APPROXIMATION AND SATURATION OF FUNCTIONS BY ARITHMETIC MEANS OF TRIGONOMETRIC INTERPOLATING POLYNOMIALS

Gen-IChirô Sunouchi

(Received January 23, 1963)

Let $f(x)$ be a continuous function with period 2π and E_{n} be the set of equidistant nodal points situated in the interval $0 \leqq x<2 \pi$, that is

$$
\xi_{0}+2 \pi j /(2 n+1) \quad(j=0,1, \cdots, 2 n), \quad(\bmod .2 \pi)
$$

where $\boldsymbol{\xi}_{0}$ is any real number. Then the trigonometric polynomial of order n coinciding with $f(x)$ on E_{n} is

$$
\begin{equation*}
I_{n}(x, f)=\frac{1}{\pi} \int_{0}^{2 \pi} f(t) D_{n}(x-t) d \omega_{2 n+1}(t) \tag{1}
\end{equation*}
$$

where $D_{n}(x)$ is the Dirichlet kernel and $\omega_{2 n+1}(t)$ is a step function which is associated with E_{n}. (We shall refer to A. Zygmund [4, Chap. X] these notations and fundamental properties of trigonometric interpolation.) We denote the Fourier expansions of (1) by

$$
\begin{align*}
& I_{n}(x, f)=\sum_{k=-n}^{n} c_{k}^{(n)} e^{i k x} \tag{2}\\
& c_{k}^{(n)}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{-i k t} d \omega_{2 n+1}(t)
\end{align*}
$$

The $\left\{c_{k}^{(n)}\right\}$ are called the k-th Fourier-Lagrange coefficients and for a fixed k, $c_{k}^{(n)}$ is an approximate Riemann sum for the integral defining Fourier coefficient c_{k} of $f(x)$, that is

$$
c_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} f(t) e^{-i k t} d t
$$

Let us denote the partial sums of (1) by

$$
I_{n, m}(x, f)=\sum_{k=-m}^{m} c_{k}^{(n)} e^{i k x} \quad(m \leqq n),
$$

in particular

$$
I_{n}(x, f)=I_{n, n}(x, f)
$$

Let $B_{n, v}(x, f)$ denote the arithmetic means of $I_{n, m}(x, f)$; thus

$$
\begin{align*}
B_{n, v}(x, f) & =\frac{1}{\nu+1} \sum_{m=0}^{\nu} I_{n, m}(x, f) \quad(\nu \leqq n) \tag{3}\\
& =\sum_{k=-\nu}^{\nu}\left(1-\frac{|k|}{\nu+1}\right) c_{k}^{(n)} e^{i k x} \\
& =\frac{1}{\pi} \int_{0}^{2 \pi} f(t) K_{\nu}(t-x) d \omega_{2 n+1}(t),
\end{align*}
$$

where $K_{v}(t)$ is the Fejér kernel, and set

$$
B_{n}(x, f)=B_{n, n}(x, f)
$$

In the present note, the author will investigate approximating properties of $B_{n, v}(x, f)$. These are analogous to the Fejér means of Fourier series. But the proofs are somewhat delicate.

Theorem 1. We have

$$
\begin{equation*}
B_{n}(x, f)-f(x)=o\left(n^{-1}\right) \tag{0}
\end{equation*}
$$

uniformly as $n \rightarrow \infty$, if and only if $f(x)$ is a constant.

$$
B_{n, \nu}(x, f)-f(x)=O\left(\nu^{-1}\right)
$$

uniformly as $\nu \rightarrow \infty$ (for all $\nu \leqq n$), if and only if $\widetilde{f}(x)$ satisfies the Lipschitz condition of order 1 .

Proof. (1^{0}) From the formula (3),

$$
\begin{aligned}
\frac{1}{2 \pi} \int_{0}^{2 \pi}\left\{f(x)-B_{n}(x, f)\right\} e^{-i k x} d x & =c_{k}-\left(1-\frac{|k|}{n+1}\right) c_{k}^{(n)} \\
& =c_{k}-c_{k}^{(n)}+\frac{|k|}{n+1} c_{k}^{(n)}
\end{aligned}
$$

If $B_{n}(x, f)-f(x)=o\left(n^{-1}\right)$ uniformly, then

$$
\begin{equation*}
c_{k}-c_{k}^{(n)}+\frac{|k|}{n+1} c_{k}^{(n)}=o\left(n^{-1}\right) . \tag{4}
\end{equation*}
$$

