ON ABSOLUTE RIESZ SUMMABILITY FACTORS

Ivor J. Maddox

(Received December 24, 1962)

1. In this note sufficient conditions are given for a series $\sum a_{n} \epsilon_{n}$ to be summable $|R, \lambda, \boldsymbol{\kappa}|$ whenever $\sum a_{n}$ is bounded $(R, \lambda, \boldsymbol{\kappa})$. We shall restrict ourselves to integer values of κ. The non-integer case appears to present considerable difficulties-it is hoped to deal with it in a further note. When $\lambda_{n}=n$, our result is an alternative version of a theorem on absolute Cesàro summability factors (see Pati and Ahmad [7]); the equivalence of (R, n, κ), (C, κ) and $|R, n, \kappa|$, $|C, \boldsymbol{\kappa}|$ summability being well known (Hobson [3], 90-98; Hyslop [4]).

In Section 4 we shall prove the following
THEOREM. Suppose that the sequence of positive numbers $\left\{\lambda_{n}\right\}$ increases to infinity, and that
(a) $0<a \leqq \Delta \lambda_{n} / \Delta \lambda_{n-1} \leqq A, a, A$ constants. If $A^{\kappa}(\omega)=O\left(\omega^{\kappa}\right), \kappa=0,1,2, \cdots$, where $A^{\kappa}(\omega)$ is defined in $\$ 2$, and
(i) $\sum\left|\epsilon_{n}\right|<\infty$,
(ii) there exists a function $g(u)$, defined for $u \geqq \lambda_{0}$, and a number α, such that for $\nu=0,1, \cdots$,

$$
\epsilon_{v}=\alpha+\int_{\lambda_{v}}^{\infty}\left(u-\lambda_{v}\right)^{\kappa} d g(u) \quad \text { with } \int_{\lambda_{0}}^{\infty} u^{\kappa}|d g(u)|<\infty,
$$

then $\sum a_{n} \epsilon_{n}$ is summable $|R, \lambda, \kappa|$.
Although we shall be concerned only with the sufficiency of conditions (i) and (ii), we remark that (ii) is necessary without any restriction on λ_{n}. For it has been shown that (ii) is necessary for $\sum a_{n} \epsilon_{n}$ to be summable (R, λ, μ) whenever $\sum a_{n}$ is summable $(R, \lambda, \kappa), \mu \geqq 0, \kappa \geqq 0$ (see Maddox [5]). Since $|R, \lambda, \mu|$ implies (R, λ, μ) summability, the result follows. We note also that $\alpha=0$. For by (i) $\epsilon_{n}=o(1)$, and by (ii) $\epsilon_{n}=\alpha+o(1)$. Some remarks have been made on the condition (a) by Maddox [5]. The necessity of (i) has been
discussed by Maddox in a recent note [6].
2. We shall write for $\kappa>-1$,

$$
A^{\kappa}(\omega)=\sum_{\lambda_{\nu}<\omega}\left(\omega-\lambda_{\nu}\right)^{\kappa} a_{\nu}=\int_{0}^{\omega}(\omega-t)^{\kappa} d A(t)
$$

where $A(t)=A^{0}(t)$. The same notation is used for $B^{\kappa}(\omega)$, where b_{v} replaces a_{v}. If $A^{\kappa}(\omega)=O\left(\omega^{\kappa}\right)$ we say that $\sum a_{n}$ is bounded (R, λ, κ), and if $\omega^{-\kappa} A^{\kappa}(\omega)$ is of bounded variation over $\left(\lambda_{0}, \infty\right)$ we say that $\sum a_{n}$ is summable $|R, \lambda, \kappa|$.

For $\mu>0, \kappa>-1, \kappa+\mu>0$, we have

$$
A^{\kappa+\mu}(\omega)=\frac{\Gamma(\kappa+\mu+1)}{\Gamma(\kappa+1) \Gamma(\mu)} \int_{0}^{\omega}(\omega-t)^{\mu-1} A^{\kappa}(t) d t .
$$

Thus if $b_{v}=\lambda_{v} a_{v}$, and $A^{\kappa}(\omega)=O\left(\omega^{\kappa}\right)$, then $B^{\kappa}(\omega)=O\left(\omega^{\kappa+1}\right)$.
3. We shall require the following lemmas.

