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1. Introduction. Let us consider a Riemannian space V2n with positive
definite metric tensor GBA

ι>> and admitting a Killing vector field uA such that
the magnitude of the absolute differential dξτ^τu

A is equal to the magnitude of
the infinitesimal vector dξΛ. Then we get from {dξBTJBu

τ){dξA^Au
s)Gτs= dξBdξAGBA

the equation

(1. 1) (vBu
τ)(y' AUτ) = GBA

where uA = usGSA.

A Killing vector uA satisfies the equation VBuA + τjAuB — 0, so that, if we
put

(1. 2) v*uA = FB

A,

the equation (1. 1) is equivalent to

(1. 3) FB

τFrA= -hi.

Thus we obtain an almost Hermitian structure. We shall study in the present
paper some local properties of spaces V2n with almost complex structure FB

Λ

which is derived in such a way from a Killing vector uA. Letters such as FB

A

and f'} will always denote almost complex or complex structures.
Since we get from (1. 2) τjc^Bu

A — χ>σFB

A and since a Killing vector uA

satisfies

(1. 4) VCVBUA = — K'sc'B
A us,

we get VoFBA + VBFA0 + yAFGB = 0,

which shows that our space V2n is an almost Kahlerian space.
V2n being an almost Kahlerian space, we get \?BFB

A = 0 and hence

1) Indices A, B, would run from 1 to 2n, but, since we prefer a special coordinate
system, we use indices as follows,

A,£,C, -,S,T, = 0,1, ,2Λ - 2, oo,
α> β, y, > λ, μ, = 1, , 2» — 2, oo,
ρ,q,r, ,x,y,z = 0, 1, • • , 2 » - 2 ,

Λ, i,j, k, I, m, n = 1, , 2n - 2.
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V»VB U

A = 0. We then obtain KkAua = 0 where KB

A = KBSG
SA and KBA

is the Ricci tensor.
We also obtain

£ F B

A
 =

u u

A

EC

from which we find that uA is a contra variant almost analytic vector [2].
Thus we obtain the

THEOREM 1.1. If α Riemαnniαn space V2n admits a Killing vector field
uA such that the tensor τjBu

A determines an almost Hermitian structure in
V2n, then the space is an almost Kdhlerian space and the Ricci tensor is not
definite. Moreover, the vector uA is a contravariant almost analytic vector.

2. Killing vector and some special coordinate systems. Let us consider
that a Killing vector u is given in a Riemannian space V2n and assume that
its magnitude | u | is not a constant. We prove in the following that we can
then find a coordinate system (ξΛ) such that the components uA of the given
Killing vector in this coordinate system satisfy

(2. 1) uΛ = K uτuτ - Goo - r

Let (ηAy be any coordinate system in which the given Killing vector has
the components T;0,^1,. . , v2n~2, v°° and the fundamental tensor has the com-
ponents HBA Then, if we put φ™ = vτvsHτs, we get

for we have

A d(vτvs Hτs)V"

= 2(vAvr)vAvτ = 0.

Evidently we can choose 2n — 2 functions φ\φ2, ,φ2n~2 of ηΛ such that

- o

and moreover such that the rank of the matrix
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3φι 3φι_

3φ°°

is 2n — 1. Then, if φ" is a solution of the equation

•dr!π-2

Ch}~

we get

det

so that we can take (ξΛ) = (φΛ) as a new coordinate system. The components

uA of the given Killing vector in this coordinate system satisfy

uA = ~-jf vB = δo1, uτuτ = vτvτ = φ~ = ξ°°
όη

and we get Go o = GBΛu
BuΛ = uτuτ = ξ°°, hence (2. 1) is satisfied.

We can derive from (2. 1) the following equations ([1], p.209 [3],p. 31

M,p.49):

(2. 2) 30GBA = 0.

