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1. Introduction. Given a (2n + l)-dimensional differentiable manifold M,
we denote by F(M) the family of all real valued differentiable functions on M,
and by £(M) the totality of differentiable vector fields on M. Then X(M) is
an F(M)-module and a Lie algebra over R, R being a field of real numbers. An
almost contact metric structure is a tetrad (φ, ξ, η, g), where φ is a linear
operator φ: ϊ(M) -+ ϊ(M) and η is a 1-form such that η φ — 0, and ξ is a
vector field such that η(ξ) = 1, satisfying the following relation :

(1. 1) φ.φ(X) =-X + η(X).ξ, X 6 ΐ

and finally g is a Riemannian metric which satisfies η(X) = ff(ξ,X) for X e 3£(M)
and

(1. 2) £(φX, φY) = g(X, Y) - η(X)'η(Y), X, Y

Then we see that φ is of rank 2n and J is a characteristic unit vector field
corresponding to characteristic value 0. Since it follows from (1. 1) and other
relations that φ ξ = 0 and that, at any point x of M, denoting by φη the
restriction of φ to the tangent subspace Tx(η) of M which is orthogonal to ξxy

it has a property φη φη — — Identity.

By virtue of (1. 2), we can define a differentiable 2-form vυ as follows:

w(X9 Y) = g(X, φY), X, Y ^ S(M),

then the rank of w is 2n. An almost contact metric structure is called a contact
metric structure, if the relation w = dη is valid. And a differentiable manifold
with a (or an almost) contact metric structure is called to be a (or an almost)
contact Riemannian manifold.

Suppose μ be a diffeomorphism of M, then μ is said to be an automorphism
of an almost contact metric structure, if it leaves all of φ, ξ, η and g invariant.
In the sequel, by a transformation on M we understand a diffeomorphism of
M. In this report, we treat mainly transformations which leave φ invariant.
Some propositions of this note are stated in [ 9 ] in terms of infinitesimal
transformations. My hearty acknowledgement goes to Prof. S.Sasaki, Mr.
Y.Hatakeyama and Mr.Y.Ogawa.
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2. Transformations on almost contact Riemannian manifolds.

THEOREM 2-1. Let M be a differentiable manifold with an almost
contact metric structure. Then in order that a conformal transformation μ of
the associated Riemannian metric g satisfies μ*zv = oίw for some positive scalar
ci £ F(M), it is necessary and sufficient that μ leaves φ invariant.

PROOF. AS μ is a conformal transformation, there exists a scalar field σ
for which we have u*g = σ2g and hence for an arbitrary point x of M,

(2. 1) gμx(μX, μφY) = σ\x)gx{X, φY), X, Y 6 Ϊ(M).

And the relation μ*w = cuw is written by definition as follows :

(2. 2) (μ*w),(X, Y) = W^X, μY) = gμx(μX, φμY)

= a(x)gx(X,φY).

From (2. 1) and (2. 2) it follows that

Consequently, we have

(2.3) μAxYx=^Φ,xuxYx.

Since φ satisfies φ φ φ = — φ which follows from (1.1), the left hand side of
the last equation is

And hence (2. 3) shows σ*(x) = a\x). By assumption, a is positive and so we
see that a is equal to σ2, then (2. 3) turns to μxφx = φμXμx. Conversely, if a
conformal transformation μ (μ*g = cr2p) leaves φ invariant, then we have

(μ*w)x{X, Y) = gμx{μX, φμY) = gμx(μX, μφY)

= σ\x) wx{X, Y), X,Y e Ϊ(M). (q. e. d.)

COROLLARY. If a conformal transformation μ on an almost contact
Riemannian manifold leaves zv invariant, then μ leaves φ also invariant and
μ is necessarily an isometry, therefore μ is an automorphism of this almost
contact metric structure.

In fact, by φμ = μφ we have φ μξ = 0, and as μ is an isometry, we see
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that μξ = ξ and of course μ*η = η.

PROPOSITION 2-1. Suppose μ be a conformal transformation (μ*g = σ2g)
on an almost contact Riemannian ?nanifold M. If μ satisfies the relation
μ*η = oίη (μξ = βξ resp.) for some positive a (β resp) £ F(M), then we have
a — σ (β = μ*σ resp.) and μξ = (μ*σ)ξ (μA'η = ση resp).

