## NOTES ON THE DUALITY THEOREM OF NON-COMMUTATIVE TOPOLOGICAL GROUPS

## KAZUO SUZUKI

(Received June 30, 1963)

Duality theorems of topological groups are well known as one of the most beautiful theorems in the modern mathematics. As an application of these theorems, the author proved formerly the following fact: let  $G_1$ ,  $G_2$  be commutative locally compact topological groups with character groups  $\chi_1, \chi_2, F$  the whole set of homomorphic mappings of  $G_1$  into  $G_2$ , and  $\Phi$  the whole set of homomorphic mappings of  $\chi_2$  into  $\chi_1$ , then F and  $\Phi$  become topological groups and are isomorphic to each other.

Professor T.Tannaka suggested the author to prove the analogy of the above mentioned result for non-commutative topological groups. The purpose of this paper is to prove this analogy. The author wishes to express his hearty thanks to Professor T.Tannaka for his kind instructions and advices.

1. In this paper we shall assume that a group G is a non-commutative topological group (with the Hausdorff topology), and a representation of a group G is a continuous bounded representation. In the beginning we shall refer to the duality theorem of non-commutative topological groups by T. Tannaka [3].

Let G be a compact group and  $G^*$  the whole set of representations of G. In  $G^*$  the following three operations are admitted:

(1)  $D^{(1)} \times D^{(2)}$  (Kronecker composition)

 $(2) \begin{pmatrix} D^{(1)} \\ D^{(2)} \end{pmatrix}$  (direct sum)

(3)  $P^{-1}DP$  (similar representation)

(4)  $\overline{D}$  (conjugate complex representation).

Now we understand by a representation of  $G^*$  a mapping

$$D \xrightarrow{A} A(D)$$

(D being an arbitrary element of  $G^*$ , A(D) a non-singular matrix with same degree as D), with the following conditions:

(1) 
$$A(D^{(1)} \times D^{(2)}) = A(D^{(1)}) \times A(D^{(2)})$$

(2) 
$$A\begin{pmatrix} D^{(0)}\\ D^{(2)} \end{pmatrix} = \begin{pmatrix} A(D^{(0)})\\ A(D^{(2)}) \end{pmatrix}$$

(3) 
$$A(P^{-1}DP) = P^{-1}A(D)P$$

$$(4) \qquad A(\overline{D}) = \overline{A(D)}$$

Let  $G^{**}$  be the whole set of representations of  $G^*$ . If we define the product of  $G^{**}$  by AB(D) = A(D)B(D) where A and B belong to  $G^*$ , and introduce a neighbourhood-basis of an element  $A_0$  of  $G^{**}$  by

$$U(A_0, D^{(1)}, \dots, D^{(s)}; \mathcal{E}) = \{A; \|A(D^{(i)}) - A_0(D^{(i)})\| < \mathcal{E}, i = 1, \dots, s\},$$

where  $D^{(i)}$  are elements of  $G^*$ , and ||C|| is the usual matrix norm, then  $G^{**}$  becomes a topological group. Let  $D(a) = A_a(D)$  for an element a of G, then  $A_a$  belongs to  $G^{**}$  and the correspondence  $a \to A_a$  is an isomorphic mapping of G onto  $G^{**}$ .

2. **Definition.** A mapping  $\varphi$  of  $G_1^*$  into  $G_2^*$ , where  $G_1, G_2$  are compact groups, is called a homomorphic mapping if and only if the following conditions are satisfied:

$$\begin{array}{c} (2) & \varphi \\ (3) & \varphi(P^{-1}DP) = P^{-1}\varphi(D)P \end{array} \end{array}$$

$$(3) \quad \varphi(I \quad DI) = I \quad \varphi(L)$$

 $(4) \qquad \varphi(\overline{D}) = \overline{\varphi(D)}$ 

(5) 
$$\varphi(D)$$
 has the same degree as  $D$ .

Let  $G_1, G_2$  be compact groups and f be a homomorphic mapping of  $G_1$ into  $G_2$ . If  $D_2 f = D_1$  for an element  $D_2$  of  $G_2^*$ , then it is clear that  $D_1$  is an element of  $G_1^*$ , and we can verify that a mapping  $\varphi: D_2 \to D_1 = D_2 f$  is a homomorphic mapping of  $G_2^*$  into  $G_1^*$ . Then this mapping  $\varphi$  is called the conjugate mapping of f.

THEOREM. Let  $G_1, G_2$  be compact groups, F the whole set of homomorphic mappings of  $G_1$  into  $G_2$ , and  $\Phi$  the whole set of homomorphic mappings of  $G_2^*$ into  $G_1^*$ . If  $\varphi$  is the conjugate mapping of f, where f is an element of F, then a mapping  $f \rightarrow \varphi$  is a one-to-one correspondence of F onto  $\Phi$ .