Now consider the equations

(2.3)

4- -J£- + G"

As the tensor GBA is positive definite, we have G0000 > 0. On the other hand,

since we have (2. 2), the functions GBA do not involve the variable ξ°. Consequently

we can find functions / , f of ξ\. . .,£2n~2, ξ~ satisfying (2. 3) and

det - ^ r

Then
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is a coordinate transformation such that the components uA' of u and the components

GB,Λ,, G
B'A/ of the fundamental tensor in the new coordinate system (ξA/) satisfy

..A' %A' o f^BfAf r\

Thus we obtain the

THEOREM 2.1. If a Riemannian space V2n admits a Killing vector u whose

magnitude | u | is not a constant in the V2n, then there exists a coordinate

system (ξA) such that the components uA of u and the components GBA of the

fundamental tensor in this coordinate system satisfy the equations

U

A = SA

9 d0GBA = 0,

Such a coordinate system will be called a favourable coordinate system in

the present paper.

There are many favourable coordinate systems. If (ξA) and (ξA/) are such

ones, then we have

(2. 4)

REMARK 1. If (2. 1) is satisfied, we have

) GBA = (v^

for any scalar field φ. Hence we can think that (2. 3) means that grad φ and

grad(uτuτ) are orthogonal to each other whenever we put φ — ξ° + / or φ — f .

REMARK 2. As G0o° = Gio° = 0 and Gΰoo = G i : o = 0 are equivalent, we find

that the hypersurfaces ξx = const, are intersected orthogonally by the hyper-

surfaces uτ uτ = const, and that the parametric curves ξx are orthogonal to the

parametric curves ξ°° for every number x — 0,1, ,2^ — 2 if we take a favourable

coordinate system.

3. A Riemannian space V2n which admits a Killing vector field uA sa-
tisfying the equation (VBUT)(TJAUT) = GBA. At first we prove the

THEOREM 3.1. In a Riemannian space V2n in which τjBu
A determines
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an almost Kdhlerian structure2^ the Killing vector uA can not have constant

length.

PROOF. If we assume uτuτ = const., we get FA

τuτ = 0 from (^Au
τ)uτ =0.

But, as we have det(i<V) = db 1, this leads to contradiction.

The following corollary is a direct consequence of Theorems 2.1 and 3.1.

COROLLARY. In a Riemannian space V2n in which vBUA determines an

almost Kdhlerian structure we can choose a coordinate system (ξ°, ξ\ ξ") such

that the components uA of the Killing vector u satisfy

(3. 1) uA = hi

and the components GBA of the metric tensor satisfy

(3. 2) Goo = Γ , d0GBA = 0, Go. = Gioΰ = 0.

In such a favourable coordinate system we can write (1. 1) in the form

(3. 3) [05, T][0A, S]GTS = GBA

or in the form

(3. 4) (dBG0T - dτG0B)(dAG0S - dsG0A)Gτs = 4 GBA.

Taking (2. 2) into account we get from (3. 4)

BA

+ 0BGOβ - dβGOB)(dΛGOa - 3aG0A)Gβa = 4 GB

and taking G o o = ζ", Go» = Gim — Go~ = Gio° = 0 into account we find that these

equations split into the following three sets of equations,

(3. 5) G — = 4G0 0,

(3. 6) G~~3«GOλ = 4Gια,

(3. 7) δ δΓG00 + δ^OλG, ) Λ - aAGO λ)G°" + δ-(3 M G M - 9,GOμ)G°*

+ (dμGoβ - dβGOlιχdλGo« - d«Gΰλ)Gβ« = 4Gμλ.

We obtain G°"° = 4ξ°° from (3. 5) and substituting this into (3. 6) we have

(3. 8) ξ-djGn = GOλ,

hence the functions fΛ = (ξ")~1G0.i depend only upon the variables ξ\ ,f2""2.
Thus we get

(3. 9) Go., = FfΛ(£\ • f"-2)

2) It follows immediately that uA is then a Killing vector.
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and also

(3.10) G ~ ~ = 4 p G ~ = 4Γ.

Equations obtained from (3. 7) by putting λ = μ = oo and also by putting
λ = oo, μ—j are satisfied identically because of (3. 8) and (3.10). But, if we
put λ = i, μ = j in (3. 7), we get

+ (djGt,XdjG9i)G~ = AGH

which we can write also in the following form,

(3.11) \ O,Gβ t - dtGutdtGo* - 3ΛGoi)G*ft

= G)t - TT'GojGoi.
Thus we have the

THEOREM 3.2. Let V2n be a Riemannian space with an almost Kdhlerian
structure determined by GBA and FBA = ^BUA . Then if we take in V2n a fav-
ourable coordinate system (ξΛ), that is, a coordinate system in which (3. 1)
and (3. 2) hold, we get (3. 8), (3. 10) and (3.11).

