HOMOGENEOUS CONTACT TRANSFORMATIONS

Shigeo Sasaki

(Received July 5, 1962)

Introduction. Let M^{n} be an n-dimensional differentiable manifold of class C^{∞}. Take a point x of M^{n} and consider the set F_{x} of all non-zero covectors at x. Then, F_{x} with the natural topology is homeomorphic with $F=E^{n}-O$, where E^{n} is a Euclidean space and O is a point of E^{n}. We can easily see that the set

$$
{ }^{c} T\left(M^{n}\right)=\bigcup_{x \in \in \Gamma^{n}} F_{x}
$$

with the natural topology is a fibre bundle with the standard fibre F and the structural group $G L(n, R)$. We shall call this fibre bundle as the cotangent bundle of M^{n}.

In this paper, I want so show that cotangent bundles play an important role for the study of homogeneous contact transformations of differentiable manifolds. The classical Laguerre's geometry of $(n-1)$-spheres in E^{n} can be regarded as a geometry of ${ }^{c} T\left(E^{n}\right) \approx E^{n} \times F$ under a certain group of homogeneous contact transformations and the classical Lie's higher ($n-1$)-sphere geometry in E^{n} can be regarded as a geometry of ${ }^{c} T\left(S^{n}\right)$ under a certain group of homogeneous contact transformations, where S^{n} is the n-dimensional sphere. Therefore, it is natural to study ${ }^{c} T\left(M^{n}\right)$ in connection with homogeneous contact transformations of M^{n}.

On the background of Lie's works L.P. Eisenhart [4] [5] [6] founded the theory of homogeneous contact transformations of a differentiable manifold M^{n} in 1929 and T.Hosokawa [7], K.Yano [2] [9][10], Y. Mutô [8] [9], T.C.Doyle [3], E.T.Davies [1] [2] and others followed him. From our stand point of view, their theories are local theories of ${ }^{c} T\left(M^{n}\right)$ or tensor calculus of $2 n$ dimensional manifolds under local contact coordinate transformations. It seems to me that their theories can be understood the meaning well by studying the cotangent bundle ${ }^{c} T\left(M^{n}\right)$ globally.

1. Homogeneous contact transformations. Let M^{n} be a differentiable

[^0]manifold of class C^{∞} and ${ }^{c} T\left(M^{n}\right)$ be its cotangent bundle. We denote by π the natural projection
$$
\pi:{ }^{c} T\left(M^{n}\right) \rightarrow M^{n} .
$$

Every point z of ${ }^{c} T\left(M^{n}\right)$ can be expressed as a pair (x, p), where $x=\pi z$ and p is a covector at x. We shall call p as the covector of z. We sometimes call the pair (x, p) as an element in M^{n}.

We take an open covering of M^{n} by coordinate neighborhoods $\left\{U_{\lambda}\right\}(\lambda \in \Lambda)$ and denote local coordinates in U_{λ} by x_{λ}^{i}. If we denote the components of a covector p at any point $x_{(\lambda)}$ in U_{λ} with respect to the natural frame $\frac{\partial}{\partial x_{(\lambda)}^{i}}$ at $x_{(\lambda)}$ by $p_{i}^{(\lambda)}$, then the set of all $\left(x_{(\lambda)}^{i}, p_{i}^{(\lambda)}\right)\left(x_{(\lambda)}^{i} \in U_{\lambda}, p_{i}^{(\lambda)} \in F\right)$ constitutes local coordinates in $\pi^{-1}\left(U_{\lambda}\right)$. This mapping

$$
\pi^{-1}\left(U_{\lambda}\right) \rightarrow U_{\lambda} \times F
$$

is a diffeomorphism and its inverse mapping is usually denoted by ϕ_{λ}. So, we have

$$
z=\phi_{1}\left(x_{(\lambda)}, p^{(\lambda)}\right) .
$$

We denote the map which transfers z to $p^{(\lambda)}$ by ρ_{λ}. Then, we have

$$
\rho_{\lambda}: \pi^{-1}\left(U_{\lambda}\right) \rightarrow F,
$$

$\left\{\pi^{-1}\left(U_{\lambda}\right)\right\}(\lambda \in \Lambda)$ is an open covering of ${ }^{c} T\left(M^{n}\right)$ by coordinate neighborhoods.
On every neighborhood $\pi^{-1}\left(U_{\lambda}\right)(\lambda \in \Lambda)$ of ${ }^{c} T\left(M^{n}\right)$ we consider a 1 -form

$$
\begin{equation*}
\eta_{(\lambda)} \equiv p_{i}^{(\lambda)} d x^{i} . \tag{1.1}
\end{equation*}
$$

As the right hand side is a scalar, it does not depend upon the coordinate transformation. So, the set of all $\eta_{\lambda}(\lambda \in \Lambda)$ constitutes a global 1 -form η over ${ }^{c} T\left(M^{n}\right)$. We shall call η as the homogeneous contact form of M^{n}.
A diffeomorphism

$$
f:{ }^{c} T\left(M^{n}\right) \rightarrow{ }^{c} T\left(M^{n}\right)
$$

is said to be a homogeneous contact transformation of M^{n} if and only if f leaves invariant the 1 -form η, i.e.

$$
\begin{equation*}
f^{*} \eta=\eta, \tag{1.2}
\end{equation*}
$$

where f^{*} is the dual map induced by f on differential forms over ${ }^{c} T\left(M^{n}\right) . f$ is denoted by

$$
\bar{z}=f(z), \quad z \in{ }^{c} T\left(M^{n}\right)
$$

or by

$$
(\bar{x}, \bar{p})=f(x, p)
$$

where $z=(x, p)$ and $\bar{z}=(\bar{x}, \bar{p})$.
From the definition, we can immediately see that the following theorem is true.

THEOREM 1.1 The totality of homogeneous contact transformations of a differentiable manifold M^{n} forms a group.

Example. Suppose f_{0} be a diffeomorphism of M^{n} onto itself. Then f_{0} naturally induces a diffeomorphism f of the cotangent bundle ${ }^{c} T\left(M^{n}\right)$ onto itself. It is easy to see that f is a homogeneous contact transformation. This map f is called to be an extension of the diffeomorphism f_{0} of M^{n}.

THEOREM 1.2 A homogeneous contact transformation f of ${ }^{c} T\left(M^{n}\right)$ onto itself is an extension of a diffeomorphism of M^{n} onto itself if and only if f is a fibre preserving map.

The proof is easy.
2. Analytic expressions of homogeneous contact transformations. Let U be a coordinate neighborhood of M^{n} with local coordinates x^{i}. We denote components of a covector p at a point x of U with respect to the natural frame by p_{i}. For the sake of convenience, we now put

$$
\begin{equation*}
x^{n+i} \equiv x^{i^{*}} \equiv p_{i}, \quad i^{*}=n+i \tag{2.1}
\end{equation*}
$$

and consider $x^{\lambda}=\left(x^{i}, x^{n+i}\right)(\lambda, \mu=1, \cdots, 2 n)$ as local coordinates of ${ }^{c} T\left(M^{n}\right)$ in $\pi^{-1}(U)$. Then the contact form η over ${ }^{c} T\left(M^{n}\right)$ can be written as

$$
\begin{equation*}
\eta=\eta_{\lambda} d x^{\lambda} \tag{2.2}
\end{equation*}
$$

in $\pi^{-1}(U)$, where we have put

$$
\begin{equation*}
\eta_{\lambda}=\left(p_{i}, 0\right) . \tag{2.3}
\end{equation*}
$$

η_{λ} determines a $(2 n-1)$-dimensional vector subspace of the tangent space of ${ }^{c} T\left(M^{n}\right)$ at (x, p) containing the tangent space of the fibre at the point.

Now, we consider the exterior differential $d \eta$ of the contact form η. In $\pi^{-1}(U)$, it is given by

$$
\begin{equation*}
d \eta=\frac{1}{2} \phi_{\lambda_{\mu}} d x^{\lambda} \wedge d x^{\mu} \tag{2.4}
\end{equation*}
$$

where we have put

$$
\begin{equation*}
\phi_{\lambda \mu}=\partial_{\lambda} \eta_{\mu}-\partial_{\mu} \eta_{\lambda}, \partial_{\lambda}=\frac{\partial}{\partial x^{\lambda}} . \tag{2.5}
\end{equation*}
$$

We can easily see that ($\phi_{\lambda \mu}$) has the following numerical components:

$$
\left(\phi_{\lambda \mu}\right)=\left(\begin{array}{cc}
0 & -\delta_{i j} \tag{2.6}\\
\delta_{i j} & 0
\end{array}\right)
$$

The entity which has components of the form (2.6) for every coordinate neighborhood $\pi^{-1}(U)$ of an open covering of ${ }^{c} T\left(M^{n}\right)$ is a skew-symmetric tensor field of ${ }^{c} T\left(M^{n}\right)$. Geometrically, it gives a null-system in every tangent space of ${ }^{c} T\left(M^{n}\right)$. We shall call it the fundamental null-system of ${ }^{c} T\left(M^{n}\right)$.

We define $\phi^{\lambda_{\mu}}$ for every coordinate neighborhood of the type $\pi^{-1}(U)$ in ${ }^{c} T\left(M^{n}\right)$ by

$$
\begin{equation*}
\phi^{\lambda \mu} \phi_{\mu \nu}=-\delta_{\nu}^{\lambda}, \tag{2.7}
\end{equation*}
$$

then $\phi^{\lambda \mu}$'s are components of a skew-symmetric tensor field over ${ }^{c} T\left(M^{n}\right)$ and are given by

$$
\left(\phi^{\lambda \mu}\right)=\left(\begin{array}{cc}
0 & -\delta^{i j} \tag{2.8}\\
\delta^{i j} & 0
\end{array}\right)
$$

We define also

$$
\begin{equation*}
\xi^{\lambda}=\phi^{\lambda \mu} \eta_{\mu} \tag{2.9}
\end{equation*}
$$

in every $\pi^{-1}(U)$, then ξ^{λ} defines a vector field over ${ }^{c} T\left(M^{n}\right)$. Its components in $\pi^{-1}(U)$ are rewritten as

$$
\begin{equation*}
\xi^{\lambda}=\left(0, p_{i}\right) . \tag{2.10}
\end{equation*}
$$

We can easily see that (2.9) is equivalent to

$$
\begin{equation*}
\phi_{\lambda \mu} \xi^{\mu}=-\eta_{\lambda} . \tag{2.11}
\end{equation*}
$$

Now, suppose f be a homogeneous contact transformation of M^{n}. For every pair of coordinate neighborhoods U and \bar{U} with local coordinates x^{i} and $\overline{x^{a}}$ such that $f\left(\pi^{-1}(U)\right) \cap \pi^{-1}(\bar{U})$ is not empty, the restriction map $f \mid \pi^{-1}(U) \cap f^{-1}$ ($\pi^{-1}(\bar{U})$) can be expressed analytically by

$$
\begin{equation*}
\overline{x^{\lambda}}=\bar{x}^{\lambda}(x), \tag{2.12}
\end{equation*}
$$

i.e.

$$
\begin{equation*}
\bar{x}^{a}=\bar{x}^{a}(x, p), \bar{p}_{a}=\bar{p}_{a}(x, p) . \tag{2.13}
\end{equation*}
$$

The condition $f^{*} \eta=\eta$ i.e.

$$
\begin{equation*}
\eta_{\alpha}(\bar{x}) \partial_{\lambda} \overline{x^{\alpha}}=\eta_{\lambda}(x) \tag{2.14}
\end{equation*}
$$

can be written as

$$
\begin{equation*}
\bar{p}_{a} \partial_{i} \bar{x}^{a}=p_{i}, \quad \bar{p}_{a} \partial^{i} \bar{x}^{a}=0 \quad\left(\partial^{i}=\frac{\partial}{\partial p_{i}}\right) . \tag{2.15}
\end{equation*}
$$

From (2.14), we get easily

$$
\begin{equation*}
\phi_{\alpha \beta} \partial_{\lambda} \bar{x}^{\alpha} \partial_{\mu} \bar{x}^{\beta}=\phi_{\lambda \mu} . \tag{2.16}
\end{equation*}
$$

Of course $\phi_{\lambda \mu}$ and $\phi_{\alpha \beta}$ are numerical constants. Contracting $\phi^{\mu \nu} \overline{\partial_{\gamma}} x^{\lambda}\left(\bar{\partial}_{\gamma}=\frac{\partial}{\partial \bar{x}^{\gamma}}\right)$ with (2.16) we get

$$
\begin{equation*}
\phi_{\gamma \delta} \partial_{\mu} \bar{x}^{\delta} \phi^{\mu \nu}=-\bar{\partial}_{\gamma} x^{\nu} \tag{2.17}
\end{equation*}
$$

Contracting $\phi^{\alpha \gamma} \partial_{\nu} \bar{x}^{3}$ with the last equation we then get

$$
\begin{equation*}
\phi^{\alpha \beta}=\phi^{\lambda \mu} \partial_{\lambda} \bar{x}^{\alpha} \partial_{\mu} \bar{x}^{\beta} . \tag{2.18}
\end{equation*}
$$

From (2.16) we get the following
THEOREM 2.1. The fundamental null-system of the cotangent bundle ${ }^{c} T\left(M^{n}\right)$ is transformed to itself by homogeneous contact transformations.

