ON ABSOLUTE RIESZ SUMMABILITY FACTORS

IVOR J. MADDOX

(Received December 24, 1962)

1. In this note sufficient conditions are given for a series $\sum a_n \epsilon_n$ to be summable $|R, \lambda, \kappa|$ whenever $\sum a_n$ is bounded (R, λ, κ) . We shall restrict ourselves to integer values of κ . The non-integer case appears to present considerable difficulties—it is hoped to deal with it in a further note. When $\lambda_n = n$, our result is an alternative version of a theorem on absolute Cesàro summability factors (see Pati and Ahmad [7]); the equivalence of (R, n, κ) , (C, κ) and $|R, n, \kappa|$, $|C, \kappa|$ summability being well known (Hobson [3], 90-98; Hyslop [4]).

In Section 4 we shall prove the following

THEOREM. Suppose that the sequence of positive numbers $\{\lambda_n\}$ increases to infinity, and that

(a) $0 < a \leq \Delta \lambda_n / \Delta \lambda_{n-1} \leq A$, a, A constants. If $A^{\kappa}(\omega) = O(\omega^{\kappa})$, $\kappa = 0, 1, 2, \cdots$, where $A^{\kappa}(\omega)$ is defined in §2, and

(i) $\sum |\epsilon_n| < \infty$,

(ii) there exists a function g(u), defined for $u \ge \lambda_0$, and a number α , such that for $\nu = 0, 1, \dots$,

$$\epsilon_{
u} = lpha + \int_{\lambda_{v}}^{\infty} (u - \lambda_{v})^{\kappa} \, dg(u) \qquad with \ \int_{\lambda_{n}}^{\infty} u^{\kappa} |dg(u)| < \infty,$$

then $\sum a_n \epsilon_n$ is summable $|R, \lambda, \kappa|$.

Although we shall be concerned only with the sufficiency of conditions (i) and (ii), we remark that (ii) is necessary without any restriction on λ_n . For it has been shown that (ii) is necessary for $\sum a_n \epsilon_n$ to be summable (R, λ, μ) whenever $\sum a_n$ is summable (R, λ, κ) , $\mu \ge 0$, $\kappa \ge 0$ (see Maddox [5]). Since $|R, \lambda, \mu|$ implies (R, λ, μ) summability, the result follows. We note also that $\alpha = 0$. For by (i) $\epsilon_n = o(1)$, and by (ii) $\epsilon_n = \alpha + o(1)$. Some remarks have been made on the condition (a) by Maddox [5]. The necessity of (i) has been discussed by Maddox in a recent note [6].

2. We shall write for $\kappa > -1$,

$$A^{\kappa}(\omega) = \sum_{\lambda_{\nu} < \omega} (\omega - \lambda_{\nu})^{\kappa} a_{\nu} = \int_{0}^{\omega} (\omega - t)^{\kappa} dA(t),$$

where $A(t) = A^{\circ}(t)$. The same notation is used for $B^{\kappa}(\omega)$, where b_{ν} replaces a_{ν} . If $A^{\kappa}(\omega) = O(\omega^{\kappa})$ we say that $\sum a_n$ is bounded (R, λ, κ) , and if $\omega^{-\kappa}A^{\kappa}(\omega)$ is of bounded variation over (λ_0, ∞) we say that $\sum a_n$ is summable $|R, \lambda, \kappa|$.

For $\mu > 0$, $\kappa > -1$, $\kappa + \mu > 0$, we have

$$A^{\kappa+\mu}(\omega) = \frac{\Gamma(\kappa+\mu+1)}{\Gamma(\kappa+1)\Gamma(\mu)} \int_0^{\omega} (\omega-t)^{\mu-1} A^{\kappa}(t) dt.$$

Thus if $b_{\nu} = \lambda_{\nu} a_{\nu}$, and $A^{\kappa}(\omega) = O(\omega^{\kappa})$, then $B^{\kappa}(\omega) = O(\omega^{\kappa+1})$.