THEOREM 3.3. If a Riemannian space V2n with the fundamental tensor
GBA admits a coordinate system (ξΛ) such that

d0GBA = 0, Goo = Γ, Go, = G iM = 0, G^ = ( 4 r ) Λ

and moreover such that (3. 8) and (3.11) hold, then a vector u with the
components uA = δ^ is a Killing vector which satisfies (1. 1) and this V2n

becomes an almost Kάhlerian space by virtue of the tensor χjBu
A.

THEOREM 3.4. A necessary and sufficient condition that, in a Riemannian
space V2n which admits a Killing vector field u, VBUA can determine an
almost Hermitian structure is that the following two conditions (I) and (II)
be fulfilled. (I) | u | is not constant in V2n and consequently we can take a
favourable coordinate system. (II) The metric tensor GBA of V2n satisfies (3.8),
(3.10) and (3.11) in this coordinate system.

•X-

4. A family of almost Kahlerian spaces V2n~2 induced by the Killing
vector field uA of V2n. Let us define gμλ by

( Λ 1 i O Λ — — —

^oo w o o )

As det (g^) 4= 0, we can define g^ by gv*gaλ = Si. Then we get

(4. 2) g* = G
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and

(4. 3) Goλ - -

Using these equations and (3. 9) we can write (3.11) in the form

(4. 4)

Since we have gloo = 0 because of GOββ = Gioo = 0, we get gkhghi = δ*. g5i do
not involve the variable ξ°.

Now consider for each value of £°° a Riemannian space of dimension 2n — 2
in which any point is denoted by the coordinates ξ\- . ',ξ2n'2 and the fundamental
tensor by gn. As we have (4. 4), this Riemannian space admits an almost
Hermitian structure determined by

(4. 5) fH = -~ (djft - a/;).

We denote this almost Hermitian space by V2n~2(1ζ*).

In V2n let T denote a trajectory of the group of motions induced by the
Killing vector uΛ. If a trajectory T passes a point P, it will be denoted by T(P).
Let the coordinates of a point P be ξA and the coordinates of a point P' be
ξA + dξA. Then we can define the infinitesimal distance between the two tra-
jectories T(P) and T(P/) by the length of the infinitesimal vector

d ^ 4
u uτ

hence by
(4. 6) (GBΛd?dξΛ -

\ U UT

The distance thus defined depends only upon the trajectories themselves and
does not depend upon the position of the points P,P' in the trajectories. This is
one of the direct consequences of the definition of group of motions.

Consequently we can derive a Riemannian space of dimension 2n — 1 by
regarding each trajectory as a point. This space is denoted by VB. Substituting
uA = GBAUB = GOΛ into (4. 6) we find that the fundamental tensor of VB is
given by
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(4. Ί) Lrμλ -~

if each point of VB is denoted by the coordinates ξ\. - ,ξ2n~2,ξ°°.

Since ξ°° is constant along each trajectory on account of ξ°° — uτuτ> VB

admits a family of hypersurfaces ξ°° = const. According to (4. 1) and (4. 7) the

fundamental tensor of each hypersurface ξ°° = c is given by cgH where gjt is the

fundamental tensor of V2n~2{c).

As the functions ft = ( |o o)"1G0 i do not involve £°°> the skew symmetric tensor

(4. 5) does not depend upon ξ°°. But, as g5i depends in general upon ξ°°,

(4 8) f = f%

and

(4- 9) // = fikg« = i- (if - v!/i)

involve ξ°°. In (4. 9) Vj denotes covariant differentiation with respect to the

( h } *
Christoffel symbols ] formed from gH.

V2n~2 is such an almost Hermitian space.

But, since we have

Vkfn + Vjfίk +Vifkj = 0

from (4. 5), V2n~2 is an almost Kahlerian space.

We have deduced in such a way a family of almost Kahlerian spaces

V2n"2(ξeo) from a Riemannian space V2n which admits a Killing vector uΛ

satisfying the equation (1. 1).