Now, from the definition we have

$$
\xi^{\alpha}(\bar{x})=\phi^{\alpha \beta} r_{\beta}(\bar{x}) .
$$

Putting (2.14) and (2.18) into the last equation, and making use of (2.9) we get

$$
\begin{equation*}
\xi^{\alpha}(x)=\partial_{\lambda} \bar{x}^{\alpha} \xi^{\lambda}(x) \tag{2.19}
\end{equation*}
$$

The last equation gives an important theorem:
THEOREM 2.2. The functions $\bar{x}^{a}(x, p)$ and $\bar{p}_{a}(x, p)$ of a homogeneous contact transformation (2.13) are homogoneous of degree 0 and 1 respectively with respect to p_{i}.

Proof. By virtue of (2.10), (2.19) is easily seen to be equivalent with

$$
\begin{equation*}
p_{i} \partial^{i} \bar{x}^{a}=0, \quad p_{i} \partial^{i} \overline{p_{a}}=\overline{p_{a}} \tag{2.20}
\end{equation*}
$$

which show that \bar{x}^{a},s and \bar{p}_{a} 's are homogeneous of degree 0 and 1 with respect to p_{i}.

Two points $z=(x, p)$ and $z^{\prime}=\left(x, p^{\prime}\right)$ on the same fibre $F_{x}{ }^{\circ}{ }^{c} T\left(M^{n}\right)$ are said to be equivalent if and only if there exists a constant $\rho \neq 0$ such that

$$
\begin{equation*}
p_{i}^{\prime}=\rho p_{i} \tag{2.21}
\end{equation*}
$$

We call an equivlaence class in F_{x} as a coray at x. The vector ξ^{λ} defined in (2.10) is geometrically the tangent vector of the coray. Theorem 2.2 can now be expressed geometrically as follows :

THEOREM 2.3. Every homogeneous contact transformation of M^{n} is a coray preserving diffeomorphism of ${ }^{c} T\left(M^{n}\right)$.

THEOREM 2.4. Let \bar{x}^{a} and \bar{p}_{a} in (2.13) are functions which define a homogeneous contact transformation. Then, we have

$$
\begin{cases}\partial_{i} \bar{x}^{a}=\bar{\partial}^{a} p_{i}, & \partial^{i} \bar{x}^{a}=-\bar{\partial}^{a} x^{i}, \tag{2.22}\\ \partial_{i} \bar{p}_{a}=-\bar{\partial}_{a} p_{i}, & \partial^{i} \bar{p}_{a}=\bar{\partial}_{a} x^{i} .\end{cases}
$$

Proof. By virtue of (2.17), we have

$$
\begin{equation*}
\phi^{\mu \lambda} \partial_{\mu} \bar{x}^{\alpha}=\phi^{\alpha \gamma} \bar{\partial}_{\gamma} x^{\lambda} . \tag{2.23}
\end{equation*}
$$

We can easily see that the last equation is equivalent with (2.22).
Suppose

$$
\begin{aligned}
& X=\left(X^{i}, X^{i}\right)=\left(X^{i}, P_{i}\right), \\
& Y=\left(Y^{i}, Y^{i}\right)=\left(Y^{i}, Q_{i}\right)
\end{aligned}
$$

be components of vector fields over ${ }^{c} T\left(M^{n}\right)$. Then, since the numerical components (2.8) of the tensor field $\phi_{\lambda \mu}$ are kept invariant under homogeneous contact transformations, we see that

$$
\begin{equation*}
\phi_{\lambda_{\mu}} X^{\lambda} Y^{\mu}=-X^{i} Q_{i}+Y^{i} P_{i} \tag{2.24}
\end{equation*}
$$

is an invariant under homogeneous contact transformations. Especially, if we take ξ^{λ} and X^{λ} instead of X^{λ} and Y^{λ}, we see that

$$
\begin{equation*}
\phi_{\lambda \mu} \xi^{\lambda} X^{\mu}=\eta_{\mu} X^{\mu}=p_{i} X^{i} \tag{2.25}
\end{equation*}
$$

is an invariant under homogeneous contact transformations.
If U is a function defined over ${ }^{c} T\left(M^{n}\right)$, then

$$
\begin{equation*}
\partial_{\lambda} U=\left(\partial_{i} U, \partial^{i} U\right) \tag{2.26}
\end{equation*}
$$

is a covector field over ${ }^{c} T\left(M^{n}\right)$. However,

$$
\begin{equation*}
\phi^{\lambda \mu} \partial_{\mu} U=\left(-\partial^{i} U, \partial_{i} U\right) \tag{2.27}
\end{equation*}
$$

is a vector field over ${ }^{c} T\left(M^{n}\right)$.
Let U, V be differentiable functions defined over ${ }^{c} T\left(M^{n}\right)$. We define the socalled Poisson's bracket of U and V by

$$
\begin{equation*}
(U, V)=\phi^{\lambda \mu} \partial_{\lambda} U \partial_{\mu} V=\partial^{i} U \partial_{i} V-\partial_{i} U \partial^{i} V \tag{2.28}
\end{equation*}
$$

Then, (U, V) is also a function defined over ${ }^{c} T\left(M^{n}\right)$. It is evident that if U, V are invariant under homogeneous contact transformation f, then (U, V) is also invariant under f.
3. Fundamental varieties. Suppose that

$$
f:{ }^{c} T\left(M^{n}\right) \rightarrow{ }^{c} T\left(M^{n}\right)
$$

be a homogeneous contact transformation. Denoting the fibre of ${ }^{c} T\left(M^{n}\right)$ at a point x of M^{n} by F_{x}, we put

$$
\begin{align*}
S_{x} & =\pi \circ f\left(F_{x}\right), \tag{3.1}\\
\bar{S}_{x} & =\pi \circ f^{-1}\left(F_{x}\right),
\end{align*}
$$

and call S_{x} and \bar{S}_{x} as the fundamental varieties at x of f and f^{-1} respectively. If f is an extension of a diffeomorphism f of M^{n} onto itself, then it is evident that all fundamental varieties of f and f^{-1} reduce to points.

THEOREM 3.1. If a point y belongs to S_{x}. then the point x belongs to $\overline{S_{y}}$. The converse is also true.

PROOF. $y \in S_{x}$ means that $y \in \pi \circ f\left(F_{x}\right)$ and it is equivalent to $F_{y} \cap f\left(F_{x}\right)$ $\neq \phi$. The last equation can be written also as $f^{-1}\left(F_{y}\right) \cap F_{x} \neq \phi$, and so it is equivalent to $\pi \circ f^{-1}\left(F_{y}\right) \ni x$. Therefore, $x \in \bar{S}_{y}$. The converse can be proved easily by the process inverse to the above.

Corollary. (i) If $y \in M^{n}$, then

$$
\begin{equation*}
\overline{S_{y}}=\left\{x \mid y \in S_{x}\right\} . \tag{3.3}
\end{equation*}
$$

(ii) If $x \in M^{n}$, then

$$
\begin{equation*}
S_{x}=\left\{y \mid x \in \overline{S_{y}}\right\} \tag{3.4}
\end{equation*}
$$

Now, from $(2.15)_{2}$ we can see that the rank of the matrix $\left(\partial^{i} \bar{x}_{a}\right)$ is smaller than $n-1$. Geometrically, it is nothing but the number of linearly independent tangent vectors at $\bar{x}=\pi \circ f(x, p)$. We shall call it rank of S_{x} at the point \bar{x}. So, it is independent upon the choice of coordinate neighborhoods. The variety S_{x} may have singularities in the sense that at some points the rank of S_{x} is less than that of generic points on S_{x}. We can see that

$$
\operatorname{dim} S_{x}=\max _{\bar{x} \in S_{x}}\left\{\text { rank of } S_{x} \text { at } \bar{x}\right\}
$$

For every point $z=(x, p)$ of ${ }^{c} T\left(M^{n}\right)$ we make correspond an integer r_{f} by

$$
\begin{equation*}
r_{f}(z)=\operatorname{rank} \text { of } S_{x} \text { at } \bar{x}=\pi \circ f(z) \tag{3.5}
\end{equation*}
$$

Then, we get an integral valued function r_{f} over ${ }^{c} T\left(M^{n}\right)$ such that

$$
\begin{equation*}
0 \leqq r_{f} \leqq n-1 \tag{3.6}
\end{equation*}
$$

We call r_{f} as the rank function of the first kind of the homogeneous contact transformation f.

THEOREM 3.2. The necessary and sufficient condition that a homogeneous contact transformation f of M^{n} is an extension of a diffeomorphism of M^{n} is that the rank function of the first kind r_{f} of f is identically equal to zero.

Proof. Necessity. If f is an extension of a diffeomorphism of M^{n}, then S_{x} is a point. So r_{f} is equal to zero.

Sufficiency. As S_{x} is arcwise connected, if $r_{f} \equiv 0$, then every S_{x} reduces to a point. So, f is a fibre-preserving diffeomorphism of ${ }^{c} T\left(M^{n}\right)$. Hence, by Theorem 1.3 we can see that f is an extension of a diffeomorphism of M^{n}.