PROOF. If  $f_1$ ,  $f_2$  are elements of F and  $f_1 \neq f_2$ , then there is an element a of  $G_1$  with  $f_1(a) \neq f_2(a)$ . There exists an element  $D_2$  of  $G_2^*$  with  $D_2\{f_1(a)\} \neq D_2\{f_2(a)\}$ , that is,  $\varphi_1(D_2) \neq \varphi_2(D_2)$ . Therefore the mappings  $\varphi_1$ ,  $\varphi_2$  which are conjugate to  $f_1$ ,  $f_2$ , are different from each other.

## K. SUZUKI

Let  $\varphi$  be any element of  $\Phi$ , and  $A_1$  an element of  $G_1^{**}$ . If we denote  $A_1\varphi = A_2$ , then  $A_2$  clearly belongs to  $G_2^{**}$ . The mapping  $f: A_1 \to A_2$  transforms  $G_1^{**}$  into  $G_2^{**}$ . It is evident that f is an algebraically homomorphic mapping. Let any neighbourhood of  $A_2$  be

$$U(A_2; D_2^{(1)}, \dots, D_2^{(s)}; \mathcal{E}) = \{A'_2; \|A'_2(D_2^{(i)}) - A(D_2^{(i)})\| < \mathcal{E}, \ i = 1, \dots, s\}$$

where  $D_2^{(i)}$  belong to  $G_2^*$ . If we denote  $\varphi(D_2^{(i)}) = D_1^{(i)}$  and make a neighbourhood of  $A_1, U(A_1; D_1^{(1)}, \dots, D_1^{(s)}; \varepsilon)$ , then it is clear that f transforms  $U(A_1; D_1^{(1)}, D_1^{(s)}; \varepsilon)$  into  $U(A_2; D_2^{(i)}, \dots, D_2^{(s)}; \varepsilon)$ . That is, f is a continuous mapping of  $G_1^{**}$ into  $G_2^{**}$ . Let  $f_i$  be an isomorphic mapping of  $G_i$  onto  $G_i^{**}$ , i = 1, 2, obtained by the duality theorem. If we set  $f_1(a) = A_a$  for  $a \in G$  and  $f' = f_2^{-1}f f_1$ , then f' is a homomorphic mapping  $G_1$  into  $G_2$  and it holds that

$$A_a\{\varphi(D_2)\} = \{f(A_a)\}(D_2) \quad \text{for } D_2 \in G_2,$$

hence we have

$$\{\varphi(D_2)\}(a) = D_2\{f'(a)\}.$$

Therefore  $\varphi$  is the conjugate mapping of f', and thus we have established a one-to-one correspondence between F and  $\Phi$ .

3. Let  $G_1, G_2$  be compact groups, and  $F, \Phi$  have the meaning as above. We shall introduce a topology in each of F and  $\Phi$  as follows. Let K be a compact subset of  $G_1, U$  an open subset of  $G_2$  and W(K, U) the set of elements of F which maps K into U. If  $\sum_{i=1}^{n}$  is the whole set of W(K, U), then it is easily

proved that F is a topological space with  $\sum_{1}$  as an open sub-basis.

On the other hand, if  $D_1$  is an element of  $G_1^*$ , then  $||D_1(x)||$  attains its maximum value at some element x of  $G_1$ , because  $G_1$  is a compact set. Therefore we write this maximum value as  $||D_1||$ . Let  $\varphi$  be an element of  $\Phi$ . For any set of elements  $D_2^{(i)}$  element  $D_2^{(i)}$  of  $G_2^*$ , we put

$$U_{\varphi} = \{\varphi' ; \|\varphi'(D_2^{(i)}) - \varphi(D_2^{(i)})\| < \varepsilon, \ i = 1, \dots, s\}$$

where  $\mathcal{E}$  is an arbitrary positive real number. If  $\sum_{p}$  is the whole set of  $U_{p}$ ,

then  $\Phi$  is a topological space with  $\sum_{\varphi}$  as a neighbourhood-basis of  $\varphi$ .

THEOREM. Let  $G_1$  and  $G_2$  be compact groups, F the whole set of homomorphic mappings of  $G_1$  into  $G_2$ , and  $\Phi$  the whole set of homomorphic mappings of  $G_2^*$  into  $G_1^*$ , then F and  $\Phi$  are homeomorphic to each other.

**PROOF.** Let f be an element of F. If  $\varphi$  is the conjugate mapping of f, then

184

it is deduced from the above theorem that the correspondence of f to  $\varphi$  is a one-to-one mapping of F onto  $\Phi$ . Let  $U_{\varphi}$  be any neighbourhood-base of  $\varphi$  with

$$U_{\varphi} = \{\varphi'; \|\varphi'(D_2^{(i)}) - \varphi(D_2^{(i)})\| < \varepsilon, \ i = 1, \dots, s\}.$$

If a is any element of  $G_1$  and an element b' of  $G_2$  corresponds to an element  $A'_b$  of  $G_2^{**}$  in the isomorphic mapping  $G_2$  onto  $G_2^{**}$ , then we can take a neighbourhood of f(a) of the form

$$U_{f(a)} = \{b'; \|A_{b'}(D_2^{(i)}) - A_{f(a)}(D_2^{(i)})\| < \frac{1}{2} \varepsilon, \ i = 1, \ldots, s\}.$$