Proof shall be omitted here.

Let H be a homogeneous holonomy group of a connected almost contact
Riemannian manifold M. At an arbitrary but fixed point x of M, we consider
the set F(x,ξ) = (λ£x, λ £ H} which may be identified with a subset of a 2n-
dimensional unit sphere. Further, for any point y of M, we join x and y by
a piece-wise differentiate curve l(x, y) and define Fy(x, ξ) — τ(l)F(x, ξ), where
the notation r(l) means the parallel displacement along the curve I. Clearly,
Fy(x, ξ) does not depend upon the choice of the curve joining x and y. Then
we say temporarily that M has a F-property if at every point z, ξz belongs to
Fz(x, ξ). Of course, this property does not depend on x. It is equivalent to say
that for any two points y and z9 there exists a curve l(y9 z) such that ξz = r(l)ξy.

PROPOSITION 2-2. Suppose that an almost contact Riemannian manifold
M has a F-property. If an affine transformation μ preserves the direction of
ξ and at one point p of M μ leaves η invariant, then μ leaves ξ and η
globally invariant.

PROOF. By virtue of (μ*η)p = ηp, it is easy to see that μξp = ξμp is valid.
We join p and an arbitrary point x of M by a curve l(p, x) along which ξv is
parallel to ξx and we have μξx = μ τ(ΐ)ξp. By the way, μ is an affine trans-
formation and so it commutes with the parallel displacement and we see that
μξx = ξμx. In the next place, for any X z £(M), we have gx(ξX9 φX) — 0 and so
gp(ξp,r-ι(Γ)φX) = 0. Namely ηv(τ~ι(l)φX) = 0 and hence ημp(μ-τ-\l)φX) = 0, or
equivalently gμp(ξμp, μ τ~ι(l)φX) = 0. And finally

9μχ(Sβχ9 τ(μ(l)) μ-τ-\l)φX) = gμx(ξμx, μφX) = ημxψφX = 0.

Consequently μ*η = aη for some a £ F(M) and necessarily a — 1.

3. Transformations on contact Riemannian manifolds.

THEOREM 3-1. If a transformation μ on a contact Riemannian manifold
M leaves φ invariant, then there exists a positive constant a such that the
relations μ^r) = cίη, μξ = ciξ and μ*w — oivυ hold good.

PROOF. ( i) From the equations η φ = 0 and φ μ = μ φ, we get η μφ = 0,
or at any point x of M we have {μ*η)xφxXx — 0, X € 3E(M). Thereby
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(3. 1) (μ*v)χ = <x(x)Vχ for some a e F(M).

(ii) If we suppose φξ = 0 and φ μ = μ φ, then we have φ μ£ = 0. Hence,

it follows that (μξ)βX = Θ(μx)ξμx for some β £ F(M). Combining ( i ) and this,
we see that β(μx) = a(x).

(iii) We shall show that a is constant [ 9 ]. By operating the exterior
differentiation to (3. 1), we get

(3. 2) dμ*η = da /\ η + adη.

As d and μ* commute, dμ*η = μ*dη. On the other hand, we have

(μ*dvUξ, Y) = ΛfeG'f, μY) = 0, y € 3E(M),

since (/if)μz = oί(x)ξμx and i(ξ)dη — i{ξ)w — 0, where z(£) is the interior product

operator by £. Hence i(ζ)x(dμ¥rη) = 0. Consequently, we have by virtue of (3. 2)

i(£)(dct/\ η) = 0. Moreover,

ί(£)(Λ* Λ ^) = i ( f y α Λ v - da-i(ξ)v = £(ξ)a-η - da,

where we have put £(ξ)ct = i(ξ)da. Thus, £(ξ)<x η = da. Therefore, da Λ V = 0
and da A dη = 0. Further $ί(ξ)a η f\ dη = 0. From this &,(£)<% must be zero
and ύία: = 0. This means that ĉ  is constant, and μ*w = azv is clear. T h e fact
that a is positive will be proved in the next Proposition 3-1.