Let us consider conversely a family of (2n — 2)-dimensional spaces labelled

by a parameter ξ°°, so that each space is denoted by M(|°°) and the family by

{M(ξ°°); f 6 ΰj} where Dγ is a domain of positive numbers. Every M(£~) and

the family are differentiate of class, for example, C°° and in each M(ξ°°) a fun-

damental tensor is introduced by the differentiable functions gjί(ξ\- ,£27Ϊ~2, !°°),

the coordinates of a point being denoted by ξι, ,f2n~2. We assume that M(ξ°°)

becomes an almost Kahlerian space by virtue of gH and the almost complex

structure f'/ formed from a vector fi by (4. 8) and (4. 9). We assume furthermore

that the components ft do not depend upon ξ°° for some choice of the coordinate

system (ξ\. . ,f2n"2) and consider the space M= {M{ξΓ) X ξ° X ξ~ ξ° € Do,
ξ°° £ Di}3^ where the points are indicated by the coordinates ξ°,ξ1,- ,£2n~2, f*.

•X-

3) We understand in the right hand side of this equation a union of the point sets M(|°°)
X |° X £°° over £° (= Do, |°° € Dv In this connection it must be especially emphasized that
we are studying only local properties.
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Do is a domain of real numbers. Though each M(ξ°°) is a Riemannian space,
we introduce the space M only as a differentiable manifold until we introduce
a metric anew.

Now we introduce the fundamental tensor GBA into M by

( 4 Goo = F\ Go- = G,.. = 0, G _ = (4Γ)"1,

GOA: .= ΓΛ> GJ t = ξ"(g5i +fjfί).

Then the space becomes a Riemannian space V2n which admits evidently a
Killing vector uA = δjf and this Killing vector satisfies (1. 1). We find immediately

that M(£°°) can be identified with V2n-%ξ°°).

Thus we can construct an almsot Kahlerian space V2n with FBA — ^Bu
A

starting from a family of some almost Kahlerian spaces V2n~2(ξco). We can even
construct an almost Kahlerian space V2n from only one almost Kahlerian space
y-271-2̂  ^ γ e n e e ( j o r jy t Q consider that ^ do not involve ξ°°. There is an intrinsic
difference between the two cases, for the variables £°,£\ . ? | 2 n " 2 and the variable
ξ°° are completely separated in (2. 4).

Consequently we have the following theorems.

THEOREM 4.1. Let V2n be a Riemannian space -which becomes an almost
Kahlerian space by virtue of a tensor field VBUA. Then we get a family of

almost Kahlerian spaces V2n~2. If we take in V2n a favourable coordinate

system (ξA), then the members of the family are labelled by £*° and y2n-2(£~)
has the fundamental tensor

y n Goo (Goo)2

and the almost complex structure (4. 9). If we consider a hyper surf ace
ξ°° = const, in V2n and regard in it each trajectory of the group of motions
induced by the Killing vector uA as a point, we get a Riemannian space of

dimension 2n — 2. This space is homothetic to the Riemannian space Ϋ2n~2(ξ°°),
the ratio of the metric tensor being ξ°°: 1.

THEOREM 4.2. Let us consider a family of Riemannian spaces M(ξ°°) of
dimension 2n — 2, where ξ°° is a parameter indicating the space and ξι, ,£2n~2

are coordinates of a point. The fundamental tensor of M(ξ°°) is denoted by

Unit1,' »,ξ271'2 I") and we assume that M(ξ°°) admits an almost complex
structure
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derived from a covariant vector field f, where f do not involve the variable I***.
Then, if GBA satisfies (4.10), a Riemannian space of dimension 2n obtained by

introducing the fundamental tensor GBA into the space {M(ξ°°) X ξ° X ξ°° ξ° € DOf

ξ°° £ Dx} admits a Killing vector uA — hi and it becomes an almost Kdhlerian

space by virtue of the tensor VBUΛ, M(£°°) playing the role of V2n~2(ξ°°). We may
consider a special case such that gjt do not involve ξ°°.

We remark that we have in favourable coordinates

(4.11) Fj< = f ,\ FS = 0, Fi* = 0.

This is proved as follows.

M

i 4 = 1 * I = Gι'[oo o,p] = Gi0[oo 0,0] + Gift[oo 0,h]
(ooO)

o f " oft ~ '

(1. 3) and (4.11) also bring about the formula/;*/*1 = ί V *Y = Ff F^ = - δ / .

