ON A THEOREM OF MAILLET

H.Roth

(Received September 4, 1962)

A consequence of the theorem of K.F.Roth on "Rational approximations to algebraic numbers" [1] is the

Theorem (a). If

1) $p_{n} / q_{n}, n=1,2, \ldots$, with $\left(p_{n}, q_{n}\right)=1, q_{n+1}>q_{n}>0$ is an infinite sequence of quotients of integers, and if
2) there exists a sequence of real numbers $s_{n}, n=1,2, \ldots$ such that

3) for an irrational number ρ the inequalities

$$
\begin{equation*}
\left|\rho-\left(p_{n} / q_{n}\right)\right| \leqq q_{n}^{-s_{n}}, n=1,2, \cdots \tag{1}
\end{equation*}
$$

are satisfied, then ρ is a transcendental number.
Briefly, we shall refer to such numbers as ρ-numbers. The conditions of theorem (a) are sufficient ones. We shall give a necessary and sufficient condition for a subset of ρ-numbers, a subset containing numbers ρ_{0}, for which the sequences $\left\{p_{n} / q_{n}\right\}, q_{1}>1$, represent convergents to the simple continued fraction expansions for ρ_{0}-numbers.

THEOREM. An irrational number $\left[b_{0}, b_{1}, b_{2} \ldots\right]$ with convergents p_{n} / q_{n}, $q_{1}>1$, is a ρ_{0}-number if and only if infinitely many partial denominators

$$
b_{n+1}>q_{n}^{s / n-2},
$$

where $\left\{s_{n}^{\prime}\right\}$ is a sequence of real numbers with $\tau=\varlimsup_{n \rightarrow \infty} s_{n}^{\prime}>2$.
Proof. We observe, since ρ, and therefore ρ_{0}, satisfy 1.), 2.), 3.) of theorem (a), we can extract a subsequence from $\left\{s_{n}\right\},\left\{s_{n}^{\prime}\right\}$ say, which also tends to τ. Now, if $s_{n}^{\prime} \leqq s_{n}, n=1,2, \cdots$, the inequalities (1) remain valid; and replacing s_{n} by $\inf \left(s_{k}\right)$, we may always assume that $\left\{s_{n}\right\}$ is non-decreasing. Also, since $\tau=\lim _{n \rightarrow \infty}^{k \geqq n} s_{n}>2$, we may assume without loss of generality that $s_{1}>2$.
(a) Necessity. The ρ_{0}-numbers have the property of being limits of sequences of the form $\left\{p_{n} / q_{n}\right\}, q_{1}>1,\left(p_{n}, q_{n}\right)=1$, where according to (1)
(1') $\left|\rho_{0}-\left(p_{n} / q_{n}\right)\right| \leqq q_{n}^{-s_{n}}, n=1,2, \cdots, s_{1}>2$.
Now, since ρ_{0} is an irrational number, hence not an integer, and since (p_{n}, q_{n})
$=1$, for $n=1,2, \cdots, p_{n} / q_{n}$ is a convergent to ρ_{0} by the approximation theorem for simple continued fractions [2], if $\left|\rho_{0}-\left(p_{n} / q_{n}\right)\right|<q_{n}^{-2}$. But then, every p_{n} / q_{n} of (1^{\prime}) is necessarily a convergent to ρ_{0}, since $q_{n}^{s_{n}}>q_{n}^{2}$.

Using the fact, that the $(n+1)$-st complete quotient of $\rho_{0}, \rho_{n+1}<b_{n+1}+1$, we obtain according to [2] without difficulty a lower bound for the left hand side of (1^{\prime})

$$
\left|\rho_{0}-\left(p_{n} / q_{n}\right)\right|>\left[2 q_{n}^{2}\left(b_{n+1}+1\right)\right]^{-1}, n \geqq 1 .
$$

Now

$$
4 b_{n+1} \geqq 2\left(b_{n+1}+1\right)>q_{n}^{s_{n}^{\prime}-2}, n \geqq 1 ;
$$

putting $s_{n}^{\prime}=s_{n}-\left(\log 4 / \log q_{n}\right), q_{1}>1 ; \tau=\varlimsup_{n \rightarrow \infty} s_{n}^{\prime}>2, s_{n}^{\prime}>0$, for $n=1,2, \cdots$ and

$$
b_{n+1}>(1 / 4) q_{n}^{s_{n}-2}=q_{n}^{s^{\prime}-2} .
$$

(b) SUFFICIENCY. We assume that for infinitely many values of n an irrational number ρ_{0} is such that

$$
b_{n+1}>q_{n}^{s / n-2} .
$$

Again by the approximation theorem [2] for simple continued fractions, we have at once that

$$
\left|\rho_{0}-\left(p_{n} / q_{n}\right)\right|<q_{n}^{-2} b_{n+1}^{-1}<q_{n}^{-8 \prime n}, \quad n=1,2, \cdots,
$$

and hence by theorem (a), ρ_{0} is a ρ-number with $q_{n+1}>q_{n}>1,\left(p_{n}, q_{n}\right)=1$, $n=1,2, \ldots$ q.e.d.

This theorem is a generalization of an earlier theorem by E.Maillet [3] for Liouville numbers and as such contains the case where ρ_{0} is a Liouville number.

References

[1] Th. Schneider, Einführung in die transzendenten Zahlen, Berlin (1957), 34.
[2] O. Perron, Die Lehre von den Kettenbrüchen I, Stuttgart (1954), 37.
[3] E. Mailiet, Théorie des nombres transcendants, Paris (1906), 124.
Los Angeles State College.