In the next place, we fix a point z in ${ }^{c} T\left(M^{n}\right)$ and take a coordinate neighborhood U_{λ} of $\left\{U_{\lambda}\right\}(\lambda \in \Lambda)$ such that $f(z) \in \pi^{-1}\left(U_{\lambda}\right)$. We denote the subset of indices of Λ which satisfy the last property by Λ_{z}. For every $\lambda \in \Lambda_{z}$ we put

$$
\begin{align*}
& R_{\lambda, \pi(z)}=\rho_{\lambda}\left\{f\left(F_{\pi(z)}\right) \cap \pi^{-1}\left(U_{\lambda}\right)\right\}, \tag{3.7}\\
& r_{r}^{\prime}\left(z, U_{\lambda}\right)=\operatorname{rank} \text { of } R_{\lambda, \pi(z)} \text { at } \rho_{\lambda} \circ f(z) . \tag{3.8}
\end{align*}
$$

Analytically, if we denote the coordinate neighborhood of the point z by $\pi^{-1}(U)(\pi z \in U)$ and denote f restricted to $\pi^{-1}(U) \cap f_{\circ}^{-1} \pi^{-1}\left(U_{\lambda}\right)$ by

$$
x_{(\lambda)}^{a}=x_{(\lambda)}^{a}(x, p), p_{a}^{(\lambda)}=p_{a}^{(\lambda)}(x, p),
$$

then we see easily that

$$
r_{f}^{\prime}(z, U)=\operatorname{rank}\left(\partial^{i} \bar{p}_{a}^{(\lambda)}\right) \text { at }(x, p) .
$$

However, contrary to the rank of S_{x} at a point of $S_{x}, r^{\prime}{ }_{f}\left(z, U_{\lambda}\right)$ depends upon the choice of coordinate neighborhoods. So, we define $r_{f}^{\prime}(z)$ by

$$
\begin{equation*}
r_{f}^{\prime}(z)=\max _{\lambda \in \Lambda} r_{r}^{\prime}\left(z, U_{\lambda}\right) \tag{3.9}
\end{equation*}
$$

If we vary z over ${ }^{c} T\left(M^{n}\right)$, we get again an integral valued function r_{f}^{\prime} over ${ }^{c} T\left(M^{n}\right)$ depending upon f and such that

$$
\begin{equation*}
0 \leqq r_{f}^{\prime} \leqq n \tag{3.10}
\end{equation*}
$$

The function r_{f}^{\prime} generally depends upon the open covering $\left\{U_{\lambda}\right\}$ of M^{n}. However, if we consider a covering which contains all possible fine neighborhoods and all possible coordinate systems in them, then r_{f}^{\prime} is a well defined function over ${ }^{c} T\left(M^{n}\right)$ by the homogeneous contact transformation f. We shall call r_{f}^{\prime} the rank function of the second kind of the homogeneous contact transformation f.

THEOREM. 3.3 At every point z of ${ }^{c} T\left(M^{n}\right)$ and for every homogeneous contact transformation f of M^{n}, we have

$$
\begin{equation*}
r_{f}(z)+r_{f}^{\prime}(z) \geqq n \tag{3.11}
\end{equation*}
$$

Proof. We denote the tangent space of ${ }^{c} T\left(M^{n}\right)$ at $f(z)$ by $T_{f(z)}$ and U_{λ} be a coordinate neighborhood such that $\pi \circ f(z) \in U_{\lambda}$. Then, the maximal subspace V (vertical space) of $T_{f(z)}$ such that every vector of V is mapped to zero by π and the maximal subspace H_{λ} of $T_{f(z)}$ such that every vector of H_{λ} is mapped to zero by ρ_{λ} are disjoint and complementary.

Now, the dimension of $f\left(F_{\pi(z)}\right)$ at $f(z)$ is n. If $\operatorname{dim} S_{\pi \circ f(z)}$ is $n-s$ at $\pi \circ f(z)$, then the s-dimensional subspace of $T_{f(z)}$ which is spanned by s independent vectors of $T_{f(z)}$ such that each of them is mapped to zero by π is mapped to s-dimensional subspace of the standard fibre F by ρ_{λ}. Therefore, the dimension of $R_{\lambda, \pi(z)}$ is at least s. Hence, we get (3.11).

As we have proved it in Theorem 3.1, if a point \bar{x} belongs to S_{x}, then
the point x belong to $\bar{S}_{\bar{x}}$. Any pair of points x and \bar{x} which are in such relation is called to be in the relation S.

Now, suppose \bar{M}^{n} is a copy of M^{n} and we consider the point \bar{x} as a point in \bar{M}^{n}. Then, the set Σ of all pairs (x, \bar{x}) in the relation S can be regarded as a submanifold of $M^{n} \times \bar{M}^{n}$. It may have some singularities. It is clear that

$$
\begin{equation*}
\Sigma=\bigcup_{x \in E N^{n}}\left\{x, S_{x}\right\}=\bigcup_{\bar{x} \in \in M^{n}}\left\{\bar{S}_{\bar{x}}, \bar{x}\right\} \tag{3.12}
\end{equation*}
$$

When $\left(x_{0}, \bar{x}_{0}\right)$ belongs to Σ, we take coordinate neighborhoods U of x_{0} and \bar{U} of \bar{x}_{0} and we express the homogeneous contact tranrformation f restricted to $\pi^{-1}(U) \cap f^{-1}\left(\pi^{-1}(\bar{U})\right)$ by

$$
\begin{equation*}
\bar{x}^{a}=\bar{x}^{a}(x, p), \overline{p_{a}}=\bar{p}_{a}(x, p) . \tag{3.13}
\end{equation*}
$$

If $S_{x}(x \in U)$ has a constant rank for every (x, \bar{x}) over a subdomain of Σ which contains (x_{0}, p_{0}), then equations of Σ in a neighborhood of (x_{0}, \bar{x}_{0}) are given by

$$
\begin{equation*}
F_{\sigma}\left(x^{1}, \cdots, x^{n} ; \bar{x}^{1}, \cdots, \bar{x}^{n}\right)=0 \quad(\sigma=1, \cdots, s) \tag{3.14}
\end{equation*}
$$

which are obtained by eliminating p_{α} 's from the first equation of (3.13). It is evident that the number s is equal to n minus the constant rank of $S_{x}, x \in U$.

THEOREM 3.4. If (x, \bar{x}) be a pair of points in the relation S, then the rank of S_{x} at \bar{x} is equal to the rank of $\bar{S}_{\bar{x}}$ at x.

Proof. We consider the rank of Σ at the point (x, \bar{x}). Then, we can easily see that it is equal to (rank of S_{x} at \bar{x}) $+n$ and (rank of $\bar{S}_{\bar{x}}$ at $\left.x\right)+n$. So we have

$$
\text { rank of } S_{x} \text { at } \bar{x}=\text { rank of } \bar{S}_{\bar{x}} \text { at } x .
$$

4. Integral submanifolds. The homogeneous contact form η of M^{n} determines an $(2 n-1)$-dimensional distribution defined by

$$
\begin{equation*}
\eta=0 . \tag{4.1}
\end{equation*}
$$

We shall call it the fundamental distribution of the cotangent bundle ${ }^{c} T\left(M^{n}\right)$.
Suppose N be a differentiable submanifold of ${ }^{c} T\left(M^{n}\right)$ and

$$
\iota: N \rightarrow{ }^{c} T\left(M^{n}\right)
$$

be the injection map. If

$$
\begin{equation*}
\iota^{*} \eta=0 \tag{4.2}
\end{equation*}
$$

then N is said to be an integral submanifold of the fundamental distribution of an integral submanifold for brevity.

THEOREM 4.1. A submanifold N of ${ }^{c} T\left(M^{n}\right)$ is an integral submanifold if and only if every point z_{0} of N has the property that its covector p_{0} is tangent to πN at $x_{0}=\pi z_{0}$.

Proof. Take a coordinate neighborhood U of M^{n} with coordinates x^{i} so that $\pi^{-1}(U)$ contains the point z_{0} of N. We also take a coordinate neighborhood V of N with coordinates $\left(u^{1}, \cdots, u^{r}\right), r=\operatorname{dim} N$, so that V contains the point z_{0}. Then, a sufficiently small neighborhood of z_{0} with respect to N can be expessed analytically as

$$
\begin{equation*}
x^{i}=x^{i}\left(u^{1}, \cdots, u^{r}\right), p_{i}=p_{i}\left(u^{1}, \cdots, u^{r}\right) . \tag{4.3}
\end{equation*}
$$

The condition (4.2) can now be written as

$$
\begin{equation*}
p_{i}(u) \frac{\partial x^{i}}{\partial u^{\lambda}}=0 \quad(\lambda=1, \cdots, r) . \tag{4.4}
\end{equation*}
$$

As (4.3) $)_{1}$ is the equation of πN in the neighborhood of x_{0}, the last equation shows that p_{0} is tangent to πN at x_{0}.

Conversely, if p_{0} is tangent to πN at x_{0} for every point z_{0} of N, then we have (4. 4) identically. So, we see that (4.2) is true. Hence, N is an integral submanifold.

Example 1. Every point of ${ }^{c} T\left(M^{n}\right)$ is a zero dimensional integral submanifold.
Example 2. Every fibre $F_{x}\left(x \in M^{n}\right)$ of ${ }^{c} T\left(M^{n}\right)$ is an n-dimensional integral submanifold.

Theorem 4.2. Let N be an integral submanifold in ${ }^{c} T\left(M^{n}\right)$. If f is a homogeneous contact transformation of M^{n}, then $f N$ is also an integral submanifold in ${ }^{c} T\left(M^{n}\right)$.

Proof. We denote the injection map of N into ${ }^{c} T\left(M^{n}\right)$ by ι. Then, the injection map of $f N$ into ${ }^{c} T\left(M^{n}\right)$ is given by $f \circ \iota$. As

$$
\begin{aligned}
(f \circ \iota)^{*} \eta & =\iota^{*} \circ f^{*} \eta \\
& =\iota^{*} \eta=0,
\end{aligned}
$$

we can see that $f N$ is an integral submanifold.
Corollary. If f is a homogeneous contact transformation of M^{n}, then the images $f\left(F_{x}\right)$ and $f^{-1}\left(F_{x}\right)$ of a fibre F_{x} at $x \in M^{n}$ are integral submanifolds.

An important consequence of the last corollary is the following
THEOREM 4.3. Let z be a point of ${ }^{c} T\left(M^{n}\right)$ and \bar{z} be the image of it under a homogeneous contact transformation f. Then the covector \bar{p} of z is
tangent to S_{x} at $\bar{x}=\overline{\pi z}$ and the covector p of z is tangent to $\bar{S}_{\bar{x}}$ at $x=\pi z$.
Proof. As a point of ${ }^{c} T\left(M^{n}\right), z=(x, p)$ belongs to F_{x} and so $\bar{z}=(\bar{x}, \bar{p})$ belongs to $f\left(F_{x}\right)$. However, by virtue of the last Corollary, $f\left(F_{x}\right)$ is an integral submanifold in ${ }^{c} T\left(M^{n}\right)$. Therefore, \bar{p} is tangent to $\pi \circ f\left(F_{x}\right)=S_{x}$.

In the same way, p is tangent to $\pi \circ f^{-1}\left(F_{\bar{x}}\right)=\bar{S}_{\bar{x}}$.
Theorem 4.4. The dimensions of integral submanifolds of the homogeneous contact form η of a differentiable manifold M^{n} can not be greater than n.

Proof. Let N be an integral submanifold and $z \in N$. We denote the rank of πN at πz by r. Then the dimension of the set of covectors which are tangent to πN at z is clearly $n-r$. Hence, the dimension of N is at most $r+(n-r)$, which is to be proved.

Now, we define $F_{x, \bar{x}}$ by

$$
F_{x, \bar{x}}=\left\{z \mid z \in F_{x}, f(z) \in F_{\bar{x}}\right\}
$$

Then, we get the following
THEOREM 4.5. Suppose f is a homogeneous contact transformation. Then, in order that a covector \bar{p} at a point \bar{x} be tangent to $S_{x}=\pi \circ f\left(F_{x}\right)$, it is necessary and sufficient that $\bar{z}=(\bar{x}, \bar{p})$ is the image under f of an element of $F_{x, \bar{x}}$.