5. A Riemannian space V2n which admits a Killing vector uA satisfying
(VBUT)(VAUT) = GBA and such that the hypersurfaces uτuτ — const, are totally
umbilical. A necessary and sufficient condition that the hypersurf aces φ(xι, ,xm)
= const, in a Riemannian space Vm be totally umbilical is that φ satisfy equations
of the form

Hence, if the hypersurf aces uτuτ = const, in V2n are totally umbilical, we
have

UT) = aGBA + (VB(

Since uτuτ = ζ°°, the left hand side becomes

and the right hand side becomes
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Hence a necessary and sufficient condition that uτuτ — const, be totally umbilical
is that the following equations

(5. 1) C>ooGyx = ^ — Gyx,

which are obtained by putting B = y, A = x, be satisfied. But, as we have
(3. 8) already, we get a = 2, and (5. 1) becomes

(5. 2) 3j;vx = tiryιGyx.

Thus we obtain the following theorem.

THEOREM 5.1. A necessary and sufficient condition that in an almost
Kdhlerian space V2n with FB

A = VBUA the hypersurfaces uτuτ = const, be totally
umbilical is that (fO^G^ do not involve the variable ξ* in a favourable
coordinate system.

We have proved also the next theorem.

THEOREM 5.2. Let us assume that a Rίemannian space V2n admits a
Killing vector feld u such that | u | is not constant in V2n. Then a necessary
and sufficient condition that the hy per surf aces uτuτ = const, be totally
umbilical is that the equation fdooGyx = ccGyx be satisfied for some function a
in a favourable coordinate system.

Let us calculate some components of the curvature tensor by the formula

KDGBA — ~fZ (dDdβGcA + ^C^AGDB — ^D^AGCB — ^C^BGDA)

+ GTS{[DB,T][CA,S] - [DA,T][CB,S]}.

Then, using (3. 2), (3. 3), (3. 5), we get

KOBAO = GTS{[0A,T][0B,S] - [00,T][BA,S]}

= GBA - G—[00, oo][BA, co]

= GBA + ζΓ^dβGAoo + ^AGBOO — 3ooG^4),

hence

(5. 3) KQOOOOQ = 0, KQXOCQ = 0, KoyxO = Gyx — ζvooGyx.

Consequently a necessary and sufficient condition that the hypersurfaces ξ°°
= const, be totally umbilical can be written as KQyxQ — 0. We can also obtain
the same result directly if we use (1. 4), get VBVA(UTUT) = 2GBA— 2KTBASUTUS

= 2Giu — 2KOBAO and substitute the latter into ^y^jx{uτuτ) — oίGVx.
Hence we get the

COROLLARY OF THEOREM 5.1. A necessary and sufficient condition
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that in an almost Kάhlerian space V2n with FB

A = VBUΛ the hypersurfaces

uτuτ = const, be totally umbilical is that, among the components of the cur-

vature tensor, KOBAO vanish in favourable coordinates.

6. A Kahlerian space V2n with the complex structure F'B
A = VBUA. We

calculate components K0OBA when (ίΓ)"1 GVx do not contain the variable ξ°°.

We have already

(6. 1) KQBAO = 0

and we can prove

(6. 2) K0BAoo = 0

as follows.

If a Riemannian space of dimension 2n admits a Killing vector uA satisfying

(1. 1), we get

~2 V'σVΈVΆ(U7'UT) = VC(GBA - KTBASU
TUS) — - TJC(KTBASU

Tus).

If (6. 1) holds in addition, we get T7OVB^A(UTUT) = 0 because of KTBASUTUS = 0.

Hence we obtain KCB'ASVS(UTUT) = 0. Since Vs{uτuτ) — δ?, this equation can

be written as follows,

(6. 3) KbkΓ = KGBAoo = 0,

which contains (6. 2).

Thus, in order to get expressions of KQCBA, we only need to calculate Kojih.