3. We shall require the following lemmas.

LEMMA 1. If $0 < \mu \leq 1$, $\kappa \geq 0$, $0 \leq \xi \leq \omega$, then

$$\frac{\Gamma(\kappa+\mu+1)}{\Gamma(\kappa+1)\Gamma(\mu)}\left|\int_0^{\sharp}(\omega-t)^{\mu-1}A^{\kappa}(t)\,dt\right| \leq \max_{0\leq t\leq \sharp}|A^{\mu+\kappa}(t)|.$$

See Hardy and Riesz [2], Lemma 8.

LEMMA 2. If $\kappa \ge 0$, $\kappa + q \ge 0$ and $A^{\kappa}(\omega) = O(\omega^{\kappa+q})$, then, for $\mu = 0,1$, \ldots , $[\kappa]$ and $\lambda_n < \omega \le \lambda_{n+1}$,

$$A^{\mu}(\omega) = O\{\omega^{\mu}\lambda_{n}^{q}\Lambda_{n}^{\kappa-\mu}\}, \text{ where } \Lambda_{n} = \lambda_{n+1}/(\lambda_{n+1} - \lambda_{n})$$

See Borwein [1], Lemma 2.

LEMMA 3. Let $\kappa = 1, 2, \dots$, and ϵ_n be given by (ii) of the theorem with $\alpha = 0$. If $0 < a \leq \Delta \lambda_n / \Delta \lambda_{n-1} \leq A$, then for $\lambda_n \leq \omega \leq \lambda_{n+1}$, we have

$$G_{\kappa}(\omega) = \int_{\omega}^{\infty} (u - \omega)^{\kappa} dg(u) = O(1) \int_{\lambda_n}^{\lambda_{n+\kappa+1}} u^{\kappa} |dg(u)| + O(1) \sum_{\nu=0}^{\kappa} |\epsilon_{n+\nu}|.$$

For integers $\kappa \ge 1$, and $u \ge \lambda_{n+\kappa+1}$ we have (Maddox [5], 349),

$$(u-\omega)^{\kappa} = \sum_{\nu=0}^{\kappa} c_{\nu}(\omega)(u-\lambda_{n+\nu})^{\kappa} \quad \text{where} \quad c_{\nu}(\omega) = O(1).$$

Hence

$$G_{\kappa}(\omega) = \int_{\omega}^{\lambda_{n+\kappa+1}} (u-\omega)^{\kappa} dg(u) +$$

I. J. MADDOX

$$+\sum_{\nu=0}^{\kappa}c_{\nu}(\omega)\times\left\{\int_{\lambda_{n+\nu}}^{\infty}(u-\lambda_{n+\nu})^{\kappa}dg(u)-\int_{\lambda_{n+\nu}}^{\lambda_{n+\kappa+1}}(u-\lambda_{n+\nu})^{\kappa}dg(u)\right\}$$

The result of the lemma now follows.

4. We proceed to the proof of the theorem. The case $\kappa = 0$ is trivial (and well known). For $\kappa > 0$, we have

$$\begin{split} I &= \int_{\lambda_0}^{\infty} \left| d\{ \omega^{-\kappa} \sum_{\lambda_{\nu} < \omega} (\omega - \lambda_{\nu})^{\kappa} a_{\nu} \epsilon_{\nu} \} \right| = \kappa \int_{\lambda_{\bullet}}^{\infty} \omega^{-\kappa - 1} d\omega \left| \sum_{\lambda_{\nu} < \omega} (\omega - \lambda_{\nu})^{\kappa - 1} \lambda_{\nu} a_{\nu} \epsilon_{\nu} \right| \\ &= \kappa \int_{\lambda_0}^{\infty} \omega^{-\kappa - 1} d\omega \left| \sum_{\lambda_{\nu} < \omega} (\omega - \lambda_{\nu})^{\kappa - 1} \lambda_{\nu} a_{\nu} \left\{ \int_{\lambda_{\nu}}^{\omega} (u - \lambda_{\nu})^{\kappa} dg(u) + \int_{\omega}^{\infty} (u - \lambda_{\nu})^{\kappa} dg(u) \right\} \right| \\ &\leq \kappa I_1 + \kappa I_2, \end{split}$$

