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J.W.Gray [ 3 ], W. M. Boothby and H.C.Wang [ 1 ] introduced the notion

of contact and almost contact structures and investigated it from the global view-

point. An almost contact structure is one of an odd-dimensional manifold such

that the structural group of its tangent bundle is reducible to the product of

a unitary group with the one-dimensional identity group. It is comparable to

almost complex structure of even-dimensional manifolds. S.Sasaki and Y.Ha-

takeyama [8, 9] proved that an almost contact structure can be represented as

a totality of a tensor field and two vector fields satisfying certain conditions.

It enables us to research properties of almost contact structures by use of tensor

calculus.

In this paper we shall always assume that treated hypersurfaces are orien-

table. We shall show that a hypersurface in an almost complex manifold has

an almost contact structure and that a hypersurface in an almost Hermitian

manifold has an almost contact metric structure. Next we shall seek for a

condition in order that a hypersurface in a Kahlerian manifold has a contact

structure. As a consequence we shall be able to obtain an extensive class of

contact manifolds, which includes odd-dimensional spheres known as the

simplest examples of contact manifolds. Finally we shall investigate the con-

verse problem of imbedding of an almost contact or contact manifolds into an

almost complex or complex manifold.

I should like to express my hearty thanks to Professor S.Sasaki who gave

me many valuable criticisms in the course of preparation of this paper.

1. Almost complex structure and almost contact structure. Let M be

a 2^>-dimensional differentiable manifold covered with local coordinate systems

( c*)0. An almost complex structure in M is by definition a (1, l)-tensor field

F = (Fλ

κ) satisfying the equation

(1. 1) FF= - E : Fμ

λFλ* = - δ<,

where E = (δ£) is the unit tensor field in M. A manifold M with such a

structure F is called an almost complex manifold. Improving the operators of

J.A.Schouten and K.Yano [10], M. Obata [ 6 ] defined the following operators,

1) In this paper, Geeek indices run on the range l, ,2ρ, and small Latin indices on the
range 1, , 2p— 1. Capital Latin indices run on the range 1, •• ,2/>— 1 of small ones and an
additional symbol oo.
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illustrated here for a quantity P = (Pμλ"):

63

2

Φ2(F)ίV = \

\

(1. 2)

These operators will be used later.

In an almost complex manifold, there always exists an affine connection,

called an F-connection, transposing the structure F parallelly [2, 6]. Further, in

an almost complex manifold, there exists a Riemannian metric G = (Gμλ\

called an almost Hermitian metric, satisfying the condition

(1. 3) G = FGF<: G,λ - FJFJGn,

Fι denoting the transpose of F. A manifold with such a metric is called an

almost Hermitian manifold, and there exists a connection, called a metric

F-connection, which transposes both F and G parallelly [4, 6].

The covariant tensor field F% = (Fμλ) given by

(1.4) F* = FG : Fβλ = Fμ*G*

is skew symmetric. We put

(1. 5) Θ = F&da? A dxλ

and call it the fundamental 2-form of the almost Hermitian manifold. If Θ is

closed, then the manifold is said to be almost Kahlerian.

The (1, 2)-tensor field N= (Nμλ

κ) defined by

(1. 6) N&* = Fμ»(dωFλ* - dλFω") - Fλ»(dωFμ* - dμFω")

is called the Nijenhuis tensor or torsion tensor of an almost complex structure

F. It possesses the properties

(1. 7) ΦX(F)N = <t\{F)N = ΦA(F)N = 0

or the equivalent ones

(1. 8) Φ2(F)N = ΦΪ(F)N = Φ3(F)N =N
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[ 6 ]. An almost complex manifold M is complex analytic if and only if its

Nijenhuis tensor vanishes [ 5 ], or if and only if there is a symmetric F-connection

[6, 7]. Moreover, if the manifold is analytic, an almost Hermitian or almost

Kahlerian manifold is reduced to a Hermitian or Kahlerian one respectively.

An almost Hermitian manifold is Kahlerian if and only if its Riemannian

connection is an F-connection [ 7 ].

Next let us speak of almost contact structure10. Let M be a (2p — l)-dimen-

sional manifold covered with local coordinate systems (yh). An almost contact

structure in M is defined by the totality (/4

Λ, ηu ξh) of a (1, l)-tensor field/ = (/?),

a covariant vector field η = (rjt) and a contravariant vector field ξ = (ξh), which

satisfy the conditions

(1. 9) r a n k / = 2p - 2

and

wo) Γ p ; ; = α »—•;
Putting

and

we can put the conditions (1.10) into one equation

(1.13) ff=-E:foBfB

A=-H

Accordingly we may call such a matrix field f in M an almost contact structure

or simply an f-structure, and the manifold M an almost contact manifold.