Several Propositions follow from this Theorem.

PROPOSITION 3-1. Let M be a contact Riemannian manifold. If a

transformation μ on M leaves φ invariant, then μ is conformal, precisely

homothetic, relative to the η-plane Tx(η), x £ M.

PROOF. For an arbitrary point x £ M and X,Y e 3E(M) we have

(μ*wUX, Y) = ZVμx(μX, μY) - ffμx(μX, φμY)

= gUμX9μφY) = (jL*g)x(X9φY).

On the other hand, by Theorem 3-1 the left hand side of the last equation is

equal to

for some constant a. Thus we have

(3. 3) (μ*gUX, ΦY) =agx{X, φY).

Here we assume that Xx φ 0 and Xx € Tx(rj) (i. e. ηx(X) = 0). And we define
Y — — φX, then Yx is also an element of the 77-plane and we have

ffμx(μX, μX) = agx(X, X\ Xx e Tx(η).

It follows from this that a is positive. Furthermore let Z be an arbitrary vector
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field such that Zx € Tx(η) and Y be — φZ, then (3. 3) turns to

(μ*ffX(X, Z) = agx(X, Z), Xx, Zx e Tx(η).

PROPOSITION 3-2. If a transformation μ on a contact Riemannian manifold
M leaving φ invariant is conformal at some one point of M, then μ is an
automorphism. Conversely, if a homothetic transformation μ leaves φ invariant
in a small neighborhood of one point of M, then μ is an isometry.

PROOF. By assumptions there exists a point p of M at which μ is con-
formal, that is (μ*g)p = σ2gv holds good for some positive number σ. However,
by Proposition 3-1, σ2 must be equal to a corresponding to μ. On the other
hand, by the relation (μ*g)p(ξ, ξ) = σ2gp{ξ, ξ) and {μξ)μx = aξ, we have σ2 = a2

and hence a2 — a — 1. To see that μ leaves g invariant we rewrite (1. 2) as
(3. 4) g(X, Y) = w(φX, Y) + η(X) η(Y), X, Y € Ϊ(M).
Two terms of the right hand side contain zv, φ and η which are invariant by μ.

This completes the proof of the first part of our statement. Conversely, suppose
that we have a point q of M such that in a neighborhood U(q) of it a homothetic
transformation μ leaves φ invariant. Then, by applying the preceding result to
U(q),we see that μ is an isometry in U(q) and hence on M.

PROPOSITION 3-3. In a contact Riemannian manifold, if a conformal
transformation μ satisfies μ*w = oίw for some positive ci € F(M), then μ is
an automorphism of the contact metric structure.

This follows from Theorem 2-1 and Proposition 3-2.

PROPOSITION 3-4. Let us denote by Φ the totality of transformations

on a contact Riemannian manifold which leave φ invariant. Ifμ^Φ belongs

either to the commutator subgroup [Φ, Φ] or to some compact subgroup of Φ,
then it is an isometry and so an automorphism of this structure.

PROOF. In fact, the correspondence between a transformation μ and a
constant a defines a homomorphism h of the group Φ into the multiplicative
group of real positive numbers. That is, for μ and v € φ, we have μfiη = oίη
and v*η — βη (ct, β £ R)y and then we see that

(μ*v)*η = V*(μ*η) = Oίβη,

this permits us to define a homomorphism h(μ v) — oίβ.

PROPOSITION 3-5. Let M be a compact manifold with a contact metric

structure, if a transformation μ leaves φ invariant, then μ is an automorphism

of this structure. Therefore all of such transformations constitutes a compact

Lie group.
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PROOF. We notice that μ*(η Λ wn) = an+1η Λ wn, {a = h(μ)). Integrating
it over M we get

an+ι \ v f\wn = f ^"(77 Λ w n ) = I

From this we see that a is equal to 1. Therefore μ leaves φ, zt> and 77 invariant
and so leaves g invariant too. (q. e. d.)