Proof. Necessity. If \bar{p} is tangent to S_{x} at \bar{x}, then

$$
\bar{z}=(\bar{x}, \bar{p}) \in F_{\bar{x}} \cap f\left(F_{x}\right) .
$$

Therefore,

$$
z=(x, p)=f^{-1}(\bar{z}) \in F_{x}
$$

Hence,

$$
z \in F_{x, \bar{x}}
$$

Sufficiency. If $\bar{z}=f(z), z \in F_{x, \bar{x}}$, then $\bar{z} \in f\left(F_{x}\right)$. As $f\left(F_{x}\right)$ is an integral submanifold, \bar{p} is tangent to S_{x} at \bar{x}.

Suppose N^{n-1} be an $(n-1)$-dimensional orientable submanifold of M^{n}. At every point of N^{n-1} we take a unit tangent covector of N^{n-1} with respect to an arbitrary but fixed Riemannian metric of M^{n}. Then, all such unit covectors constitute a differentiable field over N^{n-1} and the set of elements $\left(x, p_{x}\right)$, where $x \in N^{n-1}$ and p_{x} is the unit tangent covector at x defined above, determines an ($n-1$)-dimensional submanifold in ${ }^{c} T\left(M^{n}\right)$. We shall call it the lift of N^{n-1} and denote it by $l N^{n-1}$. l may be regarded as a diffeomorphism

$$
l: N^{n-1} \rightarrow l N^{n-1}
$$

whose inverse is the restriction map $\pi \mid l N^{n-1}$. It is evident that $l N^{n-1}$ is an integral submanifold of M^{n}.

Now, suppose that f is a homogeneous contact transformation. Then, $f \circ l N^{n-1}$ is also an $(n-1)$-dimensional integral submanifold. However,

$$
\bar{N}=\pi \circ f \circ l N^{n-1}
$$

is not necessarily $(n-1)$-dimensional. \bar{N} is said to be the image of N^{n-1} under f.

Example. Consider a dilatation f in Euclidean space E^{n}. Then, for any point $y \in E^{n}, \bar{S}_{y}=\pi \circ f^{-1}\left(F_{y}\right)$ is an $(n-1)$-dimensional sphere in E^{n}. If we take \bar{S}_{y} with unit tangent covectors as N^{n-1}

$$
\begin{aligned}
\bar{N} & =\pi \circ f \circ l \circ N^{n-1} \\
& =\pi \circ f \circ l \circ \pi \circ f^{-1} F_{y}=y .
\end{aligned}
$$

So, \bar{N} is a point. Therefore, \bar{N} is 0 -dimensional.
Now, if we put

$$
\left(\bar{x}, \bar{p}_{\bar{x}}\right)=f\left(x, p_{x}\right)
$$

then $\bar{p}_{\bar{x}}$ is tangent to \bar{N} at \bar{x}, as $f \circ l N^{n-1}$ is an integral submanifold in ${ }^{c} T\left(M^{n}\right)$.
Suppose $N_{1}{ }^{n-1}, N_{2}{ }^{n-1}$ be two ($n-1$)-dimensional orientable submanifolds in M^{n} such that they are tangent at a point x_{0}. Then, we may construct unit covector fields over $N_{1}{ }^{n-1}$ and $N_{2}{ }^{n-1}$ so that they have ($x_{0}, p_{x_{0}}$) in common. If we construct $l N_{1}{ }^{n-1}, l N_{2}{ }^{n-1}$, then they have a point in common and so $f \circ l N_{1}{ }^{n-1}$, $f \circ l N_{2}{ }^{n-1}$ have a point in common too. Therefore,

$$
\bar{N}_{1}=\pi \circ f \circ l N_{1}^{n-1}, \bar{N}_{2}=\pi \circ f \circ l N_{2}^{n-1}
$$

have a common tangent covector at the point $\bar{x}_{0}=\pi f\left(x_{0}, p_{0}\right)$. Hence, we get the following

THEOREM 4.6. Let $N_{1}{ }^{n-1}$ and $N_{2}{ }^{n-1}$ be two ($n-1$)-dimensional orientable submanifolds in M^{n} such that they are tangent at a point. Then, the images of $N_{1}{ }^{n-1}$ and $N_{2}{ }^{n-1}$ under a homogeneous contact transformation have a tangent covector in common.

If the images \bar{N}_{1} and \bar{N}_{2} are both $(n-1)$-dimensional at $\pi \circ f\left(x_{0}, p_{0}\right)$, then they are tangent to each other in the proper sense and this is the reason why our diffeomorphism of ${ }^{c} T\left(M^{n}\right)$ is called to be a (homogeneous) contact transformation.

In the above argument, the fact that $N_{1}{ }^{n-1}$ and $N_{2}{ }^{n-1}$ are submanifolds of M^{n} in the proper sense is not essential. To get the same result, it is essential that $l N_{1}{ }^{n-1}$ and $l N_{2}{ }^{n-1}$ have only a point in common. So, instead of $l N_{1}{ }^{n-1}$ and
$l N_{2}{ }^{n-1}$ we may take $l N_{1}{ }^{n-1}$ and $F_{x_{0}}$ as they have just a point in common, where $F^{*}{ }_{x_{0}}$ is the submanifold of $\mathrm{F}_{x_{0}}$ whose points consist of units covectors. This leads us to the following

THEOREM 4.7. Let N^{n-1} be an $(n-1)$-dimensional orientable submanifold in M^{n}. If $x_{0} \in N^{n-1}$, then the image of N^{n-1} under a homogeneous contact transformation has a tangent covector in common with $S_{x_{0}}$.

Therefore, in the favourable case when the image \bar{N} of N^{n-1} and $S_{x x}\left(x \in N^{n-1}\right)$ are all ($n-1$)-dimensional, \bar{N} is an envelope of S_{x} 's $x \in N^{n-1}$.

5. Lie algebra of infinitesimal homogeneous contact transformations.

A vector field $X^{\lambda}=\left(X^{i}, P_{i}\right)$ over ${ }^{c} T\left(M^{n}\right)$ is said to be an infinitesimal homogeneous contact transformation if it satisfies

$$
\begin{equation*}
\mathcal{L}(X) \eta_{\lambda}=0 \tag{5.1}
\end{equation*}
$$

where $\mathscr{L}(X)$ means the operator of Lie derivation with respect to the vector field X.

Theorem 5.1. The set L of all infinitesimal homogeneous contact transformations of M^{n} constitutes a Lie algebra with respect to the usual bracket operation.

Proof. By virtue of the property of the Lie derivative

$$
\begin{equation*}
\mathscr{L}_{\circ}(X) \mathcal{L}_{0}(Y)-\mathscr{L}(Y) \mathcal{L}(X)=\mathscr{L}([X, Y]), \tag{5.2}
\end{equation*}
$$

it is clear that if X and Y are infinitesimal homogeneous contact transformation, then $[X, Y]$ is also an infinitesinal homogeneous contact transformation. Therefore, we can easily see that our theorem is true.

The equation (5.1) is equivalent to

$$
\begin{equation*}
p_{i} \partial_{j} X^{i}=-P_{j}, p_{i} \partial^{j} X^{i}=0 \tag{5.3}
\end{equation*}
$$

If we put

$$
\begin{equation*}
U=\eta_{\lambda} X^{\lambda}=p_{i} X^{i}, \tag{5.4}
\end{equation*}
$$

then we have

$$
\begin{aligned}
& \partial_{j} U=p_{i} \partial_{j} X^{i}=-P_{j}, \\
& \partial^{j} U=X^{j}+p_{i} \partial^{j} X^{i}=X^{j}
\end{aligned}
$$

and

$$
\begin{equation*}
p_{j} \partial^{j} U=p_{j} X^{j}=U . \tag{5.5}
\end{equation*}
$$

So, U is a coray function of degree 1 over ${ }^{c} T\left(M^{n}\right)$ and X^{λ} can be written as

$$
\begin{equation*}
X^{\lambda}=-\phi^{\lambda \mu} \partial_{\mu} U=\left(\partial^{i} U,-\partial_{i} U\right) \tag{5.6}
\end{equation*}
$$

Conversely, every vector field over ${ }^{c} T\left(M^{n}\right)$ of the form (5.6), where U is a coray function of degree 1 over ${ }^{c} T\left(M^{n}\right)$ is easily seen to be an infinitesimal homogeneous contact transformation. Hence, we get the

THEOREM 5.2. Every infinitesimal homogeneous contact transformation X of a differentiable manifold M^{n} can be written as (5. 6), where U is a coray function of degree 1. The converse is also true.

The function U is said to be the characteristic function of the infinitesimal homogeneous contact transformation X.
N.B. We can easily verify that (5.3) is equivalent to any one of the three equations

$$
\begin{equation*}
\mathcal{L}(X) \xi^{\lambda}=0,[\xi, X]=0, \mathcal{L}(\xi) X^{\lambda}=0 \tag{5.7}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathscr{L}(X) \phi^{\lambda_{\mu}}=0 \tag{5.8}
\end{equation*}
$$

Theorem 5.3. Let $X^{\lambda}=\left(X^{i}, P_{i}\right), Y^{\lambda}=\left(Y^{i}, Q_{i}\right)$ be infinitetimal homogeneous contact transformations and U, V be characteristic functions of them. Then, the characteristic function of the infinitesimal homogeneous contact transformation $[X, Y]$ is given by the Poisson bracket

$$
\begin{equation*}
(U, V)=\phi^{\lambda \mu} \partial_{\lambda} U \partial_{\mu} V \tag{5.9}
\end{equation*}
$$

Proof. By virtue of (5. 6), we can easily verify that

$$
[X, Y]^{\lambda}=-\phi^{\lambda \mu} \partial_{\mu}\left(\phi^{\alpha \beta} \partial_{\alpha} U \partial_{\beta} V\right),
$$

which shows that our assertion is true.
THEOREM 5.4. The set C of all coray functions of degree 1 over the cotangent bundle ${ }^{c} T\left(M^{n}\right)$ constitutes a Lie algebra with respect to the natural addition and the bracket operation (5. 9).

Proof. As we can easily see that

$$
\begin{aligned}
(U, V) & =-(V, U) \\
(U,(V+W)) & =(U, V)+(U, W)
\end{aligned}
$$

hold good, we only need to show that the Jacobi identity

$$
\begin{equation*}
((U, V), W)+((V, W), U)+((W, U), V)=0 \tag{5.10}
\end{equation*}
$$

holds good. However, as

$$
((U, V), W)=\phi^{\lambda_{\mu}} \phi^{\rho \nu}\left(\partial_{\lambda} \partial_{\rho} U \partial_{\mu} V+\partial_{\lambda} U \partial_{\mu} \partial_{\rho} V\right) \partial_{\nu} W,
$$

adding other two similar terms, we can easily see that (5.10) is true. Hence, the theorem is proved.

Theorem 5.5. If we define the map

$$
h: C \rightarrow L
$$

by

$$
\begin{equation*}
U \rightarrow-\phi^{\lambda \mu} \partial_{\mu} U, \quad U \in C \tag{5.11}
\end{equation*}
$$

then h is an isomorphism of C onto L.
Proof. First it is clear that h is an homomorphism of C onto L if we regard them merely as additive groups. So, to prove that h is a homomorphism of the Lie algebra C onto the Lie algebra L, it is sufficient to show

$$
\begin{equation*}
h(U, V)=[h U, h V] . \tag{5.12}
\end{equation*}
$$

However, the last equation can be written as

$$
-\phi^{\lambda \mu} \partial_{\mu}\left(\phi^{\alpha, 3} \partial_{\alpha} U \partial_{\beta} V\right)=\left[\phi^{\lambda \alpha} \partial_{\alpha} U, \phi^{\lambda \beta} \partial_{\beta} V\right]
$$

and its equality is already verified in the proof of Theorem 5.2. So, h is a homomorphism.