Using equations such as (3. 2), (3. 8), (3.10) and (5. 2), the right hand side
of

becomes

On the other

1
2

+

+

OAG., -

3&>Gn -

hand, from

- dAG

- 9 i G 0 f t

; a Λ G o ί -

?nGϋί -

(3. 9),

oJ

• ) •

9*(

— c

- C

(4

+G

Jθί)C

\GQh

. 2 )

τs{[Oί,TH/A/S] - [0Λ,T]

3jG0Λ + dhGoj)

h)(djGoi + 3iG0<7 )]

XθjGα + a t G M - 8*G.

and (4. 3) we have
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(6. 4) G"° = (Γ)-y*. G,t = F(gH + fjd, Goi =

where f, gji9 gιk do not contain ξ°°. Hence, denoting the Christoffel symbols of

the first kind formed from gn by [ji, h]* we get

(6. 5) 3,GAΛ + 3hGjk - dkGjh =

We substitute these equations into the formula obtained above, take (4. 4) into

account, and get

Kojίh = ~cχ ξ^djCdhf — 3Ϊ/Λ) + <

Since we have £°°G0A: + ftg
ιlc — 0 from (4. 3), we easily get

(6. 6) Kom = - ξ'VjtH.

Hence we obtain the

THEOREM 6.1. If in an almost Kdhlerian space V2n with F'/ =

the hyper surf aces uτuτ — const, are totally umbilical, the curvature tensor

satisfy (6. 1), (6. 2) and (6. 6) in favourable coordinates.

A necessary condition that the hypersurfaces uτuτ = const, be totally

umbilical in such V2n is that (5. 2) hold. But we can replace this by KOBΛQ = 0

by virtue of (5 .3). Hence we obtain the

COROLLARY. A necessary and sufficient condition that in an almost

Kdhlerian space V2n with FBA = TJBUA the hypersurfaces uτuτ = const, be totally

umbilical is that among the components KDCBA of the curvature tensor, Kojih

satisfy (6. 6) and other components of the form KOCBA all vanish in favourable

coordinates.

If Vλ/ίΛ = 0? then V271"2 is a Kahlerian space. Hence we get the

THEOREM 6.2. A necessary and sufficient condition that an almost

Kdhlerian space V2n with FB

A = ^Bu
A be a Kdhlerian space is that the spaces
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y2n-2 foe Kahlerian spaces beside that the hypersurfaces uτuτ = const, be totally
umbilical.

PROOF. That the space V2n be Kahlerian is equivalent to that the tensor

VG^BUA vanish, that is, KSOBAUS = 0, or KWBA = 0. Hence, if V2n is Kahlerian,

we get (5. 2) from (5. 3) and the hypersurfaces uτ uτ — const, are totally
•*

umbilical. V2n~2 are Kahlerian by virtue of (6. 6). The converse is easily
proved by using (6. 1), (6. 2) and (6. 6).

7. Holomorphic sectional curvature in the direction orthogonal to
χ?A(uΓUτ) and uA. At first we prove the

LEMMA 7.1. Let V2n be an almost Kahlerian space such that FB

A —^Bu
A.

Then, if a direction vA is orthogonal to uA and ^A(uτuτ), vBFB

A is also or-
thogonal to uA, ^jA{uτUτ).

Proof is easily obtained from vBFB

AuA = vB(yBu
A)uA = — vB πB (uτuτ)

Δ

= 0, vBFB\A{uτuτ) = 2vBFB

AFA

τuτ = - 2vBuB = 0.

In a Kahlerian space V2n with FB

A = ^jBu
A we have obtained KSCBAUS

= KQCBA = 0 in favourable coordinates. Consequently we also obtain (6. 3) from

VCVBVA(UTUT) — 0 and KTBASUTUS — 0. Thus we get the

THEOREM 7.1. Let V2n be a Kahlerian space with FB

A = VBUA. Then,
if we take a favourable coordinate system, the components KBCBA of the cur-
vature tensor vanish except those of the form Kkjίh.

Let us study the holomorphic sectional curvature K(v) with respect to a

direction vA which is orthogonal to both uA and ^A{uτuτ). According to Theorem

7.1 we get at first

Ki<U) = JGDCv
DvGGBAv

BvA '

On the other hand we have (4.11), hence we get

y ' GDβv
Dv°GBΛv

BvA •

Since the vector vΛ is orthogonal to vectors uA and VA(uτuτ), we have
t>0 = 0, v°° = 0. From v0 = Goo v° + Goιv

ι = 0 we get

(7. 1) v" = - (jfy'GotV1 = -fcv1

aid

GBAVBVA = Goov
ov0 + 2G0lv°vι + Gmιv

mvι

= {Gml - (Γ)" 1 GonGoι}vmvι
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Consequently we have

XT' -p.kfΛcr,
(Π O\ τrfvλ — ^kjίhjm J I V

J J (Γ)
and the

THEOREM 7.2. Let V2n be a Kdhlerian space with FBA = VBUA. Then,

for any vector vA orthogonal to vectors uA and VA(uτuτ), the holomorphic

sectional curvature K(y) satisfies (7. 2) in a favourable coordinate system.