Quantities in M with capital Latin indices such like f = (fί) will be called

with prefix "C-", for instance, / is an C-tensor in M.

In an almost contact manifold, there always exists an affine connection

transposing parallelly the almost contact structure, that is, the tensor field ft

h

and the vector fields fC and fj1 [ 9 ]. It will be called an f-connection. Fur-

thermore, in an almost contact manifold, there exists a Riemannian metric

9 — (ffjί) satisfying the equations

9a ~ VjVi = fffibSfcb,
(1.14)

by use of S.Sasaki's notations [ 8 ]. Putting

2) Concerning almost contact structure, see S. Sasaki and Y. Hatakeyama [8, 9].
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(1.15) 9 = (9CB) --

the equations (1.13) are put into

(1-16) 9 = fgf : ffcB = fϋEfsDgED.

Such a metric g or g is called an associated metric tensor or C-tensor with

the structure / , respectively. Moreover, the structure (/, g) consisting of an

almost complex structure / and its associated metric C-tensor g will be called

an almost Grayan structure, and a manifold with such a structure an almost

Grayan manifold.

The covariant almost contact C-tensor f%. defined by

(1-17) f*=f9=(fJ\fi

is skew symmetric. Putting

(1.18) θx =f~dy\ θ2 =fHdyj Λ dy\

we call 6\ and θ2 the fundamental 1-form and 2-form of the almost Grayan

structure respectively.

On the other hand, following J.W.Gray [ 3 ], a contact structure in M is

given by two forms θι and θ2 with conditions θ2 = dθx and B\ Λ 02

v~ι Φ 0.

Then there exists an almost Grayan structure (f g) whose fundamental forms

coincide with the given forms. We shall call the structure an almost Sasakian

structure. The condition θ2 = dθx is written in

Returning to an almost contact structure/, we define Obata's operators Φ(/)

for C-quantities by similar expressions to (1. 2). Then algebraic relations among

the operators Φ(F) carry over among the operators Φ(/).

Similarly to (1. 6), the Nijenhuis C-tensor n = (nσn
A) of an /-structure is

defined by

(1.20) nΰ/ = ffφEfB

A - dsf/) - fB

EφFJcA - dσfB

A),

where 3oo is interpreted as a null-operator. The Nijenhuis C-tensor n satisfies

the equations (1. 6) and (1. 7) with / in place of F. The sets (n3i

κ), (n^00),

(rijoJ1) and (/Zjoo°°) of the components of n define tensor fields in M separately,

and it is known that the vanishing of the first tensor n = (n^) implies those

of the other tensors, i.e., the vanishing of the C-tensor n itself.

An almost contact structure f with condition n — 0 is said to be normal.

We shall call an almost Grayan or almost Sasakian structure (/, g) with n = 0
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a Grayan or Sasakίan structure respectively. An almost Grayan structure is

Sasakian if and only if the relations

( L 2 1 ) vΛ =
are satisfied, where V denotes the covariant differentiation with respect to the

Riemannian connection of ~g.

Our terminologies are compared with those for complex structure as follows:

Complex structures

(N=0)
(3 F*) >• almost complex > complex

/gθ: \ almost Hermitian > Hermitian

I I (<*« = o) I
symplectic —> almost Kahlerian • Kahlerian

Contact structures

(n = 0) normal
(3 / ) *• almost contact > almost

I contact

(Έβι>θ2\ \ almost Grayan > Grayan

U = dθj

I (3G)
contact > almost Sasakian —> Sasakian

2. Almost contact structure of a hypersurface in an almost complex
manifold. We consider a 2/>-dimensional almost complex manifold M with

structure F and an orientable differentiate hypersurface M. Let M be represented

by x* = xκ(yh) by using local coordinate systems in M and in M. We put

(2. 1) Bf = dtx
κ,

which span the tangent hyperplane of M at each point, and choose a vector

field C" which is complementary to the tangent hyperplane of M at each point.

The vector field Cκ is called a pseudo-normal to M and will be sometimes

/ B« x
denoted by -Boo". The matrix B — (BB

K) = ( )is of rank 2p, and its inverse
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will be denoted by B^1 = (Bλ

Λ) = (Bλ\ Bf) = (Bλ\ Cλ). Then we have the
equations

(2. 2) BB Bλ - K σ ^ h = Q> σ ^ = ^

and the equivalent equation

(2. 3) BχΛBΛ' = Bx

ιBt< + CXO = ίj.