Now, the kernel of h is equal to zero, because if

$$
\phi^{\lambda_{\mu}} \partial_{\mu} U=0
$$

we have $U=$ const. and hence U has to be equal to zero.
Corollary 1. If we have k parametric Lie group G_{k} of homogeneous contact transformations of a differentiable manifold M^{n}, we denote k infinitesimal homogeneous contact transformations which generate G_{k} by $X_{p}(p=1$ \cdots, k) and their characteristic functions by U_{p}. Then, U_{p} 's are linearly independent with respect to constant coefficients and satisfy the relation

$$
\begin{equation*}
\left(U_{p}, U_{q}\right)=c_{p_{p}}{ }^{r} U_{r}(p, q, r=1, \cdots, k) \tag{5.13}
\end{equation*}
$$

where ${c_{p}}^{r}$ are constant.
N.B. $\left(U_{p}, U_{q}\right)=0$ is the necessary and sufficient condition for the commutativity of the group generated by U_{1}, \cdots, U_{k}.

Corollary 2. The Lie algebra L of all infinitesimal homogeneous contact transformations of M^{n} is infinite dimensional.

Proof. As the Lie algebra L and C are isomorphic and $\operatorname{dim} C$ is infinity, so $\operatorname{dim} L$ is equal to infinity.

Now, we shall prove the
THEOREM 5.6. If a differentiable manifold M^{n} is compact, then every
infinitesimal homogeneous contact transformation X generates a global one parameter group of global homogeneous contact transformations of M^{n}.

Proof. We take a point $z_{0} \in{ }^{c} T\left(M^{n}\right)$ and a coordinate neighborhood $U\left(x^{i}\right)$ of πz_{0}. In $\pi^{-1}(U)$, we consider the set of differential equations of the type

$$
\begin{equation*}
\frac{d x^{\lambda}}{d t}=X^{\lambda} . \tag{5.14}
\end{equation*}
$$

Then, by virtue of the classical existence theorem on ordinary differential equations we can find a neighborhood $V\left(z_{0}\right)$ in $\pi^{-1}(U)$ and a positive constant $\varepsilon\left(z_{0}\right)$ so that
(a) (5.14) admits a solution

$$
\begin{equation*}
x^{\lambda}=f_{\imath}^{\lambda}\left(z_{*}\right) \quad|t|<\varepsilon\left(z_{0}\right) \tag{5.15}
\end{equation*}
$$

with the initial condition $f_{0}\left(z_{*}\right)=z_{*}$ for every point z_{*} of $V\left(z_{0}\right)$ and
(b) f_{t} for every $|t|<\varepsilon\left(z_{0}\right)$ is a diffeomorphism of $V\left(z_{0}\right)$ onto its image under f_{t} and
(c) if t, t^{\prime} and $t+t^{\prime}$ belong to the interval $\left(-\varepsilon\left(z_{0}\right),+\varepsilon\left(z_{0}\right)\right)$, then

$$
\begin{equation*}
f_{t} \circ f_{t^{\prime}}=f_{t+t^{\prime}} \tag{5.16}
\end{equation*}
$$

holds good.
The number $\varepsilon\left(z_{0}\right)$ generally depends upon the choice of z_{0}. On account of this fact, an infinitesimal homogeneous contact transformation generally may not generate a group of global homogeneous contact transformations. However, it is known that if we can choose $\varepsilon\left(z_{0}\right)$ so that it does not depend upon the choice of z_{0}, then the infinitesimal homogeneous contact transformation generates a global one parameter group G_{1} of global homogeneous contact transformations.

Now, we define a transformation T_{c} by

$$
\begin{equation*}
T_{c}(x, p)=(x, c p), \tag{5.17}
\end{equation*}
$$

where c is a positive constant. T_{c} for $0<c<\infty$ is the one parametric multiplicative group generated by ξ^{λ}. So by (5.7), X is invariant under T_{c} and hence we may take $\varepsilon\left(z_{0}\right)$ as $\varepsilon\left(T_{c} z_{0}\right)$. Accordingly $\varepsilon\left(z_{0}\right)$ depends only upon the coray on which z_{0} lies.

Therefore, it is clear that $\varepsilon\left(z_{0}\right), z_{0} \in{ }^{c} T\left(M^{n}\right)$ has a positive greatest lower bound if M^{n} is compact. Hence, our theorem is proved.

Now, let us introduce a positive definite Riemannian metric g over M^{n}. Then, the set of all unit covariant vectors of M^{n} constitutes a submanifold of ${ }^{c} T\left(M^{n}\right)$, which we denote by ${ }^{c} T_{1}\left(M^{n}\right)$. Any differentiable function $W\left(x, p_{1}\right)$ defined over $T_{1}\left(M^{n}\right)$ such that $W\left(x,-p_{1}\right)=W\left(x, p_{1}\right)$, where $p_{1} \in{ }^{c} T\left(M^{n}\right)$, can be easily extended to a coray function of degree 1 over ${ }^{c} T\left(M^{n}\right)$.

Hence, by virtue of the last theorem, we get the following

THEOREM 5.7. If M^{n} is a compact differentiable manifold, then there always exist homogeneous contact transformations.
6. Contact dstribution of the first kind. The tangent n-space to the fibre at a point $z=(x, p)$ of ${ }^{c} T\left(M^{n}\right)$ is called to be the vertical space at z. We consider an n-space which is disjoint and complementary to the vertical space at z and call it as a transversal space to the vertical space at z.

In a coordinate neighborhood $\pi^{-1}(U)$ with coordinates $\left(x^{i}, p_{i}\right)$, we put

$$
\begin{equation*}
\partial_{i}=\frac{\partial}{\partial x^{i}}, \partial^{i}=\frac{\partial}{\partial p_{i}} . \tag{6.1}
\end{equation*}
$$

If $\lambda_{j}{ }^{i} \partial_{i}+\mu_{j i} \partial^{i}$ are n vectors which span the transversal n-space, then their natural projections $\lambda_{j}{ }^{i} \partial_{i}$ have to be linearly independent, so we have $\left|\lambda^{i}{ }_{j}\right| \neq 0$. Therefore, we may assume that n-vectors which span the transversal n-space have the form

$$
\begin{equation*}
e_{i}=\partial_{i}+\Gamma_{i j} \partial^{j} \tag{6.2}
\end{equation*}
$$

We assume that

$$
\begin{equation*}
\Gamma_{i j}=\Gamma_{j i}, \tag{6.3}
\end{equation*}
$$

then we can see that it is independent upon the choice of local coordinates. To show it, let

$$
\begin{equation*}
\bar{x}^{a}=\bar{x}^{a}(x), \bar{p}_{a}=p_{i} \bar{\partial}_{a} x^{i} \tag{6.4}
\end{equation*}
$$

be a coordinate transformation of local coordinates and its extension, then we can easily verify that

$$
\bar{\partial}_{a}+\bar{\Gamma}_{a b} \bar{\partial}^{b}=\bar{\partial}_{a} x^{i}\left(\partial_{i}+\Gamma_{i j} \partial^{j}\right)
$$

where we have put

$$
\bar{\Gamma}_{a b}=p_{k} \bar{\partial}_{a} \bar{\partial}_{b} x^{k}+\bar{\partial}_{a} x^{i} \bar{\partial}_{b} x^{j} \Gamma_{i j}
$$

Therefore, we have $\bar{\Gamma}_{a b}=\bar{\Gamma}_{b a}$, which shows that our assertion is true.
Hereafter we consider a distribution D_{1} of transversal n-spaces such that the symmetry condition (6.3) is satisfied at every point of ${ }^{c} T\left(M^{n}\right)$. We call such distribution as contact distributions of the first kind and each of the set of n-vectors e_{i} as contact frame of the first kind belonging to it and corresponding to the coordinate neighborhood in consideration. We say that $\Gamma_{i j}$'s are parameters of the contact frame.

Example. Let $\Gamma_{i j}^{k}$ be a symmetric affine connection defined over M^{n}. Then, we can easily verify that

$$
\begin{equation*}
\Gamma_{i j}=\Gamma_{i j}^{k} p_{k} \tag{6.5}
\end{equation*}
$$

defines a contact distribution of the first kind.
Now, we consider the vectors e_{i} as operators in the sense

$$
e_{i} f=\partial_{i} f+\Gamma_{i j} \partial^{j} f
$$

for any function f over ${ }^{c} T\left(M^{n}\right)$ and define a quantity defined by

$$
\begin{equation*}
R_{i j k}=e_{k} \Gamma_{i j}-e_{j} \Gamma_{i k} . \tag{6.6}
\end{equation*}
$$

Then we get the following
THEOREM 6.1. The contact distribution D_{1} of the first kind is completely integrable if and only if

$$
\begin{equation*}
R_{i j k}=0 . \tag{6.7}
\end{equation*}
$$

Proof. n-planes of D_{1} are spanned by vectors e_{i}. As e_{j} for fixed j has components $\left(\delta_{j}{ }^{i}, \Gamma_{j i}\right)$ with respect to natural frames, we can easily see that

$$
\begin{aligned}
& {\left[e_{j}, e_{k}\right]^{i}=0,} \\
& {\left[e_{j}, e_{k}\right]^{n+i}=-R_{i j k} .}
\end{aligned}
$$

So, $\left[e_{j}, e_{k}\right]$ is a linear combination of e_{r} if and only if $R_{i j k}=0$. Hence, the theorem follows.

Corollary. If the contact distribution D_{1} of the first kind is the one which is associated to a symmetric affine connection by (6.5). then D_{1} is completely integrable if and only if the affine connection is flat.

Proof. We can easily verify that

$$
\begin{equation*}
R_{i j k}=R^{n}{ }_{i j k} p_{h}, \tag{6.8}
\end{equation*}
$$

where $R^{n}{ }_{i j k}$'s are components of the curvature tensor of the affine connection. As p_{h} 's are arbitrary, we have $R^{h}{ }_{i j k}=0$ if $R_{i j k}=0$. Hence, the theorem is proved.

THEOREM 6.2. The contact distribution D_{1} of the first kind is invariant under the transformation T_{c} if and only if $\Gamma_{i j}(x, p)$'s are coray functions of degree 1.

