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Introduction. Every contact manifold M (d imM^l) with η as a contact
form has a contact metric structure (φ, ξ, η, g) [ 6 ] such that

def

for any differentiable vector fields X, Y on M. W.M.Boothby and H.C.Wang
[ 5 ] proved that, if η is a regular contact form on a compact manifold M,
then M is a principal fiber bundle over a symplectic manifold B with structural
group and fiber the circle group S1. Further, η defines a connection in the
bundle M in such a way that dη — 7r'x"ίl is the equation of structure of the
connection, where ir is the natural projection M —> B and Ω is the fundamental
2-form on B. In this case, as is verified recently [ 9 ], M is a K-contact
manifold. That is, we can find a suitable Riemannian metric g associated with
η such that ξ is a Killing vector field.

This note is devoted to give fiberings of some non-compact i^-contact
manifolds. We remark that, it is only in the case where M is non-compact
that there may exist an infinitesimal transformation which leaves φ invariant,
but not η invariant. If such an infinitesimal transformation exists on a complete
X-contact manifold, then M is a principal fiber bundle over an almost
Kahlerian manifold with structural group and fiber the real line R. And η is
an infinitesimal connection in M. Further, if M is simply-connected, then M is
reduced to the product bundle.

1. Lie algebra of infinitesimal transformations. By Lφ we denote the
set of all infinitesimal transformations which leave φ invariant and by SI that
of all infinitesimal automorphisms of the contact metric structure. Let Z' € Lφ
and Z' i Si, then for some constant σ, 2(Z')η = ση. As σ Φ 0, we define Z =
— σ~ιZ\ so that Z(Z)η = — 77 is satisfied. This Z plays an important role
throughout this note. We put L = (ccZ: a € R), then we have the following

THEOREM 1-1. In a differentiable manifold with a contact metric
structure, the relation

Lφ = SI 0 L {direct sum)
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is valid. And the fallowings are evident,

[Si, Si] e Si, [L,L] = 0,

[81, L] c SI.

PROOF. For any X € Lφ, there corresponds a real number a satisfying

Z(X)η = oίη. Then X is decomposed as follows:

X = (X + άZ) + (- aZ).

Clearly, S(X + tfZ)φ = 0 and 2(X + tfZ)^ = 0 follow. This being said, it is
known that X + aZ leaves # and ξ invariant, and so X + aZ e Si. As 31 is a
subalgebra of the Lie algebra composed of all Killing vector fields on M, Si,
and hence Lφ, is finite dimensional. If M is compact, of course, Lφ = SI.

2. An almost contact metric structure associated with Z. We assume
that there exists a vector field Z on M which satisfies 2(Z)η = — η. Using this
Z we define rj as follows :

(2. 1) η - η + i-(Z)w,

where ί(Z) is the interior product operator by Z. Then, η fulfils the following
two relations :

(2. 2) ,(£) = 1,

(2. 3) dη = 0.

A linear operator φ of the family 3E(M) of all vector fields on M to itself is
defined as follows:

(2. 4) φX = φX- η(φX)ξ, X e ϊ(Λf).

Then the next formulas hold good:

(2. 5) ηφ = 0, φξ = 0,

(2. 6) ?φX = - X + η(X)ξ, X € Ϊ(M).

And the definition of the new metric is:

(2 7) ?(X, 7) = g(X, Y) + w{Z, X) η(Y) + w(Z, Y) η(X)

+ w(Z, X)'w{Z, Y), X, Y g J(M).

If we notice that w(Z, X) = ^(X) — η(X), (2. 7) may be written in the simplified
form as

(2. 8) g(X, Y) = g(X, Y) + η{X)'v(J) - v(X) η(Y)

LEMMA 2-1. The tetrad (φ,ξ,η,~g) defines an almost contact metric
structure on M.
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PROOF. By virtue of (2. 2) and (2. 8), we see that

(2.9) η(X) = g(ξ,X), XzZ(M).