Now we put

(2. 4) / = BFB-1 :tf = BB

xFλ*Bκ\

which is a C-tensor in M. The sets (/,*), (/Γ), (/^ft) and (fj°) of the four
kinds of the components

f /tΛ = BfFx'BS, fΓ = BfFx'C.,

•J = CxFλ'Bκ", fir = CλFλ*Cκ

define a (1, l)-tensor field, a covariant vector field, a contravariant vector field

and a scalar field in M respectively. The C-tensor f is obviously of rank 2p
and satisfies the equations

(2. 6) fB = B F

and

(^ 0 Jj — — &•

A pseudo-normal vector field C* can be chosen such as

(2. 8) fj" = CλFλ

κCκ = 0.

Indeed, since there is an almost Hermitian metric in M and the covariant
almost complex structure F# is skew symmetric, the unit normal vector field

of the hypersurface M with respect to the almost Hermitian metric always
satisfies (2. 8). A vector field complementary to the tangent plane and lying in

the hyperplane represented by Fλ

κCκ at each point of M may be chosen as a
pseudo-normal vector field satisfying (2. 8).

Once such a choice is fixed, the equation (2. 7) is written separately as

(o Qλ \JόJί JJ — J> JjJi— >

1 f%h = o, f% = - i.
Here and hereafter we drop the index symbol oo from fi°° and foJ1 unless
confusions give arise. Since f is of rank 2p, the vectors ft and fh do not
vanish. The second and third equations mean that rank of the matrix (fih) is
less than 2p — 1. We can see that the rank is in fact equal to 2p — 2. For, if
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there is a vector vh satisfying

(2.10) ffvh = 0,

then, by contracting (2.10) with / / , we have v5 = — f)fhvh. This means that

the equation (2.10) admits solutions proportional to ft only. Thus we have the

following

THEOREM 1. A hypersurface M in an almost complex manifold M has

an almost contact structure.

We shall call the structure the induced almost contact structure of M by a

pseudo-normal vector field Cκ.

Interpreting 3oo as a null-opera tor3), we put

(2.11) aσB

Λ = (dcBB

κ - dBBc*)Bκ

A,

whose components are given by

(2.12) = (djC*)BK\

njΰO°° = - ΩooΓ = (djCκ)cκ.

Then, by the substitution of (2.4) into (1.20) and a straightforward and

pretty long computation, the Nijenhuis C-tensor n of the induced almost contact

structure / is related to the Nijenhuis tensor N of the almost complex stru-

cture F of M by

(2.13) ncBA = Bc

βBBλNμλ*Bκ

A + ί W + fIJ&cEDfD

A

and, in

(2.14)

particular,

nH

h

+ foF£

+ 1-J

= β/β,

LFB JD — Jc JB ±LFE

ϋt>B + JBL>c — 0(7 J B

λ~Kf ^ K R h — f ι f θ h —

^F^BS +

Let Γ = (Tμλ ) be an affine connection in M and define γ = (7^) by

(2.15) ffiB = (Bc"BB

λTU + dcBB*)Bκ

A,

which will be called the induced C-connection in M. The sets (γj°f)> (ΎA) a n d

(7J~) of the components define tensor fields in M, but 7 = (γ^) given by

(2.16) ryjl = (BfBt

λT£ + 3 A W

is the so-called induced affine connection in M from Γ. We put

3) We shall use technical calculus of the non-holonomic theory with this understanding.
See K. Yano and E.T.Davies [11].
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(2.17) vTt = hi, 7*oo = hh, 7A = "**

and sometimes use the notation Z/° for πij. From (2.15), we have

(2.18) 3CBB* + B<rBBλΓά - VCABBAK = 0,

and in particular

ί
1 ' } {

The left hand sides of these equations are the so-called van der Waerden co-
variant derivatives. Then we have also

(2.20) |V* --VG.