Proof. As the n-space of the contact distribution of the first kind at $z=(x, p)$ is spanned by n-vectors with components $\left(\delta_{a}^{i}, \Gamma_{a i}(x, p)\right)(a=1, \cdots, n)$ we can easily see that it is defined by equations $\omega_{n+i}=0$, where we have put

$$
\begin{equation*}
\boldsymbol{\omega}_{n+i}=d p_{i}-\Gamma_{i j}(x, p) d x^{j} . \tag{6.9}
\end{equation*}
$$

The equations $\omega_{n+i}=0$ at ' $z=T_{c} z$ are satisfied by vectors of the n-space which is the image of the n-space of D_{1} at z under T_{c} if and only if
$\Gamma_{i j}(x, p)$'s are coray functions of degree 1 . Hence, the theorem is proved.
Let $U_{\lambda}(\lambda \in \Lambda)$ be an open covering of M^{n} and f be a homogeneous contact transformation of M^{n}. Suppose $f \circ \pi^{-1}\left(U_{\lambda}\right) \cap \pi^{-1}\left(U_{\mu}\right)$ is not empty, then the restriction map

$$
f: \pi^{-1}\left(U_{\lambda}\right) \cap f^{-1} \circ \pi^{-1}\left(U_{\mu}\right) \rightarrow f \circ \pi^{-1}\left(U_{\lambda}\right) \cap \pi^{-1}\left(U_{\mu}\right)
$$

can be expressed by

$$
\begin{equation*}
\bar{x}^{a}=\bar{x}^{a}(x, p), \bar{p}_{a}=\bar{p}_{a}(x, p), \tag{6.10}
\end{equation*}
$$

where $\left(x^{i}, p_{i}\right)$ are coordinates in $\pi^{-1}\left(U_{\lambda}\right)$ and (\bar{x}^{a}, \bar{p}_{a}) are coordinates in $\pi^{-1}\left(U_{\mu}\right)$.
Now, in order to get good insight of the complicated calculations, we introduce matrix notation

$$
\begin{cases}A=\left(\partial_{i} \bar{x}^{a}\right), & B=\left(\partial^{i} \bar{x}^{a}\right), \tag{6.11}\\ C=\left(\partial_{i} \bar{p}_{a}\right), & D=\left(\partial^{i} \bar{p}_{a}\right)\end{cases}
$$

and

$$
\begin{cases}\bar{A}=\left(\bar{\partial}_{a} x^{i}\right), & \bar{B}=\left(\bar{\partial}^{a} x^{i}\right), \tag{6.12}\\ \bar{C}=\left(\bar{\partial}_{a} p_{i}\right), & \bar{D}=\left(\bar{\partial}^{a} p_{i}\right),\end{cases}
$$

Then, by virtue of (2.22) and (2.18), we have

$$
\begin{cases}A={ }^{t} \bar{D}, & B=-{ }^{t} \bar{B}, \tag{6.13}\\ C=-{ }^{t} \bar{C}, & D={ }^{t} \bar{A}\end{cases}
$$

and

$$
\left\{\begin{array}{l}
B^{t} A=A^{t} B, \quad D^{t} C=C^{t} D, \tag{6.14}\\
B^{t} C-A^{t} D=-E,
\end{array}\right.
$$

where t 's on the left shoulders of matrices mean their transposes and E is the unit matrix. It is evident that we have also the identities

$$
\begin{cases}A \bar{A}+B \bar{C}=E, & A \bar{B}+B \bar{D}=0 \tag{6.15}\\ C \bar{A}+D \bar{C}=0, & C \bar{B}+D \bar{D}=E\end{cases}
$$

Now, if

$$
\begin{equation*}
|A+B \Gamma| \neq 0 \tag{6.16}
\end{equation*}
$$

at a point $z=(x, p)$ or $\pi^{-1}\left(U_{\lambda}\right) \cap f^{-1} \circ \pi^{-1}\left(U_{\mu}\right)$, we say that f is regular at z with respect to the contact distribution D_{1}. And if f is regular at every point of $T\left(M^{n}\right)$, we say that f is regular with respect to D_{1}. The independence of the notion of regularity upon coordinate neighborhood comes from the following

Theorem 6.3. If a homogeneous contact transformation f of M^{n} is
regular with respect to a contact distribution of the first kind D_{1} at a point $z=(x, p)$ of ${ }^{c} T\left(M^{n}\right)$, then the image of the n-space of D_{1} at the point z is also transversal to the vertical space at the point $f(z)$. The converse is also true.

Proof. The transversal n-space of D_{1} at the point z is spanned by n vectors e_{i}.

If we fix i, the components of the vector e_{i} with respect to the natural frame $\left(\partial_{j}, \partial^{j}\right)$ are $\left(\delta_{i}^{j}, \Gamma_{i j}\right)$. So, the components of the image of the vector under the transformation f are easily seen to be given by the i-th columns of the set of matrices $(A+B \Gamma, C+D \Gamma)$. Therefore, the π-image of the vector in consideration has as its components the i-th column of $A+B \Gamma$. Hence, the condition (6.16) is equivalent to the fact that the $\pi \circ f$ image of the transversal n-space at the point z spanned by n vectors $e_{i}(i=1, \cdots, n)$ coincides with the tangent space of M^{n} at the point $\pi \circ f(z)$. Hence, the condition (6.16) is also equivalent to the fact that the f-image of the n-space of D_{1} at the point z is again a transversal n-space at $f(z)$.

It is evident that the converse is also true.
Now, assuming that D_{1} is a contact distribution of the first kind and f is a homogeneous contact transformation we consider equations

$$
\begin{equation*}
\underset{f}{\bar{\Gamma}}(A+B \Gamma)=C+D \Gamma^{1)} \tag{6.17}
\end{equation*}
$$

for unknowns $\bar{\Gamma}_{f}$.
Lemma 6.1. In order that (6.17) admits a set of solutions $\bar{\Gamma}_{j a b}$ at a point $f(z) \in f \circ \pi^{-1}\left(U_{\lambda}\right) \cap \pi^{-1}\left(U_{\mu}\right)$, it is necessary and sufficient that ${ }_{f}^{f}$ is regular with respect to D_{1} at the point $z \in \pi^{-1}\left(U_{\lambda}\right) \cap f^{-1} \circ \pi^{-1}\left(U_{\mu}\right)$.

Proof. Sufficiency is evident.
Necessity. By virtue of (2.22), we can write (6.17) as

$$
\overline{\Gamma_{f}}\left({ }^{t} \bar{D}-{ }^{t} \bar{B} \Gamma\right)=-{ }^{t} \bar{C}+{ }^{t} \bar{A} \Gamma .
$$

So we have

$$
\begin{equation*}
\Gamma\left(\bar{A}+\bar{B}_{f}^{t} \bar{\Gamma}\right)=\bar{C}+\bar{D}_{f}^{t} \bar{\Gamma} \tag{6.18}
\end{equation*}
$$

[^1]which is similar to (6.17).
On the other hand, we have
\[

$$
\begin{aligned}
& (A+B \Gamma)\left(\bar{A}+\bar{B}^{\bar{T}}\right) \\
& \quad=A \bar{A}+A \bar{B}_{f}^{i} \underset{f}{\bar{T}}+B \Gamma\left(\bar{A}+\bar{B}_{f}^{\bar{T}}\right) .
\end{aligned}
$$
\]

The right hand side is easily transformed to

$$
E-B\left\{\bar{C}+\bar{D}_{f}^{t} \bar{\Gamma}-\Gamma\left(\bar{A}+\bar{B}_{f}^{t} \underset{f}{\bar{\Gamma}}\right)\right\}
$$

Therefore, by (6.18), we get

$$
\begin{equation*}
(A+B \Gamma)\left(\bar{A}+\bar{B}^{t} \overline{\boldsymbol{\Gamma}}\right)=E \tag{6.19}
\end{equation*}
$$

Hence, we have (6.16) which shows that f is regular at the point $z=(x, p)$.
Lemma 6.2. If (6.17) admits a set of solutions ${\underset{f}{\bar{\Gamma}}}_{a b}$, then ${\underset{\gamma}{\Gamma}}_{\bar{\Gamma}_{a b}}$'s are symmetric.

Proof. We multiply $\bar{A}+\bar{B}^{i} \bar{\Gamma}$ to both sides of (6.17). Then, we see first that the left hand side reduces to $\bar{\Gamma}_{f}$ by virtue of (6.19). Secondly, the right hand side is transformed to

$$
\begin{aligned}
& (C+D \Gamma)\left(\bar{A}+\bar{B}^{t} \bar{\Gamma}\right) \\
& \quad=\left(C+D_{r}\right) \bar{A}+C \bar{B}^{t} \bar{\Gamma}+D \bar{\Gamma}^{t} \bar{\Gamma} .
\end{aligned}
$$

Putting (6.18) into the last term of the right hand side of the last eqation, we see that the right hand side reduces to $\bar{\Gamma}$. Hence, replacing c by b, we get

$$
\begin{equation*}
\bar{\Gamma}_{a b}=\bar{\Gamma}_{f}^{b a} \tag{6.20}
\end{equation*}
$$

which is to be proved.
THEOREM 6.4. If a homogeneous contact transformation f of M^{n} is regular at a point z of ${ }^{c} T\left(M^{n}\right)$ with respect to a contact distribution D_{1} of the first kind determined by Γ, then the image of the n-space of D_{1} at z under f is the n-space determined by $\bar{\Gamma}_{f}$ at $\bar{z}=f(z)$

Proof. As the vector e_{i} for fixed i has components ($\delta_{i, ~}^{j}, \Gamma_{i j}$) with respect to the natural frame $\left(\partial_{j}, \partial^{j}\right)$, we can easily see that the image of this vector has as its components the i-th columns of the set of matrices $(A+B \Gamma, C+D \Gamma)$ with respect to the natrual frame $\left(\bar{\partial}_{a}, \bar{\partial}^{a}\right)$. We consider n such vectors, and take a linear combinations of these vectors by multiplying $\bar{A}+\bar{B}^{i} \bar{\Gamma}$, then we get $\left(\delta_{b}^{a}, \bar{\Gamma}_{f}{ }^{a b}\right)$, i.e. we have n vectors

$$
\begin{equation*}
\bar{e}_{b}=\bar{\partial}_{b}+\bar{\Gamma}_{j} \bar{\partial}^{c} . \tag{6.21}
\end{equation*}
$$

Hence, the image of the transversal n-space determined by Γ at z is the transversal n-space determined by $\bar{\Gamma}_{f}$ at $f(z)$.

From the proof of Theorem 6.3, we can see that

$$
\begin{equation*}
\bar{e}_{b}=\left(\bar{\partial}_{b} x^{i}+\bar{\partial}^{c} x^{i} \bar{\Gamma}_{f}\right) f\left(e_{i}\right), \tag{6.22}
\end{equation*}
$$

where $f\left(e_{i}\right)$ is the vector which is the image of e_{i} under f.
From Theorems 6.3 and 6.4 we get the following
THEOREM 6.5. Let D_{1} be a contact distribution of the first kind of ${ }^{c} T\left(M^{n}\right)$ determined by Γ and f be a homogeneous contact transformation of M^{n}. If f is regular at every point of ${ }^{c} T\left(M^{n}\right)$ with respect to D_{1}, then f induces a new contact distribution $f D_{1}$ of the first kind in ${ }^{c} T\left(M^{n}\right)$.

Of course, the n-plane of $f D_{1}$ at $f(z)$ is spanned by \bar{e}_{a}. We denote the vectors of $f D_{1}$ at z by $\partial_{i}+\Gamma_{j} \partial^{j} \partial^{j}$.

If a homogeneous contact transformation f satisfies the relation

$$
\begin{equation*}
\underset{f}{\Gamma}=\Gamma, \tag{6.23}
\end{equation*}
$$

then we say that the contact distribution D_{1} determined by Γ is invariant under f. We shall study homogeneous contact transformations which leave Γ invariant.

As an example we shall prove the following
Theorem 6.6. Suppose D_{1} is the contact distribution of the first kind associated with a symmetric affine connection Γ of M^{n}. (i) The extention of every affine transformation of M^{n} leaves D_{1} invariant. (ii) If the extended group of a Lie group G of diffeomorphisms of M^{n} leaves D_{1} invariant, G is a group of affine transformations.