Now, if a conformal transformation μ on a contact Riemannian manifold
leaves ξ or η invariant, it follows that μ leaves w invariant. Then, by Pro-
position 3-3, μ is an automorphism. However, we can prove the following

PROPOSITION 3-6. If a conformal transformation μ on a contact Rie-

mannian manifold M satisfies μ*η = aη for some {necessarily positive) a £ F(M)

or preserves the direction of ξ, then μ is an automorphism.

PROOF. By Proposition 2-1, we see that μ satisfies μ*η = aη and μξ
= (μΐ*ά)ξ. And we can verify that a is a positive constant by the similar
argument just as in the proof of Theorem 3-1. Hence we have μ*w = cczv,
therefore Proposition 3-6 is an immediate consequence of Proposition 3-3.

PROPOSITION 3-7. If a transformation μ on a complete contact Rie-
mannian manifold M leaves φ invariant and has no fixed point, then μ is
an automorphism.

PROOF. We see by Proposition 3-1 that μ is homothetic relative to the

77-plane Tx(η), x £ M, i. e.

(3. 5) (μ*SlUY>Z) = *9*V> Z), Yχ> Zx € Tx(rj),

where a = h(μ) > 0. Here we assume that μ is not an automorphism, that is
a Φ 1, then cc can be supposed to be smaller than 1. Since if a is greater than

1, we can replace μ by μ~\ Next, we decompose any vector field X £ Ϊ(M)
(Xx Φ 0) as X = - φ-φ X + η{X)ξ. Operating μ to the both sides of the last
equation

(3. 6) μxXx - - μxφx-φx Xx + CLηx(X)ξμx,

where we have utilized μξ = cίξ. As the both terms of the right hand side are
orthogonal on account of μ φ = φ μ, we get

gμx(μX, μX) = α2 η(XY + g,x(μφ-φX, μφ-φX)

= a*η(Xy + agx(φ-φX, φ φX),

by virtue of (3. 5). Hence, we have the inequality

(3. 7) gJίμX, μX) ̂  agx(X, X).
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If we denote by d{x,y) the distance between two points x and y, and put

x1 = μx, xk+1 = μxk, k = 1,2,. , then (3. 7) means that (dxk, xk+1)-^Ό as

k —> oo and {xjc} constitutes a Cauchy sequence. By the completeness of M in

consideration we see that there is a point Xoo such that μx^ = x^, this con-

tradicts the hypotheses. (q. e. d.)

In the preceding Proposition 3-7, the condition that μ has no fixed point

can be removed if the complete contact Riemannian manifold is not locally

flat and μ leaving φ invariant is an affine transformation. This may be proved

by the method of [ 3 ]. But we have the following

PROPOSITION 3-8. If an affine transformation μ on a contact Riemannian

manifold M leaves φ invariant, then μ is an automorphism.

PROOF. By V we denote the covariant differentiation which arises from

the Riemannian connection defined by the associated metric g. An affine trans-

formation commutes with the covariant differentiation and we have

UX, Y) = μ iVφXiμ-'X, μ-Ύ), X, Y
By assumption μφxμ~ι = φμx, so we have

(3. 8) VΦJX, Y) = μiVφXiμ-'X, μ-Ύ).

On the other hand, it is known [ 8 ] that Sw = nη, where δ is the co-

differentiation operator. Therefore, if we contract Vφx and Vφμx in both local

coordinates at x and μx, we get — nηx and — nημx respectively. It follows from

(3. 8) that nηβX(X) = nη(μ~ιX), namely ημx = μ~ι*ηx. Hence, our assertion is

true.

PROPOSITION 3-9. If a projective transformation μ on a contact Rie-

mannian manifold M leaves φ invariant, then μ is an automorphism.

PROOF. For any projective transformation μ, there exists a 1-form θ such

that

Σ, (T - Γ)\X, Y)~t = <KX) Y + <XY) X, X, Y e 1{M),

where Γ is the ChristoffeΓs symbol and μT is the image by μ of Γ and (j^'s

are local coordinates at y = μx, x being an arbitrary point of M. Then, by the

similar way as above, we can derive the identity

nημx - (2n + l)θ-φμx = nμ~ι*ηx = ~r-z ημx.

Thus, if we operate ξμx to the right of each term, we see that h{μ) = 1 holds
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good. Hence, μ is an automorphism.
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