u .

If a homogeneous contact transformation f satisfies the relation

(7.14) Π = Π,

then we say that the contact distribution D2 determined by Γ and Π is invariant

under / .

THEOREM 7.5. Suppose that we take the distribution determined by

vertical spaces as contact distribution of the second kind. Then every homoge-

neous contact transformation f which leaves this contact distribution invariant

is an extension of a diffeomorphism of Mn.

PROOF. Putting Π = 0, Π = 0 into (7. 8) we get dιxa = 0. Noticing that

the 1-form p.dx1 is invariant under/, we can easily see that our contact trans-

formation f is an extension of a diffeomorphism of Mn.

THEOREM 7.6. Let Mn be a Riemannian manifold and suppose that we

take the contact distributions determined by (7. 4). Then the extension of an

isometry of Mn leaves both distributions Dγ and D2 invariant. And if G is

the extended group of a Lie group G of diffeomorphisms of Mn such that

every transformation of G leaves Ώγ and D2 invariant, then G is a group of

isometries of Mn.

The proof is almost evident from that of Theorem 6.6 and the law of

transformation (7. 3) of Π i j under an extension of a diffeomorphism of Mn.

THEOREM 7.7. If we denote the components of an arbitrary vector X

with respect to the natural frame by (X*,/^), then its components with respect

to the contact frame (eue
ι) are given by

A1 = X1 + UίjMj - X i + WXPj - TjkX
k),

(7.15)

PROOF. We can easily verify that
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which shows that our assertion is true.

THEOREM 7.8. The projection tensors Tt and T 2 of an arbitrary vector
to the distributions Dx and D2 are given by

/δj - Π " Γ W Ώi}

(7.16) T =
1 \Ttj - Γ«Π*»ΓW Γ«Π*V

( HikΓk. — n i j

— 1 ij -h 1 i A : l l 1 h i Oij — 1

respectively with respect to natural frames.

PROOF. The projection of an arbitrary vector X == (X\Pt) on A is given
by Λ'tfί. The components of the last vector with respect to the natural frame are
easily seen to be

The components of T are nothing but the coefficients of Xj,Pj of the last vector.

So, (7.16) is proved. The proof of (7.17) can be obtained in the same way.

Now we denote the projections of the image of a vector X at z by a homo-

geneous conact transformation / on fDv and fD2 by Aaea and Mae
a, then as

Alet and M^e1 are transformed by f to Aaea and Mae
a respectively, we can easily

see that

(7.18) Λ = (A + SΓ)Λ, ΛΪ(A + BΓ) - M

hold good by (6.22) and (7.13).
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