Proof. Let us take the local expression of f as in (6.10). In order that the contact distribution of the first kind D_{1} is invariant under f it is necessary and sufficient that

$$
\begin{equation*}
\Gamma_{a b}(\bar{x}, \bar{p})\left(\partial_{i} \bar{x}^{b}+\partial^{j} \bar{x}^{h} \Gamma_{j i}\right)=\partial_{i} \overline{p_{a}}+\partial^{j} \bar{p}_{a} \Gamma_{j i} \tag{6.24}
\end{equation*}
$$

(i) Suppose f be an extension of an affine transformation of M^{n} with a symmetric affine connection Γ. Then, we have

$$
\begin{equation*}
\bar{x}^{a}=\bar{x}^{a}(x), \bar{p}_{a}=p_{i} \bar{\partial}_{a} x^{i} \tag{6.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\Gamma_{a b}^{c}(\bar{x})=\partial_{k} \bar{x}^{a}\left(\bar{\partial}_{a} \bar{\partial}_{b} x^{k}+\Gamma_{l, j}^{k} \bar{\partial}_{a} x^{i} \bar{\partial}_{b} x^{j}\right) . \tag{6.26}
\end{equation*}
$$

Noticing (6.5) and making use of (6.25) ${ }_{2}$ and (6.26) we get

$$
\begin{equation*}
\Gamma_{a b}(\bar{x}, \bar{p})=\bar{\partial}_{a} \bar{\partial}_{b} x^{k} p_{k}+\Gamma_{i j}(x, p) \bar{\partial}_{a} x^{i} \bar{\partial}_{b} x^{j} . \tag{6.27}
\end{equation*}
$$

Comparing the last equation with (6.23) we see that D_{1} is invariant under f.
(ii) We consider U_{μ} coincides with U_{λ} and take an infinitesimal homogeneous contact transformation defined by

$$
\begin{equation*}
\bar{x}^{i}=x^{i}+\partial^{i} U \delta t, \overline{p_{i}}=p_{i}-\partial_{i} U \delta t, \tag{6.28}
\end{equation*}
$$

where U is a coray function of degree 1 over ${ }^{c} T\left(M^{n}\right)$. From (6.27), we can easily see that the transformation (6.28) leaves D_{1} invariant if and only if the equation

$$
\begin{equation*}
\partial_{k} \Gamma_{i a} \partial^{k} U-\partial^{k} \Gamma_{i a} \partial_{k} U+\Gamma_{i j} e_{a} \partial^{j} U+e_{a} \partial_{i} U=0 \tag{6.29}
\end{equation*}
$$

Now, we consider (6.28) which is the extension of an infinitesimal diffeomorphism defined by a vector field X^{i} of M^{n}.

Putting (6. 5) into (6.29), we have

$$
X_{i a}^{h}+R_{i a t}^{h} X^{k}=0, \text { i.e. } \mathcal{L}(X) \Gamma_{i a}^{h a}=0 .
$$

So, X^{i} is an infinitesimal affine transformation. If we take vector fields which generate the given Lie group G instead of X^{i}, we can see that G is a Lie group of affine transformations of M^{n}.
7. Contact distribution of the second kind. We consider another n dimensional distribution D_{2} such that the n-space of D_{2} is disjoint and complementary to the n-space of the contact distribution of the first kind D_{1} at every point of ${ }^{c} T\left(M^{n}\right)$. As the bases of n-spaces of D_{2}, we may take n vectors of the form $\lambda^{j}{ }_{i} e_{j}+\mu_{i j} \partial^{j}$. As the n-space of D_{2} is disjoint and complementary to the n-space of D_{1} at every point of ${ }^{c} T\left(M^{n}\right)$, we have $\left|\mu_{j}^{i}\right| \neq 0$. So we may assume that the bases are given by n vectors of the form

$$
\begin{equation*}
e^{i}=\partial^{i}-\Pi^{i j}\left(\partial_{j}+\Gamma_{j k} \partial^{k}\right) \tag{7.1}
\end{equation*}
$$

Here, we assume that

$$
\begin{equation*}
\Pi^{i j}=\Pi^{j i} \tag{7.2}
\end{equation*}
$$

The assumption (7.1) is independent upon the choice of local coordinates. For, if (6.4) is a coordinate transformation and it extension, then we have

$$
\begin{aligned}
& \partial^{i}-\Pi^{i j}\left(\partial_{j}+\Gamma_{j k} \partial^{k}\right) \\
& \quad=\partial^{i} \bar{p}_{a} \bar{\partial}_{a}-\Pi^{i j} \partial_{j} \bar{x}^{b}\left(\overline{\partial_{b}}+\bar{\Gamma}_{b c} \overline{\partial^{c}}\right)
\end{aligned}
$$

by virtue of an analogous argument for $\Gamma_{i j}$ in $\S 6$. The last equation is easily transformed to $\bar{\partial}_{a} x^{i}\left\{\bar{\partial}^{a}-\bar{\Pi}^{a b}\left(\bar{\partial}_{b}+\bar{\Gamma}_{b c} \bar{\partial}^{c}\right)\right\}$, where we have put

$$
\begin{equation*}
\bar{\Pi}^{a b}=\Pi^{i j} \partial_{i} \bar{x}^{a} \partial_{j} \bar{x}^{b} . \tag{7.3}
\end{equation*}
$$

Hence, D_{2} is spanned by $e^{a}=\bar{\partial}^{a}-\bar{\Pi}^{a b}\left(\bar{\partial}_{b}+\bar{\Gamma}_{b c} \bar{\partial}^{c}\right)$ and $\bar{\Pi}^{a b}$, s are symmetric.
We call such distribution D_{2} as a contact distribution of the second kind assocciated to the contact distribution of the first kind D_{1}. The set of n vectors e^{i} is called a contact frame of the second kind. We say that $\Pi^{j i}$,s are parameters of the contact frame.

Example 1. The distribution determined by the set of all vertical n-spaces
of ${ }^{c} T\left(M^{n}\right)$.
Example 2. We endow a positive definite Riemannian metric g to M^{n} and define

$$
\Gamma_{i j}=\left\{\begin{array}{l}
k \tag{7.4}\\
k j
\end{array}\right\} p_{k}, \quad \Pi^{i j}=g^{i j} / \sqrt{g^{n k} p_{h} p_{k}}
$$

at every coordinate neighborhood $\pi^{-1}(U)$ of ${ }^{c} T\left(M^{n}\right)$, where U is a coordinate neighborhood of M^{n} and $g^{i j},\left\{\begin{array}{l}k \\ i j\end{array}\right\}$ are the fundamental tensors and the Christoffel's symbols of the Riemannian manifold M^{n}. Then, $\Gamma_{i j}$ and $\Pi^{i j}$ determine contact distributions of the first and second kind.

THEOREM 7.1. Suppose the contact distribution D_{1} of the first kind is invariant under the transformation T_{c}. Then, the contact distribution D_{2} of the second kind is invariant under T_{c}, if and only if $\Pi^{i j}(x, p)$'s are coray functions of degree -1 .

Proof. As the n-space of D_{2} at a point $z=(x, p)$ is spanned by n vectors e^{a} with components $\left(-\Pi^{a i}, \delta_{i}^{a}-\Pi^{a b} \Gamma_{b i}\right)$, we can easily verify that it is defined also by n equations $\omega_{i}=0$, where we have put

$$
\begin{equation*}
\omega_{i}=d x^{i}+\Pi^{i j}(x, p)\left\{d p_{j}-\Gamma_{j k}(x, p) d x^{k}\right\} . \tag{7.5}
\end{equation*}
$$

The equations of the type $\omega_{i}=0$ at $T_{c} z$ are satisfied by vectors of the n-space which is the image of the n-space of D_{1} at z under T_{c} if and only if $\Pi^{i j}$ s are coray functions of degree -1 as $\Gamma_{i j}$'s are coray functions of degere +1 by assumption. Hence, our theorem is proved.

Now, we consider the vectors e^{i} as operators in the sense

$$
e^{i} f=\partial^{i} f-\Pi^{i j}\left(\partial_{j} f+\Gamma_{j k} \partial^{k} f\right)
$$

and put

$$
\begin{equation*}
R^{i j k}=e^{k} \Pi^{i j}-e^{j} \Pi^{i k}+\Pi^{i n}\left(\Pi^{a j} e^{k} \Gamma_{a h}-\Pi^{a k} e^{j} \Gamma_{a h}\right) . \tag{7.6}
\end{equation*}
$$

Then, we get the following
Theorem 7.2. The contact distribution of the second kind D_{2} is completely integrable if and only if there exist the relations

$$
\begin{equation*}
R^{i j k}=0 \tag{7.7}
\end{equation*}
$$

Proof. n-spaces of D_{2} are spanned by n vectors e^{i} defined by (7. 1). As e^{a} for fixed a has components ($-\Pi^{i a}, \delta_{i}^{a}-\Pi^{a b} \Gamma_{b i}$) with respect to natural frames, we can easily see that

$$
\begin{aligned}
& {\left[e^{j}, e^{k}\right]^{i}=e^{k} \Pi^{i j}-e^{j} \Pi^{i k},} \\
& {\left[e^{j}, e^{k}\right]^{n+i}=e^{k}\left(\Gamma_{i a} \Pi^{a j}\right)-e^{j}\left(\Gamma_{i a} \Pi^{a k}\right) .}
\end{aligned}
$$

On the other hand, by the theory of distributions the distribution D_{2} is completely integrable if and only if there exist functions $\lambda^{j k}{ }_{n}$ such that

$$
\left[e^{j}, e^{k}\right]=\lambda^{j k}{ }_{h} e^{h},
$$

i.e.

$$
\begin{aligned}
& e^{k} \Pi^{i j}-e^{j} \Pi^{i k}=-\lambda^{j k}{ }_{h} \Pi^{h i}, \\
& e^{k}\left(\Gamma_{i a} \Pi^{a j}\right)-e^{j}\left(\Gamma_{i a} \Pi^{a k}\right)=\lambda^{j k}{ }_{h}\left(\delta_{i}^{h}-\Pi^{h l} \Gamma_{l i}\right) .
\end{aligned}
$$

Eliminating $\lambda^{j k}{ }_{h}$ from the last two equations we see that our assertion is true.
Corollary. If the distribution of the second kind D_{2} can be transformed to the distribution determined by vertical n-spaces by a homogeneous contact transformation f, then (7. 7) holds good.

Proof. The distribution determined by the vertical n-spaces are completely integrable. So, its inverse image D_{2} by f^{-1} is also completely integrable. Hence, by virtue of Theorem 7.3, we see that our assertion is true.

Let f be a homogeneous contact transformation which is regular with respect to the contact distribution D_{1}. We consider now the equations

$$
\begin{equation*}
\bar{\Pi}_{f}\left({ }^{t} \bar{A}+\bar{\Gamma}_{f}^{t} \bar{B}\right)=(A+B \Gamma) \Pi-B .{ }^{2)} \tag{7.8}
\end{equation*}
$$

Then, $\bar{\Pi}_{f}^{a b}$,s are defined in $f \circ \pi^{-1}\left(U_{\lambda}\right) \cap \pi^{-1}\left(U_{\mu}\right)$ uniquely, as

$$
\begin{equation*}
|\bar{A}+\bar{B} \underset{f}{\bar{T}}| \neq 0 \tag{7.9}
\end{equation*}
$$

by virtue of (6.19).
Lemma 7.1. $\prod_{f}^{a b}$'s defined by (7.8) are symmetric with respect to a and b.

Proof. We multiply $A+B \Gamma$ to both sides of (7.8) and contract with respect to i. Then the left hand side reduces to $\overline{\Pi_{f}}$ by virtue of (6.19), the right hand side reduces to

$$
(A+B \Gamma) \Pi\left({ }^{t} A+\Gamma^{t} B\right)-B^{t} A-B \Gamma^{t} B .
$$

It is evident that the first term and the third term of the last formula are symmetric. The second term is also symmetric by virtue of (6.14). So the right hand side is symmetric. Hence we can see that

$$
\begin{equation*}
\bar{\Pi}_{f}^{a b}=\bar{\Pi}_{f}{ }^{b a} . \tag{7.10}
\end{equation*}
$$

[^2]The geometric meaning of $\Pi_{J}^{a b}$ is given by the following
THEOREM 7.3. If a homogeneous contact transformation f of M^{n} is regular with respect to the contact distribution D_{1} determined by Γ, then the image of the n-space spanned by e^{i} under f is the n-space spanned by $\bar{\partial}^{a}-\bar{\Pi}_{f}^{a b}\left(\bar{\partial}_{b}+\bar{\Gamma}_{f}{ }_{b c} \overline{\partial^{c}}\right)$.

