APPROXIMATION AND SATURATION OF FUNCTIONS BY ARITHMETIC MEANS OF TRIGONOMETRIC INTERPOLATING POLYNOMIALS

Gen-ichirô Sunouchi

(Received January 23, 1963)

Let f(x) be a continuous function with period 2π and E_n be the set of equidistant nodal points situated in the interval $0 \leq x < 2\pi$, that is

$$\xi_0 + 2\pi j/(2n+1)$$
 $(j = 0, 1, \dots, 2n),$ (mod. 2π)

where ξ_0 is any real number. Then the trigonometric polynomial of order *n* coinciding with f(x) on E_n is

(1)
$$I_n(x,f) = \frac{1}{\pi} \int_0^{2\pi} f(t) D_n(x-t) \, d\omega_{2n+1}(t),$$

where $D_n(x)$ is the Dirichlet kernel and $\omega_{2n+1}(t)$ is a step function which is associated with E_n . (We shall refer to A. Zygmund [4, Chap. X] these notations and fundamental properties of trigonometric interpolation.) We denote the Fourier expansions of (1) by

(2)
$$I_n(x,f) = \sum_{k=-n}^n c_k^{(n)} e^{ikx}$$
$$c_k^{(n)} = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-ikt} d\omega_{2n+1}(t)$$

The $\{c_k^{(m)}\}\$ are called the k-th Fourier-Lagrange coefficients and for a fixed k, $c_k^{(m)}$ is an approximate Riemann sum for the integral defining Fourier coefficient c_k of f(x), that is

$$c_k = \frac{1}{2\pi} \int_0^{2\pi} f(t) e^{-ikt} dt.$$

Let us denote the partial sums of (1) by

$$I_{n,m}(x,f) = \sum_{k=-m}^{m} c_k^{(n)} e^{ikx} \qquad (m \leq n),$$

in particular

$$I_n(x,f) = I_{n,n}(x,f).$$

APPROXIMATION AND SATURATION OF FUNCTIONS BY ARITHMETIC MEANS 163 Let $B_{n,v}(x,f)$ denote the arithmetic means of $I_{n,m}(x,f)$; thus

(3)
$$B_{n,\nu}(x,f) = \frac{1}{\nu+1} \sum_{m=0}^{\nu} I_{n,m}(x,f) \quad (\nu \le n)$$
$$= \sum_{k=-\nu}^{\nu} \left(1 - \frac{|k|}{\nu+1}\right) c_k^{(n)} e^{ikx}$$
$$= \frac{1}{\pi} \int_0^{2\pi} f(t) K_{\nu}(t-x) \, d\omega_{2n+1}(t),$$

where $K_{\nu}(t)$ is the Fejér kernel, and set

 $B_n(x,f) = B_{n,n}(x,f).$

In the present note, the author will investigate approximating properties of $B_{n,\nu}(x, f)$. These are analogous to the Fejér means of Fourier series. But the proofs are somewhat delicate.

THEOREM 1. We have

(1°)
$$B_n(x,f) - f(x) = o(n^{-1})$$

uniformly as $n \to \infty$, if and only if f(x) is a constant.

(2^o) $B_{n,\nu}(x,f) - f(x) = O(\nu^{-1})$

uniformly as $\nu \to \infty$ (for all $\nu \leq n$), if and only if $\tilde{f}(x)$ satisfies the Lipschitz condition of order 1.