Denoting the torsion tensor of Γ and the torsion C-tensor of γ by *S = OSyx")
and s = (sCB

Λ) respectively, it follows from (2.11) and (2.15) that

(2.21) 2SCBA = 2Bc

lιB1tSιlϊBκ

A + ί W ,

or, putting S = (Bc

μBB

λSμλ

κBκ

Λ),

(2.22) 2s = 25"+ fλ

Now let Γ be an F- connection in M. Then we have the equation

(2.23) VμίV = 3μFλ« + FfTtβ - Γ? λ F/ - 0

and the Nijenhuis tensor N is related to the torsion tensor S of Γ by

(2.24) N=8Φ2Φ,(F)S

[ 6 ] . Substituting (2.23) into the last term of (2.13), using the commutativity
(2. 6) and putting

(2.25) TOBA = (βoB/ - h*Bc

λ)σrμ\Bκ

A,

we have the equation

(2.26) = TCB
Λ + fίTFB

DfD

A + fSToSf

= AΦ,Φ3{f)TCB

A.

Hence, by (1.8), (2.13), (2.21), (2.24) and (2.26), we have

(2.27) n = Φ2Φ3(/)(ΪV + 4Ω - 4T)

= 4 Φ 2 Φ 3 ( / ) ( 2 S Γ + ί 2 - T ) .

= 4Φ2Φ3(/)(25 - T),
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where N denotes the C-tensor (BJB/N^B/). We notice that

(2.28) 2SCBA - TJB = ΊCΛB - l έ u - ^J-B +

and its non,-trivial components are only

(2.29)
c A T A — (Oc A T A\ — / A

From (2. 8) we have also

(2.30) l}ft = hj\

3. Structure of a hypersurface of a complex manifold. Let M be a
complex manifold, N = 0. Now we seek for a condition that the induced almost

contact structure f of a hypersurface M is normal, that is, n = 0. By means

of the notice at the end of §1, we need only to consider the vanishing of

» = (nJf»).

In a complex manifold, there exists a symmetric F-connection, and it will

be adopted in this paragraph. As is seen from (2.16), the induced connection γ

in M is also symmetric and so is yjί = hn. Hence we know that SjiA = 0 and

the non-trivial components of (2.28) are only ones given by the second of (2.29).

Substituting the components into the expression of n^ given by (2.27), we

have

(3. l) »/ =fUf/ -fk
In order that n vanishs, we have the equation

(3.2) miu - f,%h)=/xw - fibhh\
This equation is equivalent to the fact that the expressions in parentheses for

each value of h are proportional to fj:

(3.3) ////-ΛV=Λαfc,
ah being proportional factors. Contracting f\ we see that ah = — fιliAfAh and

the above equation becomes

(3. 4) Iff/ + ftfltfS ~ Ωhh = 0,
or, by the first equation of (2. 9),

(3. 5) fi

i(fi%ΛU + Uh) = 0.

From this equation, we may put

(3. 6) /4V// + kh =
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After contracting this equation with /* and obtaining the expression of βh, we

see that the above equation is equivalent to

( 3 7 ) = fAhafah ~ Λahh + mb/») = 0.

Further, by contracting fh, we have

(3.8) fibfb

ala% + fibmb = 0

and the equation (3. 7) yields

/.»(/»"/.* -/»β/«* -ma%fh) = o
or

(3. 9) //(// + /Λ»/» )/β» = 0.

Thus we have established the following

THEOREM 2. If we denote by f the induced almost contact structure of

a hypersurface in a complex manifold, then, in order that the Nijenhuis

C-tensor n of f vanishes, it is necessary and sufficient that the tensors I* and

πii satisfy the equations (3. 8) and (3. 9).

4. Induced /-connection. Returning to considerations of a hypersurface

in an almost complex manifold M, let us seek for a condition in order that the

induced connection 7 in M from an F-connection Γ in M is an /-connection.

The covariant derivatives of the tensors of / are given by

( Vjfh = KP - / / / = 0,

(4. 1) I Vi/i = - hjhf
h - mjf = 0,

' Vjh = l/fh + mjh = 0.

The first equation implies that hjt and // should be of the form

(4. 2) hH = \,ft, // = \}f\

Xj being a vector field, and the second implies that

(4. 3) m j = 0.

Then the third equation is satisfied. Thus we have

THEOREM 3. The induced connection of a hypersurface from an F-con-

nection is an f connection if and only if the tensors hn and // are of the

form (4. 2) and the vector TΠj vanishes.

If M is a complex manifold, Γ is a symmetric F-connection in M and the
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condition of Theorem 3 is satisfied, then hόi is symmetric and hence λ̂  in

(4. 2) should be proportional to f:

(4. 4) λ, = λ/,

λ being a factor. Hence the tensors hj% and // are given in the forms

(4. 5) hn = \f}ft, I? = XfJK

Thus we have

THEOREM 4. In order that the induced connection in M from a sym-

metric F-connection in a complex manifold M is an f connection, it is neces-

sary and sufficient that the tensors hji and If are of the forms (4. 5) and the

vector ntj vanishes.