Proof. As the vector e^{j} for a fixed j has components $\left(-\Pi^{i j}, \delta_{j}^{i}-\Gamma_{i k} \Pi^{k j}\right)$ with respect to the natural frame $\left(\partial_{i}, \partial^{i}\right)$, the image of the vector under the homogeneous contact transformation f has as its components the j-th columns of the set of matrices

$$
\{B-(A+B \Gamma) \Pi, D-(C+D \Gamma) \Pi\}
$$

with respect to the natural frame $\left(\bar{\partial}_{a}, \bar{\partial}^{a}\right)$. By virtue of (7.18), this is transformed to

$$
\left.\left\{-\bar{\Pi}_{\mathcal{J}}^{t} t \bar{A}+\bar{\Gamma}_{f}^{t} \bar{B}\right), D-(C+D \Gamma) \Pi\right\} .
$$

Now, we take linear combinations of these n vectors by multiplying ${ }^{t}(A+B \Gamma)$ and summing up for j, we get by (6.17)

$$
\begin{equation*}
\left\{-\bar{\Pi}_{J}, D^{t}(A+B \Gamma)-(C+D \Gamma) \Pi^{t}(A+B \Gamma)\right\} \tag{7.11}
\end{equation*}
$$

On the other hand we have

$$
\begin{gathered}
\overline{\Pi_{J}}=(A+B \Gamma) \Pi^{\prime}(A+B \Gamma)-B^{t}(A+B \Gamma), \\
\bar{\Gamma}(A+B \Gamma)=C+D \Gamma .
\end{gathered}
$$

So, we have

$$
\bar{\Gamma}_{f} \bar{\Pi} \overline{{ }_{f}^{2}}=(C+D \Gamma) \Pi^{t}(A+B \Gamma)-\bar{\Gamma}_{f} B^{t}(A+B \Gamma) .
$$

By virtue of the last equation (7.11) can be written as

$$
\begin{aligned}
& \left\{-\overline{\Pi_{f}}, D^{t}(A+B \Gamma)-\bar{\Gamma} B^{t}(A+B \Gamma)-\bar{\Gamma}_{f}^{\bar{\Pi}}\right\} \\
& =\left\{-\overline{\Pi_{f}},\left(D-\overline{\Gamma_{f}} B\right)^{t}(A+B \Gamma)-\bar{\Gamma}_{f} \bar{\Pi}\right\} \\
& =\left\{-\overline{\Pi_{f}},{ }_{f}^{t}(\bar{A}+\bar{B} \bar{\Gamma})_{f}^{t}(A+B \Gamma)-\bar{\Gamma}_{f} \bar{\Pi}\right\} \\
& =\left\{-\bar{\Pi}, E-\bar{\Gamma}_{f} \overline{\bar{\Pi}}\right\}
\end{aligned}
$$

by virtue of (6.13) ${ }_{1,2}$ and (6.17). Therefore, the image of the n-space spanned by e^{i} is spanned by

$$
\begin{equation*}
\bar{e}^{a}=\bar{\partial}^{a}-\bar{\Pi}_{y}^{a b}\left(\bar{\partial}_{b}+\bar{\Gamma}_{f} \bar{\partial}^{c}\right) . \tag{7.12}
\end{equation*}
$$

From the proof of Theorem 7.1, we can see that

$$
\begin{equation*}
\bar{e}^{b}=\left(\partial_{j} \bar{x}^{b}+\Gamma_{h j} \partial^{h} \bar{x}^{b}\right) f\left(e^{j}\right), \tag{7.1.}
\end{equation*}
$$

where $f\left(e^{j}\right)$ is the vector which is the image of e^{j} under f.
From Theorems 6.5, 7.3 and Lemma 7.1 we get the following
THEOREM 7.4. Let D_{1} and D_{2} be contact distributions of the first and second kind of ${ }^{c} T\left(M^{n}\right)$ determined by Γ and Π and f be a homogeneous contact transformation of M^{n}. If f is regular at every point of D_{1}, then f induces new contact distribution of the second kind $f D_{2}$ associated to $f D_{1}$.
$\bar{\Pi}_{f}^{a b}$ s are parameters which define $f D_{2}$ in $f \circ \pi^{-1}\left(U_{\lambda}\right) \cap \pi^{-1}\left(U_{\mu}\right)$. We denote the parameters which define $f D_{2}$ generally by $\prod_{f}^{i j}$.

If a homogeneous contact transformation f satisfies the relation

$$
\begin{equation*}
\Pi_{\jmath}=\Pi, \tag{7.14}
\end{equation*}
$$

then we say that the contact distribution D_{2} determined by Γ and Π is invariant under f.

THEOREM 7.5. Suppose that we take the distribution determined by vertical spaces as contact distribution of the second kind. Then every homogeneous contact transformation f which leaves this contact distribution invariant is an extension of a diffeomorphism of M^{n}.

Proof. Putting $\Pi=0, \bar{\Pi}=0$ into (7. 8) we get $\partial^{i} \bar{x}^{a}=0$. Noticing that the 1 -form $p_{i} d x^{i}$ is invariant under f, we can easily see that our contact transformation f is an extension of a diffeomorphism of M^{n}.

Theorem 7.6. Let M^{n} be a Riemannian manifold and suppose that we take the contact distributions determined by (7. 4). Then the extension of an isometry of M^{n} leaves both distributions D_{1} and D_{2} invariant. And if G^{\prime} is the extended group of a Lie group G of diffeomorphisms of M^{n} such that every transformation of G^{\prime} leaves D_{1} and D_{2} invariant, then G is a group of isometries of M^{n}.

The proof is almost evident from that of Theorem 6.6 and the law of transformation (7.3) of $\Pi^{i j}$ under an extension of a diffeomorphism of M^{n}.

THEOREM 7.7. If we denote the components of an arbitrary vector X with respect to the natural frame by $\left(X^{i}, P_{i}\right)$, then its components with respect to the contact frame (e_{i}, e^{i}) are given by

$$
\left\{\begin{array}{l}
\Lambda^{i}=X^{i}+\Pi^{i j} M_{j}=X^{i}+\Pi^{i j}\left(P_{j}-\Gamma_{j k} X^{k}\right) \tag{7.15}\\
M_{i}=P_{i}-\Gamma_{i j} X^{j} .
\end{array}\right.
$$

Proof. We can easily verify that

$$
\Lambda^{i} e_{i}+M_{i} e^{i}=X^{i} \partial_{i}+P_{i} \partial^{i}
$$

which shows that our assertion is true.
THEOREM 7.8. The projection tensors T_{1} and T_{2} of an arbitrary vector to the distributions D_{1} and D_{2} are given by

$$
\begin{gather*}
\underset{1}{T}=\left(\begin{array}{ll}
\delta_{j}^{i}-\Pi^{i k} \Gamma_{k j} & \Pi^{i j} \\
\Gamma_{i j}-\Gamma_{i k} \Pi^{k h} \Gamma_{h j} & \Gamma_{i k} \Pi^{k j}
\end{array}\right), \tag{7.16}\\
\underset{2}{T}=\left(\begin{array}{ll}
\Pi^{i k} \Gamma_{k j} & \Pi^{i j} \\
-\Gamma_{i j}+\Gamma_{i k} \Pi^{k h} \Gamma_{h j} & \delta_{i j}-\Gamma_{i k} \Pi^{k j}
\end{array}\right) \tag{7.17}
\end{gather*}
$$

respectively with respect to natural frames.
Proof. The projection of an arbitrary vector $X=\left(X^{i}, P_{i}\right)$ on D_{1} is given by $\Lambda^{i} e_{i}$. The components of the last vector with respect to the natural frame are easily seen to be

$$
\left(\delta_{j}^{i}-\Pi^{i k} \Gamma_{k j}\right) X^{j}+\Pi^{i j} P_{j},\left(\Gamma_{i j}-\Gamma_{i k} \Pi^{k h} \Gamma_{h j}\right) X^{j}+\Gamma_{i k} \Pi^{k j} P_{j} .
$$

The components of T_{1}^{T} are nothing but the coefficients of X^{j}, P_{j} of the last vector. So, (7.16) is proved. The proof of (7.17) can be obtained in the same way.

Now we denote the projections of the image of a vector X at z by a homogeneous conact transformation f on $f D_{1}$ and $f D_{2}$ by $\overline{\Lambda^{a}} \bar{e}_{a}$ and $\bar{M}_{a} \bar{e}^{a}$, then as $\Lambda^{i} e_{i}$ and $M_{i} e^{i}$ are transformed by f to $\bar{\Lambda}^{a} \bar{e}_{a}$ and $\bar{M}_{a} \bar{e}^{a}$ respectively, we can easily see that

$$
\begin{equation*}
\bar{\Lambda}=(A+B \Gamma) \Lambda, \bar{M}(A+B \Gamma)=M \tag{7.18}
\end{equation*}
$$

hold good by (6.22) and (7.13).

Bibliography

[1] Davies, E. T., On the invariant theory of contact transformations, Math. Zeits., 57 (1953), 415-427.
[2] Davies, E. T. and K. Yano, Contact tensor calculus, Ann. di Mat., 37 (1954), 1-36.
[3] Doyle, T. C. Tensor decomposition with applications to the contact and complex groups, Ann. of Math. 42 (1941), 698-721.
[4] Eisenhart, L. P., Contact transformations. Ann. of Math. (2) 30 (1929), 211-249.
[5] Eisenhart, L. P., Continuous groups of transformations. Princeton Univ. Press, 1933.
[6] Eisenhart, L. P. and M.S. Knebelmann, Invariant theory of homogeneous contact transformations. Ann. of Math. 37 (1936), 747-765
[7] Hosokawa, T., Connections in the manifold admitting contact transformations. Journ. Fasc. Sci. Hokkaido Imp. Univ., 2 (1934), 169-176.
[8] MuTÔ, Y., On the connections in the manifold admitting homogeneous contact transformations. Proc. Phys. Math. Soc. Japan, 20 (1938), 451-457.
[9] Mutô, Y. and K. Yano, Sur les transformations de contact et les espaces de Finsler, Tôhoku Math. Journ., 45 (1939), 293-307.
[10] Yano, K., On the theory of linear connections in the manifold admitting contact transformations, Proc. Phys. Math. Soc. Japan, 17 (1935), 39-47.
Tôhoku University

[^0]: About half of this paper was done when the author was a visiting professor of the National Taiwan University and stayed at the Academia Sinica, Nankang, Formosa from Oct. 1961 to March 1962.

[^1]: 1) If we consider homogeneous contact transformation (2.13) as a coordinate transformation and introduce an object Γ which is transformed by
 (*) $\overline{\boldsymbol{\Gamma}}(A+B \mathbf{\Gamma})=C+\bar{D} \boldsymbol{\Gamma}$
 under such coordinate transformation, then we have

 $$
 d p-\overline{\mathbf{\Gamma}} d x=(D-\overline{\mathbf{\Gamma}} B)(d p-\mathbf{\Gamma} d x)
 $$

 So we may define a parallel displacement of p_{i} which is invariant under homogeneous contact transformations by $d p-\Gamma d x=0$. The object Γ and the equation (*) were first introduced by T. Hosokawa [7] in this way. The word contact frame was first used by L. P. Eisenhart [6] without explicit mention of the vectors $\partial_{i}+\Gamma_{i j} \partial^{j}$.

[^2]: 2) Considering the homogeneous contact transformation (2.13) as a coordinate transformation, Y. Muto [8] and T. C. Doyle [3] independently introduced the object Π which is transformed by an equation of the form (7.8).