There is a neighbourhood  $V_a$  of a with  $f(\overline{V}_a) \subset U_{f(a)}$  where  $\overline{V}_a$  is the closure of  $V_a$ . Then G is covered by finite open sets  $V_{a_1}, \dots, V_{a_n}$ , as  $\{V_a | a \in G\}$  is an open-covering of  $G_1$ , and then  $W_f = \bigcap_{j=1}^n W(\overline{V}_{a_j}, U_{f(a_j)})$  is a neighbourhood of f, as  $f(\overline{V}_{a_j})$  is contained in  $U_{f(a_j)}$   $j = 1, \dots, n$ . If f' is any element of  $W_f$ , and x is any element of  $G_1$ , then there exists  $\overline{V}_{a_j}$  which contains x. Then f(x) and f'(x) belong to  $U_{f(a_j)}$ . Therefore

$$||A_{f'(x)}(D_2^{(i)}) - A_{f(a_i)}(D_2^{(i)})|| < \frac{1}{2}\varepsilon$$

and

$$||A_{f(x)}(D_2^{(i)}) - A_{f(a)}(D_2^{(i)})|| < \frac{1}{2} \varepsilon$$
 for  $i = 1, \dots, s$ ,

then

$$\|A_{f'(x)}(D_2^{(i)}) - A_{f(x)}(D_2^{(i)})\| < \varepsilon$$
 for any  $x$  of  $G_1$ 

whence

$$\|D_2^{(i)}{f'(x)} - D_2^{(i)}{f(x)}\| < \varepsilon$$

and therefore

$$\|\varphi'(D_2^{(i)}) - \varphi(D_2^{(i)})\| < \varepsilon.$$

Thus,  $\varphi'$  belongs to the neighbourhood  $U_{\varphi}$  of  $\varphi$ , accordingly the correspondence  $f \rightarrow \varphi$  is continuous.

Let  $W(K, U_{f(a)})$  be any neighbourhood sub-base of f, where

$$U_{f(a)} = \{b'; \|A_{b'}(D_2^{(i)}) - A_{f(a)}(D_2^{(i)})\| < \varepsilon, \ i = 1, \dots, s\}$$

for an element a of  $G_1$ . As f(K) is compact, there is the maximum value of

$$||A_{b'}(D_2^{(i)}) - A_{f(a)}(D_2^{(i)})||$$

for b' in f(K). Then there exists a neighbourhood  $U'_{f(a)}$  of f(a) of the form

K. SUZUKI

 $U'_{f(a)} = \{b'; \|A_{b'}(D_2^{(i)}) - A_{f(a)}(D_2^{(i)})\| < \varepsilon\lambda, \ 0 < \lambda < 1, \ i = 1, \dots, s\}$ 

and  $f(K) \subset U'_{f(a)} \subset U_{f(a)}$ . We now define a neighbourhood of  $\varphi$  by

$$U_{\varphi} = \{\varphi'; \|\varphi'(D_2^{(i)}) - \varphi(D_2^{(i)})\| < \varepsilon(1-\lambda), \quad i = 1, \ldots, s\}.$$

If  $\varphi'$  is an element of  $U_{\varphi}$  and f' is such a mapping as  $D_2 f' = \varphi'(D_2)$ , then

$$\|D_2^{(i)}{f'(x)} - D_2^{(i)}{f(x)}\| < \epsilon(1 - \lambda)$$

for all element x of  $G_1$ , and thus

$$\|A_{f'(x)}(D_2^{(i)}) - A_{f(x)}(D_2^{(i)})\| < \varepsilon(1-\lambda).$$

On the other hand, if x is an element of K, we have

$$\|A_{f'(x)}(D_2^{(i)}) - A_{f(a)}(D_2^{(i)})\| < \varepsilon\lambda,$$

as f(K) is contained in  $U'_{f(\alpha)}$ . Accordingly

$$\|A_{f'(x)}(D_2^{(i)}) - A_{f(a)}(D_2^{(i)})\| < \varepsilon.$$

Hence f' belongs to  $W_f$ , and thus the correspondence  $f \rightarrow \varphi$  is bi-continuous.

From the above mentioned proof, we conclude that F and  $\Phi$  is homeomorphic to each other.

## References

- [1] L. PONTRJAGIN, The theory of topological commutative groups, Ann. of Math., 35(1934), 361-388.
- [2] L. PONTRIAGIN, Topological groups, Princeton Univ. press, (1954).
- 3] T. TANNAKA, Über den Dualitätsatz der nichtkommutativen topologischen Gruppen, Tôhoku Math. Journ., 53(1938), 1–12.
- [4] R.F.ARENS, A topology for spaces of transformations, Ann. of Math., 47(1946), 480-495.

MATSUMINE SENIOR HIGH SCHOOL.

186