When a trigonometric polynomial of order n has approximating degree ε_{n} for $f(x)$, then the integral of $f(x)$ has the same degree of approximation by its Riemann sums, (Walsh-Sewell [3, Theorem 4]). Since $B_{n}(x, f)$ is a trigonometric polynomial of order n, and

$$
f(x)-B_{n}(x, f)=o\left(n^{-1}\right), \quad f(x) e^{-i k x}-B_{n}(x, f) e^{-i k x}=o\left(n^{-1}\right)(k \leqq n),
$$

we have

$$
\int_{0}^{2 x} f(x) e^{-i k x} d x-c_{k}^{(n)}=o\left(n^{-1}\right), \quad \text { for fixed } k
$$

that is

$$
n\left(c_{k}-c_{k}^{(n)}\right)=o(1) \quad \text { as } n \rightarrow \infty .
$$

Hence from (4)

$$
|k| c_{k}^{(n)} \rightarrow 0 \quad \text { as } n \rightarrow \infty
$$

and this means that $c_{k}=0,(k= \pm 1, \pm 2, \ldots)$. Thus we have $f(x)=c_{0}$. The converse is trivial.
(20) We suppose that

$$
f(x)-B_{n, \nu}(x, f)=O\left(\nu^{-1}\right)
$$

uniformly as $n \geqq \nu \rightarrow \infty$. Since the unit ball of L^{∞} space is weak* compact, there exist a bounded function $g(x)$ and a subsequence $\left\{\boldsymbol{\nu}_{p}\right\}$ of ν such as

$$
\begin{gather*}
\lim _{n_{p} \geq \nu_{p} \rightarrow \infty} \frac{1}{2 \pi} \int_{0}^{2 \pi} \nu_{p}\left\{f(x)-B_{n_{p} \nu_{p}}(x, f)\right\} e^{-i k x} d x \tag{5}\\
=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(x) e^{-i k x} d x
\end{gather*}
$$

for all integral k. The first term is

$$
\begin{equation*}
\lim _{\nu_{p} \rightarrow \infty}\left\{\boldsymbol{\nu}_{p}\left(c_{k}-c_{k}^{\left(n_{n}\right)}\right)+\frac{\boldsymbol{\nu}_{p}|k|}{\boldsymbol{\nu}_{p}+1} c_{k}^{\left(n_{1}\right)}\right\} \quad\left(\boldsymbol{\nu}_{p} \leqq n_{p}\right) \tag{6}
\end{equation*}
$$

On the other hand if we take $\nu=n$, then the above Walsh-Sewell result yields

$$
\begin{equation*}
n\left(c_{k}-c_{k}^{(n)}\right)=O(1) \quad(k \leqq n) \tag{7}
\end{equation*}
$$

When we set $\nu=\left[n^{1-\delta}\right](0<\delta<1)$ and select a subsequence $\left\{n_{p}\right\}$ and we set $\nu_{p}=\left[n_{p}^{1-\delta}\right]$,
then

$$
\begin{aligned}
\nu_{p}\left(c_{k}-c_{k}^{\left(n_{p}\right)}\right) & =n_{p}^{1-\delta}\left(c_{k}-c_{k}^{\left(n_{p}\right)}\right) \\
& =\left(n_{p}\right)^{-\delta} n_{p}\left(c_{k}-c_{k}^{\left(n_{p}\right)}\right)=o(1)
\end{aligned}
$$

from (7). Since $c_{k}^{\left(n_{p}\right)} \rightarrow c_{k}$, from (5) and (6) we conclude

$$
|k| c_{k}=\frac{1}{2 \pi} \int_{0}^{2 \pi} g(x) e^{-i k x} d x, \quad g(x) \in L^{\infty}(0,2 \pi)
$$

for all integral k. This means that $|k| c_{k}$ are the Fourier coefficients of $g(x)$ which belongs to the class $L^{\infty}(0,2 \pi)$. Since $\left\{c_{k}\right\}$ are Fourier coefficients of $f(x)$, it is easy to see that $f^{\prime}(x) \in L^{\infty}(0,2 \pi)$. This is equivalent to that $\widetilde{f}(x)$ satisfies the Lipschitz condition of order 1 .