PROOF. (1°) From the formula (3),

$$egin{aligned} &rac{1}{2\pi}\int_{0}^{2\pi} \,\{f(x)-B_n(x,f)\}e^{-ikx}dx = c_k \,-\left(\,1\,-rac{|k|}{n+1}\,
ight)c_k^{(n)} \ &= c_k \,-c_k^{(n)}+rac{|k|}{n+1}\,c_k^{(n)}. \end{aligned}$$

If $B_n(x, f) - f(x) = o(n^{-1})$ uniformly, then

(4)
$$c_k - c_k^{(n)} + \frac{|k|}{n+1} c_k^{(n)} = o(n^{-1}).$$

When a trigonometric polynomial of order n has approximating degree \mathcal{E}_n for f(x), then the integral of f(x) has the same degree of approximation by its Riemann sums, (Walsh-Sewell [3, Theorem 4]). Since $B_n(x, f)$ is a trigonometric polynomial of order n, and

$$f(x) - B_n(x,f) = o(n^{-1}),$$
 $f(x)e^{-ikx} - B_n(x,f)e^{-ikx} = o(n^{-1}) \ (k \le n),$

G. SUNOUCHI

we have

$$\int_0^{2\pi} f(x) e^{-ikx} dx - c_k^{(n)} = o(n^{-1}), \quad \text{for fixed } k ;$$

that is

$$n(c_k - c_k^{(n)}) = o(1) \qquad \text{as } n \to \infty.$$

Hence from (4)

$$|k| c_k^{(n)} \to 0 \qquad \text{as } n \to \infty,$$

and this means that $c_k = 0$, $(k = \pm 1, \pm 2, \cdots)$. Thus we have $f(x) = c_0$. The converse is trivial.

 (2°) We suppose that

$$f(x) - B_{n,\nu}(x,f) = O(\boldsymbol{\nu}^{-1})$$

uniformly as $n \ge \nu \to \infty$. Since the unit ball of L^{∞} space is weak* compact, there exist a bounded function g(x) and a subsequence $\{\nu_p\}$ of ν such as

(5)
$$\lim_{n_p \ge \nu_p \to \infty} \frac{1}{2\pi} \int_0^{2\pi} \nu_p \{ f(x) - B_{n_p,\nu_p}(x,f) \} e^{-ikx} dx$$
$$= \frac{1}{2\pi} \int_0^{2\pi} g(x) e^{-ikx} dx$$

for all integral k. The first term is

(6)
$$\lim_{\nu_p \to \infty} \left\{ \nu_p(c_k - c_k^{(n_k)}) + \frac{\nu_p |k|}{\nu_p + 1} c_k^{(n_k)} \right\} \qquad (\nu_p \leq n_p).$$

On the other hand if we take $\nu = n$, then the above Walsh-Sewell result yields

(7)
$$n(c_k - c_k^{(n)}) = O(1) \quad (k \le n)$$

When we set $\nu = [n^{1-\delta}]$ $(0 < \delta < 1)$ and select a subsequence $\{n_p\}$ and we set $\nu_p = [n_p^{1-\delta}]$,

then

$$\nu_p(c_k - c_k^{(n_p)}) = n_p^{1-\delta}(c_k - c_k^{(n_p)})$$

= $(n_p)^{-\delta}n_p(c_k - c_k^{(n_p)}) = o(1)$

from (7). Since $c_k^{(n_p)} \rightarrow c_k$, from (5) and (6) we conclude

$$|k|c_k = \frac{1}{2\pi} \int_0^{2\pi} g(x)e^{-ikx}dx, \qquad g(x) \in L^{\infty}(0, 2\pi),$$

164

for all integral k. This means that $|k|c_k$ are the Fourier coefficients of g(x) which belongs to the class $L^{\infty}(0, 2\pi)$. Since $\{c_k\}$ are Fourier coefficients of f(x), it is easy to see that $f'(x) \in L^{\infty}(0, 2\pi)$. This is equivalent to that $\tilde{f}(x)$ satisfies the Lipschitz condition of order 1.