Let us study a necessary and sufficient condition that K(v) do not depend

upon the direction vA as long as vA is orthogonal to uA and ^A(uτuτ). The

way of deduction is similar to the one of Yano [4],p.239.

At first we have

KkJthFήkFitvmvιv'vh = - k'gmjv
mvjgιhv

ιv\

where k' is independent of v\ for we have v°° = 0 and v° is determined by

(7. 1), while vι are arbitrary.

Since V2n is a Kahlerian space, we have

B y

— J>^DCTSr B Γ A j

from which we get, using (4.11),

(7. 3) Kk j i ιFih = Kjc} I hF'i \ KkjiiFjiι = KkjhlFiι

and

(7. 4) Kkjίh=KkjmlFimF'h
ι.

We also have the identity Kkjih = Kίhkj.

From (7. 3) we find that Fmjlh = KkjίhFmkFiί is symmetric in m and j and

also in I and h. Since we have moreover Fmjιh = Fιhmj, we get

KkmF^Fr + KujFifFi* + KtMlFi*F}*

= — k'(gmJgιh + gmιghj + gmhgji).

On the other hand we have F ιgH — fγgι{ — fn. Hence we get

Kkjih ~~ KkmljFιmF'h
ι — KkhmιFjmFιι

= — kXfkjfih + ffki gjh + fkhfij)'

Subtracting from this equation an equation obtained by interchanging i and h,

we get

2Kkjίh + KkjnaFΓFiι - KkhnaF}mFiι + KkίmlF)mF h

ι
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= - k\2fkjfih + fkifjh - fkhfa + gkiQih - ffkhga)'

The left hand side being equal to 4Kkjίh on account of (7. 4), we obtain

k'

(7. 5) Kkiih = -^{gkhΰn - ffjhgti) + (fkhfjt —fjhfki) - 2fkjfih\

as a necessary condition that K(v) do not depend upon v\ This is evidently a
sufficient condition as long as we consider the condition at each point of V2n.

Now, we shall consider k' in (7. 5) as a function of the point and prove
the

THEOREM 7.3. Let us consider a Kdhlerίan space V2n with FB

A =
and take a favourable coordinate system. A necessary and sufficient condition
that the holomorphic sectional curvature with respect to a variable direction
which is orthogonal to both uA and VA(uτuτ) be constant at each point is
that the curvature tensor KD0BA satisfy the following equations in which k
is a constant.

(7. 6) Kk)ih = -£kg*(gkhgn - gjhgki)+ (fkhfa -fjhfki) ~ 2fkjfih\.

For this purpose we only need to show that we can deduce (7. 6) from (7.
We write Bianchi's identity in the form

(7. 7) ^EKDCBA + ^DKCEBA + 'SCKEDBA

( C ϊ ( Q \ ( C ϊ

i (7. 5).
We write Bianchi7s identity in the form

(7. 7) ^EKDCBA + ^DKCEBA + 'SCKEDBA

\EB\ KD°SA " IDE) * " B " ~ {cβj X™"

ί 5 l κ 5 l ί : \S\κ - o
\EA\ Dσm DA) CKBS \CA) BDBS

Noticing that the components KDσBA vanish except Kkjίh and putting E — oo?

D = k, C=j, B = i, A = h, we get

ί I ) ( I )
. [ κkjιh — \ \ κkjU = 0.