5. Metric structure of hypersurfaces. Let M be an almost Hermitian

manifold with metric tensor G = (Gμλ). The unit normal vector Cκ of a hy-

persurface M satisfies the equation (2. 8) together with its covariant vector Cλ,

and hence it induces an almost contact structure in M, with which we shall

confine ourselves in this paragraph.

We put

(5. 1) g = (SfcB) =[9

0

Jί °ι) = BG& : gCB = Bc»BB

λGμλ

and

/ qih 0 \(5.2) ^ = (5 )̂ = ̂  J .

The minor matrix Ίj — (g^) defines the induced Riemannian metric of the

hypersurface M. We see that the inverse matrix of B is given by

(5. 3) B-1 = GB^-1: Bλ

Λ = GλκBB*gBA,

that is,

(5. 4) Bλ

h = Gχ.BtV
A, Cλ = GλκC\

By the skew symmetry of the covariant almost complex structure F#, we have

(5. 5) fh - σFfBS = -fiff".

Moreover, substituting the Hermitian condition (1. 3) into (5. 1), we have

(5.6) 9=f9Γ-

These equations (5. 5) and (5. 6) show that

THEOREM 5. The induced Riemannian metric of a hypersurface in an
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almost Hermitian manifold is an associated metric with the induced almost

contact structure of the hypersurface, that is to say, a hypersurface in an

almost Hermitian manifold has an almost Grayan structure.

If we put

(5.7) f*=fsr = (fcB),

then

(5.8) f* = BF*Bι=-U,

that is, f% is skew symmetric and the components are given by

fi = BjμFμλBiλ,

(5. 9) /,„ = - / . , = B/Fμλσ = f},

/ . - = 0.

From the definition (1.18) of the fundamental forms and (5. 9), we see that

the 2-form θ2 of the induced almost Grayan structure in M is induced from

the fundamental form Θ of the almost Hermitian manifold M by the inclusion

map of M into M. If M is almost Kahlerian, JΘ = 0, then we have dβ\ = 0.

Thus we have the following

THEOREM 6. If M is an almost Kahlerian manifold and M a hy-

persurface in M, then the induced almost Grayan structure in M has the

closed fundamental 2-form.

Now let us investigate a condition in order that, in an almost Hermitian

manifold M, the induced almost Grayan structure in a hypersurface M reduces

to an almost Sasakian structure. Using a metric F-connection Γ in M and its

induced connection γ in M, we have // = — hjtg
ih and πtj — 0 in (2.19). The

equation (1.19) of the almost Sasakian structure is now written in

2fn =

Cκ) + 2Sμλ«Fa

κCκ]

= BΪFf Vj Cκ - B / Ή v iCκ + 2BjιBι

λS»λ«Ba

hBt?FfCκ

= ~ hJhft

h + hihfj
h + 2~S/fh.

If we put

(5.10) hSi = ffit + *ji

and substitute it into the above equation, then we see that kjt has to satisfy
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the equation

(5.11) k)hff - ktΛf,» = 2Sn%.

Therefore we can state that

THEOREM 7. In order that the induced almost Grayan strucure of a

hypersurface M in an almost Hermitian manifold M reduces to an almost

Sasakian structure, it is necessary and sufficient that the second fundamental

tensor h^ of M is given by (5.10) with a solution k^ of (5.11).

In particular, if M is Kahlerian and the induced structure in M is Sasakian,

then the Riemannian connection in M is a metric F-connection, its induced

connection is symmetric, so are h5i and kn, and in addition the equations (3. 8)

and (3. 9) should be satisfied by // = - hjig
th and mό = 0. From (5.11), it

follows that

(5.12) kjhf
h = kίhf

h

and we see that (3. 8) is fulfilled. Substituting (5.10) into (3. 9), we have

fAkd

a+faCkc

bfb

a)fah = O,

and by use of (5.12) it is verified that this equation reduces to

fidkd

afah=fdfd

akah = 0.

Moreover it follows easily that kόi should be of the form kjt = μff, μ being

a scalar field in M. Thus we have the following

THEOREM_8. In order that the induced almost Grayan structure in a

hypersurface M in a Kahlerian manifold M is a Sasakian structure, it is

necessary and sufficient that the second fundamental tensor hn of M is of the

form

(5.13) hn = gόi + μff.