Conversely if $\widetilde{f^{\prime}}(x) \in L^{\infty}(0,2 \pi)$, then the Fejér means $\sigma_{n}(x, f)$ of $f(x)$ are the best approximation (A. Zygmund [4, I, p. 123]), that is

$$
\begin{equation*}
f(x)-\sigma_{\nu}(x, f)=O\left(\nu^{-1}\right) \tag{8}
\end{equation*}
$$

$B_{n, v}(x, f)$ is a linear method of approximation, and

$$
\begin{align*}
& B_{n, v}(x, f)-f(x) \tag{9}\\
& =B_{n, v}\left(x, f-\sigma_{\nu}\right)-\left(f-\sigma_{\nu}\right)+\left\{B_{n, \nu}\left(x, \sigma_{\nu}\right)-\sigma_{\nu}\right\} \\
& =P_{n, v}(x)+Q_{n, v}(x)
\end{align*}
$$

say. $B_{n, v}(x)$ transforms any bounded function to some bounded function, so from (8)

$$
P_{n, \nu}(x)=O\left(\nu^{-1}\right) \quad(\nu \leqq n) .
$$

On the other hand $\sigma_{\nu}(x)$ is a ν-th order polynomial and $\nu \leqq n$,

$$
I_{n}\left(x, \sigma_{\nu}(x)\right) \equiv \sigma_{\nu}(x)=\sum_{k=-\nu}^{\nu}\left(1-\frac{|k|}{\nu+1}\right) c_{k} e^{i k x}
$$

and

$$
B_{n, \nu}\left(x, \sigma_{\nu}(x)\right)=\sum_{k=-\nu}^{\nu}\left(1-\frac{|k|}{\nu+1}\right)^{2} c_{k} e^{i k x} .
$$

Hence

$$
\begin{aligned}
Q_{n, \nu}(x) & =B_{n, \nu}\left(x, \sigma_{\nu}(x)\right)-\sigma_{\nu}(x) \\
& =\sum_{k=-\nu}^{\nu}\left\{\left(1-\frac{|k|}{\nu+1}\right)^{2}\right\} c_{k} e^{i k x}-\sum_{k=-\nu}^{\nu}\left(1-\frac{|k|}{\nu+1}\right) c_{k} e^{i k x} \\
& =-\frac{1}{\nu+1} \sum_{k=-\nu}^{\nu}\left(1-\frac{|k|}{\nu+1}\right)|k| c_{k} e^{i k x} .
\end{aligned}
$$

From the assumption $\tilde{f}^{\prime}(x) \in L^{\infty}(0,2 \pi)$, the arithmetic means of Fourier series of $\widetilde{f^{\prime}}(x)$ is bounded. Consequently

$$
Q_{n, v}(x)=O\left(\nu^{-1}\right) .
$$

Collecting the estimates of $P_{n, v}(x)$ and $Q_{n, v}(x)$, we have the desired result.
THEOREM 2. If $f(x)$ belongs to the Lipschitz class of order $\alpha(0<\alpha<1)$
then

$$
B_{n, \nu}(x, f)-f(x)=O\left(\nu^{-\alpha}\right) \quad(\nu \leqq n)
$$

and if $f(x)$ belongs to the Lipschitz class of order 1, then

$$
B_{n, \nu}(x, f)-f(x)=O\left(\nu^{-1} \log \nu\right) \quad(\nu \leqq n) .
$$

More generally if $f(x)$ belongs to the class Λ_{2}^{1}, then

$$
B_{n, v}(x, f)-f(x)=O\left(\nu^{-1} \log \nu\right) .
$$

Proof. $B_{n, v}(x, f)$ maps any bounded function to some bounded function. Hence applying author's another result (G. Sunouchi [2, Theorem 1]) to Theorem 1, we get Theorem 2.

Theorem 2 has been proved by Ruban and Krasilinikoff [1] with another method.

Literature

[1] P.I. Ruban and K. V. Krasilinikoff, A method of approximating by trigonometric polynomials functions satisfying a Lipschitz condition, Izv. Vyss. Ucebn Zaved, Mathematika, 14 (1960), 194-197, (Russian).
[2] G.SUNOUCHI, On the saturation and best approximation, Tôhoku Math. Journ., 14 (1962), 212-216.
[3] J. L. WALSH AND W. E. Sewell, Note on degree of approximation to an integral by Riemann sums, Amer. Math. Monthly, 44 (1937), 155-160.
[4] A.Zygmund, Trigonometric series I, II, Cambridge University Press, Cambridge, 1959. TôHoku University.