Lemma 1. If $0<\mu \leqq 1, \kappa \geqq 0,0 \leqq \xi \leqq \omega$, then

$$
\frac{\Gamma(\kappa+\mu+1)}{\Gamma(\kappa+1) \Gamma(\mu)}\left|\int_{0}^{\xi}(\omega-t)^{\mu-1} A^{\kappa}(t) d t\right| \leqq \max _{0 \leq t \leq \xi}\left|A^{\mu+\kappa}(t)\right| .
$$

See Hardy and Riesz [2], Lemma 8.
Lemma 2. If $\kappa \geqq 0, \kappa+q \geqq 0$ and $A^{\kappa}(\omega)=O\left(\omega^{\kappa+q}\right)$, then, for $\mu=0,1$, $\ldots,[\kappa]$ and $\lambda_{n}<\omega \leqq \lambda_{n+1}$,

$$
A^{\mu}(\omega)=O\left\{\omega^{\mu} \lambda_{n}^{q} \Lambda_{n}^{\kappa-\mu}\right\}, \text { where } \Lambda_{n}=\lambda_{n+1} /\left(\lambda_{n+1}-\lambda_{n}\right) .
$$

See Borwein [1], Lemma 2.
Lemma 3. Let $\kappa=1,2, \ldots$, and ϵ_{n} be given by (ii) of the theorem with $\alpha=0$. If $0<a \leqq \Delta \lambda_{n} / \Delta \lambda_{n-1} \leqq A$, then for $\lambda_{n} \leqq \omega \leqq \lambda_{n+1}$, we have

$$
G_{\kappa}(\omega)=\int_{\omega}^{\infty}(u-\omega)^{\kappa} d g(u)=O(1) \int_{\lambda_{n}}^{\lambda_{n+\kappa+1}} u^{\kappa}|d g(u)|+O(1) \sum_{v=0}^{\kappa}\left|\epsilon_{n+v}\right| .
$$

For integers $\kappa \geqq 1$, and $u \geqq \lambda_{n+\kappa+1}$ we have (Maddox [5], 349),

$$
(u-\omega)^{\kappa}=\sum_{\nu=0}^{\kappa} c_{\nu}(\omega)\left(u-\lambda_{n+\nu}\right)^{\kappa} \quad \text { where } \quad c_{\nu}(\omega)=O(1) .
$$

Hence

$$
G_{\kappa}(\omega)=\int_{\omega}^{\lambda_{n+\kappa+1}}(u-\omega)^{\kappa} d g(u)+
$$

$$
+\sum_{v=0}^{\kappa} c_{v}(\omega) \times\left\{\int_{\lambda_{n+v}}^{\infty}\left(u-\lambda_{n+v}\right)^{\kappa} d g(u)-\int_{\lambda_{n+v}}^{\lambda_{n+\kappa+1}}\left(u-\lambda_{n+\nu}\right)^{\kappa} d g(u)\right\} .
$$

The result of the lemma now follows.
4. We proceed to the proof of the theorem. The case $\kappa=0$ is trivial (and well known). For $\kappa>0$, we have

$$
\begin{align*}
I & =\int_{\lambda_{0}}^{\infty}\left|d\left\{\omega^{-\kappa} \sum_{\lambda_{\nu}<\omega}\left(\omega-\lambda_{\nu}\right)^{\kappa} a_{\nu} \epsilon_{\nu}\right\}\right|=\kappa \int_{\lambda_{\nu}}^{\infty} \omega^{-\kappa-1} d \omega\left|\sum_{\lambda_{\nu}<\omega}\left(\omega-\lambda_{\nu}\right)^{\kappa-1} \lambda_{\nu} a_{\nu} \epsilon_{\nu}\right| \\
& =\kappa \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\sum_{\lambda \nu<\omega}\left(\omega-\lambda_{\nu}\right)^{\kappa-1} \lambda_{\nu} a_{\nu}\left\{\int_{\lambda_{\nu}}^{\omega}\left(u-\lambda_{\nu}\right)^{\kappa} d g(u)+\int_{\omega}^{\infty}\left(u-\lambda_{\nu}\right)^{\kappa} d g(u)\right\}\right| \\
& \leqq \kappa I_{1}+\kappa I_{2} \tag{1}
\end{align*}
$$