001) [ooh]

Since we have

= Gl0[oo ifi] + Gιk\po i,k]
oof)

we get dcoKkjih — (ξco)~1Kkjihy which proves that k — C^)" 1 ^' does not involve ξ°°.
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We now prove that k does not involve ξ\
By straightforward calculation using (6. 4) and (6. 5) we obtain

9 τr

K
kjmh

m

I h

Gnm[lKn])Kkji

( m l *
— j ί Kjcjim

In)

\ ( Θ Λ

I ί

[fi&Jn ~ 3 Λ

- 7

In

( 771( 771

ZΛ
^kjim

\JijΊm + Jlj'ijKkjmh ~~ \Jhjim + jIJ hjKkjim-

Hence we obtain the following equation when we put E = I, D = k, C = ,
B = i, A = h in (7. 7),

imfi +frfι) + κkίmi(frfh +fhmfd
^f, +fimfk) + Knmi{fimfu +fimfk)
rΛ +/«"Λ) + κlkmt(f}mA +ήmfj) = o.

In this equation VιKkjlh denotes a covariant derivative obtained formally by

treating Kkjih as a tensor of V2n~2 (See (8. 1)).

But we have from (7. 3)
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Kkjmhfι
m — Kkjmijhm = 0

and

Kkjmhj'i
7rl + Kjimhf'ic

m + Kιkmhjj
m

= \Kkjml "+" Kjlmk + •KlkmjJJh

— ~" SKijcj^mJ'h
m = 0,

hence we get

(7. 8) Vulcan + x?kKjlih + TjjKιkih = 0.

This equation is formally the same with Bianchi's identity in V2n~2. Hence,
substituting (7. 6) into this equation, we find that kξ00 does not contain the
variables £*,. ., £2w~2. Thus we obtain k = const, and Theorem 7.3 is proved.

We have also proved the following theorem.

THEOREM 7.4. We consider a Kdhlerian space V2n with FBA = VBUA and
take a favourable coordinate system. Then the functions (ξ*)~ιKkjih do not

involve the variable ξ°° and Kkjih satisfy (7. 8) if yL denotes formal covariant
differentiation with respect to the Christoffel symbols formed from g^.

2/.

8. A relation between the curvature of V2n~2 and the curvature of V2n.
We can prove by straightforward calculation the following theorem.

THEOREM 8.1. Let V2n be an almost Kdhlerian space such that FhA

= VBUΛ. If (l 0 0)" 1^^ do not depend on £°° in favourable coordinates, then we

have the following relation between the curvature tensor Kkjίh of V2n~2 and
the curvature tensor KDGBA of V2n,

(8. l) Qt~yικkHh - kkjih

= ~" ffkhffjt + ffjhffkt — (fkhfjί — fjhfkί) + 2fkjfih
•* * •* -x

+ fjVkfih - fkVjfh + fhVifkj —ftVhfki-

From this theorem and Theorem 7.3 we get the

THEOREM 8.2. Let V2n be a Kdhlerian space with FBA = VBUA. A nec-
essary and sufficient condition that the holomorphic sectional curvature K(v)
with respect to a direction vA orthogonal to uA and VA(uτuτ), when considered

at each point, be independent of vA is that each Kdhlerian space V2n~2 be a
space of constant holomorphic sectional curvatwt~e.

P R O O F OF T H E O R E M 8.1. We start from

K \$dG + 2βG ddG ddG]
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+ G~{[ki, oo][jh, oo] - [kh, oo][ji, oo]}

+ Ga9{[kifi][jh,0] - [khfi][βfi]}

+ G°'{[ki,O]\jh,l] - [kh,O]\β,l]}

+ G"ι{[ki,l][jh,ϋ\ - [khMβfi]}

+ Gmί{{kί,m\Wλ - [kh,m][β,l]}

and as in §6 take into account that gjh and fj do not contain ξ". Using relations
such as (6. 4), (6. 5) again, we get after calculation

{ξ°°)~ιKkm — Kkjlh

= Zfkiflh + fβkfih — fkdjfih + fhdifkj — fίdhfk) + fkhfίj ~ fkifhj

+ 9kigih - gkhOn + fkftϋjh + fifugm — fkfuffπ —

+ gmlί(fkmfi +fimfk)(fnfu +Λι
- (ΛmΛ + fnmfkXfiJi +

where

* 1
Kkjih = —

+ gml{[ki,m]*\jh,ir ~ [kh,m]*[β,ir}

are the components of the curvature tensor of V2n~2. Since we have moreover

9mlfkmfji = gkj and v*/tΛ = 3*/iΛ - 7 . \ fικ ~ . 7 \ fu, we obtain (8. 1).
(ki) [kh)

(8. 1) also proves Theorem 7.4 directly.
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