$$(1)$$

where

$$I_{1} = \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d\omega \left| \int_{\lambda_{0}}^{\omega} dg(u) \int_{0}^{u} (\omega - t)^{\kappa-1} (u - t)^{\kappa} dB(t) \right|, \qquad (2)$$

$$I_{2} = \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d\omega \left| \int_{\omega}^{\infty} dg(u) \int_{0}^{\omega} (\omega - t)^{\kappa-1} (u - t)^{\kappa} dB(t) \right|, \qquad (3)$$

and $b_{\nu} = \lambda_{\nu} a_{\nu}$. To prove that $\sum a_n \epsilon_n$ is summable $|R, \lambda, \kappa|$ we shall show that $I_1 < \infty$ and $I_2 < \infty$.

We first show that $I_1 < \infty$. The argument is valid whether κ is an integer or not. Let p be the integer such that $0 < \kappa - p \leq 1$ (for integer κ , $p = \kappa - 1$). Take the inner integral in I_1 and integrate by parts p + 1 times:

$$\int_{0}^{u} \omega - t)^{\kappa-1} (u - t)^{\kappa} dB(t) = c \int_{0}^{u} B^{p}(t) \left(\frac{d}{dt}\right)^{p+1} \{(\omega - t)^{\kappa-1} (u - t)^{\kappa}\} dt$$

$$\cdot = \sum_{r=0}^{p+1} c_{r} \int_{0}^{u} (\omega - t)^{\kappa-r-1} (u - t)^{\kappa-p+r-1} B^{p}(t) dt, \qquad (4)$$

where c, c_r are non-zero constants.

Now if $\kappa \ge 1$, $(\omega - t)^{\kappa-r-1}(u - t)^r$ decreases in (0, u). Also $B^{\kappa}(\omega) = O(\omega^{\kappa+1})$. Hence by the second mean-value theorem and Lemma 1, the integral in (4) is equal to

$$\omega^{\kappa-r-1} u^{r} \int_{0}^{\xi} (u-t)^{\kappa-p-1} B^{p}(t) dt, \quad (0 \leq \xi \leq u),$$

= $\omega^{\kappa-1} (u/\omega)^{r} O(u^{\kappa+1}) = O(\omega^{\kappa-1} u^{\kappa+1}).$ (5)

If $0 < \kappa < 1$, $(\omega - t)^{\kappa - 1}$ increases and $(u - t)^r(\omega - t)^{-r}$ decreases and is less than

118

or equal to 1. Hence by the second mean-value theorem and Lemma 1, the integral in (4) is equal to

$$\begin{aligned} (\omega - u)^{\kappa - 1} \int_{\xi}^{u} (u - t)^{r} (\omega - t)^{-r} (u - t)^{\kappa - p - 1} B^{p}(t) dt, & (0 \leq \xi \leq u), \\ &= (\omega - u)^{\kappa - 1} \left(\frac{u - \xi}{\omega - \xi}\right)^{r} \int_{\xi}^{\xi'} (u - t)^{\kappa - p - 1} B^{p}(t) dt, & (\xi \leq \xi' \leq u), \\ &= O\{(\omega - u)^{\kappa - 1} u^{\kappa + 1}\}. \end{aligned}$$
(6)

Thus by (2), (4), (5) and (6) we obtain

$$I_{1} = O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa+1} |dg(u)| \int_{u}^{\infty} \{ \omega^{-2} + \omega^{-\kappa-1} (\omega - u)^{\kappa-1} \} d\omega$$
$$= O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa} |dg(u)| < \infty.$$
(7)