where

$$
\begin{align*}
& I_{1}=\int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\int_{\lambda_{0}}^{\omega} d g(u) \int_{0}^{u}(\omega-t)^{\kappa-1}(u-t)^{\kappa} d B(t)\right|, \tag{2}\\
& I_{2}=\int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\int_{\omega}^{\infty} d g(u) \int_{0}^{\omega}(\omega-t)^{\kappa-1}(u-t)^{\kappa} d B(t)\right|, \tag{3}
\end{align*}
$$

and $b_{v}=\lambda_{\nu} a_{v}$. To prove that $\sum a_{n} \epsilon_{n}$ is summable $|R, \lambda, \kappa|$ we shall show that $I_{1}<\infty$ and $I_{2}<\infty$.

We first show that $I_{1}<\infty$. The argument is valid whether κ is an integer or not. Let p be the integer such that $0<\kappa-p \leqq 1$ (for integer $\kappa, p=\kappa-1$). Take the inner integral in I_{1} and integrate by parts $p+1$ times :

$$
\begin{align*}
& \left.\int_{0}^{u} \cdot \omega-t\right)^{\kappa-1}(u-t)^{\kappa} d B(t)=\dot{c} \int_{0}^{u} B^{p}(t)\left(\frac{d}{d t}\right)^{p+1}\left\{(\omega-t)^{\kappa-1}(u-t)^{\kappa}\right\} d t \\
& =\sum_{r=0}^{p+1} c_{r} \int_{0}^{u}(\omega-t)^{\kappa-r-1}(u-t)^{\kappa-p+r-1} B^{p}(t) d t \tag{4}
\end{align*}
$$

where c, c_{r} are non-zero constants.
Now if $\kappa \geqq 1,(\omega-t)^{\kappa-r-1}(u-t)^{r}$ decreases in $(0, u)$. Also $B^{\kappa}(\omega)=O\left(\omega^{\kappa+1}\right)$. Hence by the second mean-value theorem and Lemma 1, the integral in (4) is equal to

$$
\begin{align*}
& \omega^{\kappa-r-1} u^{r} \int_{0}^{\xi}(u-t)^{\kappa-p-1} B^{p}(t) d t, \quad(0 \leqq \xi \leqq u) \\
& =\omega^{\kappa-1}(u / \omega)^{r} O\left(u^{\kappa+1}\right)=O\left(\omega^{\kappa-1} u^{\kappa+1}\right) \tag{5}
\end{align*}
$$

If $0<\kappa<1$, $(\omega-t)^{\kappa-1}$ increases and $(u-t)^{r}(\omega-t)^{-r}$ decreases and is less than
or equal to 1 . Hence by the second mean-value theorem and Lemma 1, the integral in (4) is equal to

$$
\begin{align*}
(\omega & -u)^{\kappa-1} \int_{\xi}^{u}(u-t)^{r}(\omega-t)^{-r}(u-t)^{\kappa-p-1} B^{p}(t) d t & (0 \leqq \xi \leqq u) \\
& =(\omega-u)^{\kappa-1}\left(\frac{u-\xi}{\omega-\xi}\right)^{r} \int_{\xi}^{\xi^{\prime}}(u-t)^{\kappa-p-1} B^{p}(t) d t, & \left(\xi \leqq \xi^{\prime} \leqq u\right) \\
& =O\left\{(\omega-u)^{\kappa-1} u^{\kappa+1}\right\} & \tag{6}
\end{align*}
$$

Thus by (2), (4), (5) and (6) we obtain

$$
\begin{align*}
I_{1} & =O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa+1}|d g(u)| \int_{u}^{\infty}\left\{\omega^{-2}+\omega^{-\kappa-1}(\omega-u)^{\kappa-1}\right\} d \omega \\
& =O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa}|d g(u)|<\infty . \tag{7}
\end{align*}
$$