Conversely if $\tilde{f}'(x) \in L^{\infty}(0, 2\pi)$, then the Fejér means $\sigma_n(x, f)$ of f(x) are the best approximation (A. Zygmund [4, I, p. 123]), that is

(8)
$$f(x) - \sigma_{\nu}(x, f) = O(\nu^{-1}).$$

 $B_{n,\nu}(x,f)$ is a linear method of approximation, and

(9)
$$B_{n,\nu}(x,f) - f(x) = B_{n,\nu}(x,f - \sigma_{\nu}) - (f - \sigma_{\nu}) + \{B_{n,\nu}(x,\sigma_{\nu}) - \sigma_{\nu}\} = P_{n,\nu}(x) + Q_{n,\nu}(x),$$

say. $B_{n,\nu}(x)$ transforms any bounded function to some bounded function, so from (8)

$$P_{n,\nu}(x) = O(\nu^{-1}) \qquad (\nu \leq n).$$

On the other hand $\sigma_{\nu}(x)$ is a ν -th order polynomial and $\nu \leq n$,

$$I_n(x,\sigma_{\nu}(x)) \equiv \sigma_{\nu}(x) = \sum_{k=-\nu}^{\nu} \left(1 - \frac{|k|}{\nu+1}\right) c_k e^{ikx},$$

and

$$B_{n,\nu}(x,\sigma_{\nu}(x)) = \sum_{k=-\nu}^{
u} \left(1-rac{|k|}{
u+1}
ight)^2 c_k e^{ikx}.$$

Hence

$$\begin{aligned} Q_{n,\nu}(x) &= B_{n,\nu}(x,\sigma_{\nu}(x)) - \sigma_{\nu}(x) \\ &= \sum_{k=-\nu}^{\nu} \left\{ \left(1 - \frac{|k|}{\nu+1} \right)^{2} \right\} c_{k} e^{ikx} - \sum_{k=-\nu}^{\nu} \left(1 - \frac{|k|}{\nu+1} \right) c_{k} e^{ikx} \\ &= -\frac{1}{\nu+1} \sum_{k=-\nu}^{\nu} \left(1 - \frac{|k|}{\nu+1} \right) |k| c_{k} e^{ikx}. \end{aligned}$$

From the assumption $\tilde{f}'(x) \in L^{\infty}(0, 2\pi)$, the arithmetic means of Fourier series of $\tilde{f}'(x)$ is bounded. Consequently

$$Q_{n,\nu}(x) = O(\nu^{-1}).$$

Collecting the estimates of $P_{n,\nu}(x)$ and $Q_{n,\nu}(x)$, we have the desired result.

THEOREM 2. If f(x) belongs to the Lipschitz class of order α ($0 < \alpha < 1$)

G. SUNOUCHI

then

$$B_{n,\nu}(x,f) - f(x) = O(\nu^{-\alpha}) \qquad (\nu \le n)$$

and if f(x) belongs to the Lipschitz class of order 1, then

$$B_{n,\nu}(x,f) - f(x) = O(\nu^{-1}\log \nu) \qquad (\nu \leq n).$$

More generally if f(x) belongs to the class Λ^1_2 , then

$$B_{n,\nu}(x,f) - f(x) = O(\nu^{-1} \log \nu).$$

PROOF. $B_{n,\nu}(x, f)$ maps any bounded function to some bounded function. Hence applying author's another result (G. Sunouchi [2, Theorem 1]) to Theorem 1, we get Theorem 2.

Theorem 2 has been proved by Ruban and Krasilinikoff [1] with another method.

LITERATURE

- [1] P.I. RUBAN AND K.V. KRASILINIKOFF, A method of approximating by trigonometric polynomials functions satisfying a Lipschitz condition, Izv. Vyss. Ucebn Zaved, Mathematika, 14(1960), 194-197, (Russian).
- [2] G.SUNOUCHI, On the saturation and best approximation, Tôhoku Math. Journ., 14(1962), 212-216.
- [3] J.L. WALSH AND W.E. SEWELL, Note on degree of approximation to an integral by Riemann sums, Amer. Math. Monthly, 44(1937), 155-160.
- [4] A.ZYGMUND, Trigonometric series I, II, Cambridge University Press, Cambridge, 1959.

TÔHOKU UNIVERSITY.

166