Now consider I_2 . The inner integral, after repeated partial integration, is equal to

$$\int_{0}^{\omega} (\omega - t)^{\kappa - 1} (u - t)^{\kappa} dB(t) = c B^{\kappa - 1} (\omega) (u - \omega)^{\kappa} + \sum_{r=1}^{\kappa} c_r J_r, \qquad (8)$$

where

$$J_{r} = \int_{0}^{\omega} (\omega - t)^{r-1} (u - t)^{\kappa - r} B^{\kappa - 1}(t) dt, \qquad (9)$$

and c, c_r are non-zero constants.

By Lemma 2, since $\kappa - 1$ is a positive integer or zero, and $B^{\kappa}(\omega) = O(\omega^{\kappa+1})$, we have for $\lambda_n < \omega \leq \lambda_{n+1}$,

$$B^{\kappa-1}(\omega) = O\{\omega^{\kappa-1}\lambda_n\Lambda_n\}.$$
(10)

Hence by (10), and Lemma 3,

$$\begin{split} &\int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d\omega \left| B^{\kappa-1}(\omega) \int_{\omega}^{\infty} (u-\omega)^{\kappa} dg(u) \right| \\ &= O(1) \sum_{n=0}^{\infty} \lambda_{n} \Lambda_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} \omega^{-2} d\omega \left\{ \int_{\lambda_{n}}^{\lambda_{n+\kappa+1}} u^{\kappa} |dg(u)| + \sum_{\nu=0}^{\kappa} |\epsilon_{n+\nu}| \right\} \\ &= O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa} |dg(u)| + O(1) \sum_{n=0}^{\infty} |\epsilon_{n}| < \infty. \end{split}$$
(11)

Finally consider the integral in (9). Since $(\omega - t)^{r-1}(u - t)^{\kappa-r}$ decreases in

I. J. MADDOX

 $(0, \omega)$, we have by the second mean-value theorem and Lemma 1,

$$J_{r} = \omega^{r-1} u^{\kappa-r} \int_{0}^{\xi} B^{\kappa-1}(t) dt \qquad (0 \leq \xi \leq \omega),$$

= $O\{\omega^{r-1} u^{\kappa-r} \omega^{\kappa+1}\} = O\{u^{\kappa-1} \omega^{\kappa+1}\}, \text{ since } r \geq 1, \omega \leq u.$ (12)

Hence it follows that

$$\int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d\omega \left| \int_{\omega}^{\infty} dg(u) J_{r} \right| = O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa-1} \left| dg(u) \right| \int_{\lambda_{0}}^{u} d\omega$$
$$= O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa} \left| dg(u) \right| < \infty.$$
(13)

Combining (3), (8), (11) and (13) we see that $I_2 < \infty$. Hence, by (7), we have shown that $I < \infty$. This proves the theorem.

References

- D. BORWEIN, On the abscissae of summability of a Dirichlet series, Journ. London Math. Soc., 30(1955), 68-71.
- [2] G. H. HARDY and M. RIESZ, The general theory of Dirichlet's series (Cambridge Tract 18, 1915).
- [3] E. W. HOBSON, The Theory of Functions of a Real Variable II (Cambridge, 1926).
- [4] J. M. HYSLOP, On the absolute summability of series by Rieszian means, Proc. Edinburgh Math. Soc. (2), 5(1936), 46-54.
- [5] I.J. MADDOX, Convergence and summability factors for Riesz means, Proc. London Math. Soc., (3), 12(1962), 345-366.
- [6] I.J. MADDOX, On Riesz summability factors, Tôhoku Math. Journ., 14(4)(1962), 431-435.
- [7] T. PATI and Z. U. AHMAD, On the absolute summability factors of infinite series I, Tôhoku Math. Journ., 12(2) (1960), 222-232.

DEPARTMENT OF MATHEMATICS

THE UNIVERSITY, BIRMINGHAM, ENGLAND.

120