Further, the next relation is valid,

(2.10) g(φX, ? 7 ) = g(X, Y) - η(X) η(Y), X, Y «= S(Λ4).

In fact, from the definition of φ it follows that ηφ = — ηφ, and so we have

η(φX).η(φY) = η(φX)*η(φY).

And from (2. 5), the relation η(φX) η(φY) = 0 follows. Again from (2. 4) we

can deduce the following

g(φX,φY) = g(φX,φY) + rj(φX)*rj(φY).

Putting φX and φY instead of X and Y into (2. 8) and utilizing preceding

three equalities, we obtain

(2.11) g(φX,φY) = g(φX,φY).

As g(φX,φY) = g(X,Y)~ η(X) n(Y), (2. 8) and (2.11) give the verification to
(2.10). To see that g~ is positive definite, we transform (2. 8) identifying Xand

Y,

Hence, g is non-negative. Moreover, if #(X, X) = 0, then η(X) = 0, and φX = 0.
The latter φX = 0 implies φX = 0, and so X = 0. Though it is redundant, ξ
and the vector of the form φX, X e J(M), are orthogonal with respect to ~g.
(2. 2), (2. 5), (2. 6), (2. 9) and (2.10) are the required conditions for φ, ξ, rj and
(/ to define an almost contact metric structure on M.

LEMMA 2-2. We have the following relation :

(2.12) g{X, φY) = w(X, Y), X, Y € £(M).

PROOF. By virtue of (2. 4), (2. 5) and (2. 8), we have

g(X, φY) = g(X, φY) - v(X)-η(φY)

= g(X,φY) - η(φY)-g(X,ξ) - v(X)-v(φY)
= w(X,Y).

3. Maximal integral manifolds of the distribution η = 0. The distri-
bution on M defined by rj = 0 is completely integrable on account of closedness
of the 1-form rj. Therefore, for any point p of M, there is a maximal integral
manifold W = W(p) through p. Let i: W —• M be the injection map. Then, since
φ maps i (3E(Ŵ )) onto itself in some sense, we can define φ' as follows :

(3. 1) ψX = L-ιφ(cX'), X
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Furthermore, we can define Ίj' — L*~§.

PROPOSITION 3-1. If a contact manifold M admits a vector field Z

satisfying 2(Z)η = — η. Then every (maximal) integral manifold W of the

distribution η + i(Z)dη = 0 has an almost Kdhlerian structure.

PROOF. For any vector field X e $(W), rj (ιX') = 0 holds good. Thus,
φ'ψX = - X follows from (3. 1). And we get

Thereby, the pair (φ\ ~g') defines an almost Hermitian structure on W. Denoting
by Ω the fundamental 2-form and using Lemma 2-2, we have

Ω(X\ Y) = ΠX',φΎ) = 9(iX', i-φΎ)

= t*dη(X, T).

Hence, we see that ίl = di*η. Q. E. D.

The Nijenhuis tensor N for the almost contact structure is given by

(3. 2) N(X, Y) = [X, Y] + φ[φX, Y) + φ[X, φY]

- [φX,φY] + (Y V(X) - X>η(Y))ξ,

for X, Y € £(M). And the Nijenhuis tensor JSΓ for the almost complex structure

φ' on W is expressed as follows:

(3. 3) N'(X', T) = [X, F] + φ\φ'X, T] + φ\X, φΎ\ - [ψX, φΎ\,

for X, Y' e X(W). If we put N1 — &(ξ)φ, then several relations hold good
between iV1 and N if η is a contact form [ 7 ], and from those we extract the
followings for the later use,

(3. 4) φ N(X, Y) + N(X, φY) - n{Y) N\X) = 0,

(3.5) N(X,ξ) + φ Nι(X) = 0,

(3. 6) φ N\X) + N\φX) = 0,

(3. 7) N\ξ) = 0, η NKX) = 0,

(3. 8) ΨN(X, Y) = 0.