As the most special case, we have

COROLLARY. A totally umbilical hypersurface with positive constant

mean curvature in a Kahlerian manifold has a Sasakian structure by means

of the induced metric.

This corallary says that an odd-dimensional sphere has a Sasakian st-

ructure. Moreover it is to be noticed that, if M is a hypersurface with Sasakian

structure stated in Theorem 8 and M' a hypersurface diffeomorphic to M

by a map TΓ, then M! has also a contact structure given by the induced forms
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τr4^! and 7r*02> but its associated metric is not in general the same as the

induced metric in M! from the metric of M.

6. Imbedding of Grayan and Sasakian manifolds. Let M be an almost
Grayan manifold with metric tensor ~g = (gH) and almost contact structure f,
and / a straight line parametrized by t € (— oo? + oo). Consider the direct

product M = M x I and denote its metic tensor by g. Further we define a
metric tensor G in M by

(6-1) G = p°(! =

where p is a non-vanishing scalar field in M such that p( y, 0) = 1 for any

point y of M, and it will be determined later. Since G is conformal to g, the
Christoffel symbol Γ of G is related to γ of g by

(6. 2) ΓA = γ£ + δ > + 85fo - grfF,

where we have put

(6. 3) Pλ = 3 λ(log p), p* = Pλg
λ*.

In a local coordinate system (yh

91) of M, the equation (6. 2) is written se-
parately in the forms

, = — ph, Γoo^oo = pc

Since B* = δ* and Cκ = δ£ on M and we have

the second fundamental tensor of M as a hypersurface of M is equal to

(6. 5) h5l = - gWoo,

that is, M is totally geodesic if f>oo = 0 identically on M or totally umbilical if

poo Φ 0 on M.
Next, if we put

Λ 0

with respect to a local coordinate system (3Λ, t) in M, then F defines a (1,1)-
tensor field in M. It is obvious that the tensor field F is an almost complex
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structure in M and the metric tensor G is almost Hermitian for any choice of

p with condition p(y,0) = 1 for any y £ M. Therefore we can state that

THEOREM 9. An almost Gray an manifold can be imbedded in an almost
Hermitian manifold as a totally geodesic or umbilical hypersurface.

From the definitions of the Nijenhuis tensor and C-tensor, it is obvious
that

THEOREM 10. A Grayan manifold can be imbedded in a Hermitian
manifold as a totally geodesic or umbilical hypersurface.

The covariant almost complex structure of M is given by

(6. 7) F*

and the fundamental form β by

(6. 8) θ = Fμλdx» Λ dxλ = P%Bdyc A dyB.

Therefore the 3-tensor Fμλκ of the derived form d% has the following inde-
pendent components:

m p^JiK 3i/« + 3*Λ) + 2pt(Pjfih + Pifu + phfH),
(6. 9)

F W 3,/,) + 2p2(p,/i - Pιf,) + 2p*P»fji.

If M is almost Sasakian, then we have the equation (1.19) and make the
derived form dθ vanish by choosing p as

(6.10) p = e~\

and M has a positive constant mean curvature h = h}ig
H = (2p — 1) as a hy-

persurface of M. Thus we have

THEOREM 11. An almost Sasakian manifold can be imbedded in an
almost Kdhlerian manifold as a totally umbilical hypersurface with positive
constant mean curvature.

Finally let us show that a Sasakian manifold can be imbedded in a
Kahlerian manifold. Since a Hermitian manifold is Kahlerian if and only if
the Riemannian connection is an F-connection, it follows from (6. 4) and (6. 6)
that the conditions for M to be Kahlerian are

VόFίh = pXVjfm - pifn + Pnfn +

ft) = 0,
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- ft/,) = 0,

= o,
V denoting the covariant differentiation with respect to γ in M. The last
equation implies that p should satisfy

(6.11) Pt = τ/t,

r being a scalar function in M, and then the second equation is fulfilled. The
first and the third equations are reduced to

ί Vifi = rifji - ffn) +fH,
j

Substituting these equations into the identity V//*/^) = 0, we have 1 + poo = 0
and hence

(6.13) p = Ae~\

A being a function of yh. However, since p is identically equal to one for
t = 0, we should choose A = 1. Therefore p does not depend on the variables
yh and pi vanishes. Then the equations (6.12) are reduced to

(6.14)
I Vfih =fiffjh —

which are just the same as (1.21). Thus we have established the following

THEOREM 12. A Sasakian manifold M can be imbedded into a Kdhlerian
manifold as a totally umbilical hypersurface.
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