Now consider I_{2}. The inner integral, after repeated partial integration, is equal to

$$
\begin{equation*}
\int_{0}^{\omega}(\omega-t)^{\kappa-1}(u-t)^{\kappa} d B(t)=c B^{\kappa-1}(\omega)(u-\omega)^{\kappa}+\sum_{r=1}^{\kappa} c_{r} J_{r} \tag{8}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{r}=\int_{0}^{\omega}(\omega-t)^{r-1}(u-t)^{\kappa-r} B^{\kappa-1}(t) d t, \tag{9}
\end{equation*}
$$

and c, c_{r} are non-zero constants.
By Lemma 2, since $\kappa-1$ is a positive integer or zero, and $B^{\boldsymbol{\kappa}}(\boldsymbol{\omega})=O\left(\boldsymbol{\omega}^{\boldsymbol{\kappa}+1}\right)$, we have for $\lambda_{n}<\omega \leqq \lambda_{n+1}$,

$$
\begin{equation*}
B^{\kappa-1}(\omega)=O\left\{\omega^{\kappa-1} \lambda_{n} \Lambda_{n}\right\} \tag{10}
\end{equation*}
$$

Hence by (10), and Lemma 3,

$$
\begin{align*}
& \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|B^{\kappa-1}(\omega) \int_{\omega}^{\infty}(u-\omega)^{\kappa} d g(u)\right| \\
& =O(1) \sum_{n=0}^{\infty} \lambda_{n} \Lambda_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} \omega^{-2} d \omega\left\{\int_{\lambda_{n}}^{\lambda_{n+1}+\kappa+1} u^{\kappa}|d g(u)|+\sum_{\nu=0}^{\kappa}\left|\epsilon_{n+\nu}\right|\right\} \\
& =O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa}|d g(u)|+O(1) \sum_{n=0}^{\infty}\left|\epsilon_{n}\right|<\infty \tag{11}
\end{align*}
$$

Finally consider the integral in (9). Since $(\omega-t)^{r-1}(u-t)^{\kappa-r}$ decreases in
$(0, \omega)$, we have by the second mean-value theorem and Lemma 1 ,

$$
\begin{array}{rlr}
J_{r} & =\omega^{r-1} u^{\kappa-r} \int_{0}^{\xi} B^{\kappa-1}(t) d t \\
& =O\left\{\omega^{r-1} u^{\kappa-r} \omega^{\kappa+1}\right\}=O\left\{u^{\kappa-1} \omega^{\kappa+1}\right\}, & \text { since } r \geqq 1, \omega \leqq \tag{12}
\end{array}
$$

Hence it follows that

$$
\begin{align*}
\int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\int_{\omega}^{\infty} d g(u) J_{r}\right| & =O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa-1}|d g(u)| \int_{\lambda_{0}}^{u} d \omega \\
& =O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa}|d g(u)|<\infty . \tag{13}
\end{align*}
$$

Combining (3), (8), (11) and (13) we see that $I_{2}<\infty$. Hence, by (7), we have shown that $I<\infty$. This proves the theorem.

References

[1] D. BORWEIN, On the abscissae of summability of a Dirichlet series, Journ. London Math. Soc., 30(1955), 68-71.
[2] G. H. HARDY and M. RIESZ, The general theory of Dirichlet's series (Cambridge Tract 18, 1915).
[3] E. W. HobSON, The Theory of Functions of a Real Variable II (Cambridge, 1926).
[4] J. M. HYslop, On the absolute summability of series by Rieszian means, Proc. Edinburgh Math. Soc. (2), 5(1936), 46-54.
[5] I. J. MADDOX, Convergence and summability factors for Riesz means, Proc. London Math. Soc., (3), 12(1962), 345-366.
[6] I. J. MADDOX, On Riesz summability factors, Tôhoku Math. Journ., 14(4)(1962), 431-435.
[7] T. Pati and Z. U. Ahmad, On the absolute summability factors of infinite series I, Tôhoku Math. Journ., 12(2) (1960), 222-232.

Department of Mathematics
the University, Birmingham, England.