LEMMA 3-2. For any vector fields X,Y on a contact manifold M, the

next identities are valid,

(3. 9) φ[φX, Y] = φ[φX, Y] - η(φ[φX, Y])ξ

- η(φX)[ξ,φY] +n(φX)NKY),

(3.10) [φX, φY] = [φX, φY] - η(φY)[φX, ξ] - rj{φX)[ξ, φY]
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- ίφ(X) η(φY) - (φY) η(φX)}ξ.

PROOF. (3. 9) follows from direct calculation in which we use the relation

(3.10) is obtained similarly and so we shall omit the details.

LEMMA 3-3. For any point p of M and X, Y' e Ί{W{p)), τve put X = iX,
Y = tT, then

(3.11) ιN£X, Y) = NP(X, Y) + nP(φX)'Nm

-rjp{φY)-N1JyX)-Kv{X,Y)ξv,

-where we have put

Ky(X, Y) = ηJ&X, φY] + φ[φX, Y]) - (φY)AΦ~X)

PROOF. AS the value, for instance, of N(X, Y) at p depends upon only the
magnitudes of tangent vectors XP9 Yp at p and is independent of their extensions,
we can assume that X (or Y) is denned in each sufficiently small neighborhood
U in M by Xe*vtξ-q = exp(tξ)XQ, q e {slice in U passing t h r o u g h p], \t\ < 8,

£ being a positive number depending on the point p. Then, we see that the
term ιNp(X',Y') is equal to

[X,Y]P + ΦvlφXiYh + φP[X,φY]P - IΦX,ΦYU

since, for example, iφ\φ'X\ Y'] is easily seen to be equal to φ[φtX\ LY'].
Consequently, by Lemma 3-2, we have (3.11).

THEOREM 3-4. In a normal contact manifold M admitting Z as above,
every (maximal) integral manifold W of the distribution rj — 0 is Kdhlerian.
Conversely, in a K-contact manifold M, if for any point p of M, W(p) is
Kdhlerian, then M is normal.

PROOF. We have N = 0 in a normal contact manifold M by definition.
And, as is known [ 7 ], Nι = 0 follows from N = 0. So, by Lemma 3-3, we get

cN'p(X',Y')= -Kp(iX,iYf)ξp,

for any p of W and X, Y' € £(W). As ηnN\X,T) = 0, KP(VX,LT) must
vanish everywhere in W. Thus N\X, Y') = 0 follows.

In the next place, suppose that M is a K-contact manifold, that is Nι =0.
This is equivalent to the fact that ξ is a Killing vector field with respect to
the metric g. Then (3.11) of Lemma 3-3 implies
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Therefore, for any point p of M if W(p) is Kahlerian, we obtain

By (3. 8) we get Kp(ιX', tY) = 0. And hence Np(ιX\ ιY) = 0. Further, if we
put (3. 5) into consideration, our assertion may be seen to be true.

LEMMA 3-5. Let M be a K-contact manifold. Then ξ is a Killing vector
field also with respect to the metric ~g', and consequently ξ and rj are parallel
fields in the Riemannian geometry of ~g.

PROOF. By assumption, we know that 2(ξ)g = 0 and Z(ξ)η = 0. And as
2(ξ)rj — 0 is readily seen, 2>(ξ)g = 0 follows from (2. 8). Since ξ and rj are
related by (2. 9), and rj is a closed form, they are both parallel fields with
respect to the Riemannian connection defined by ~g.

THEOREM 3-6. In a simply-connected K-contact manifold M with the
property that ξ generates a 1-parameter global group of isometries (in
particular, with completeness), we suppose that there exists a vector field Z
satisfying Z(Z)η — — η. Then M is a product bundle of an almost Kahlerian
manifold W and the additive group of real numbers R. And the given contact
form η is a connection form in the bundle M. Moreover, M is normal if and
only if W is Kahlerian.

PROOF. We take an arbitrary point p of M and by W we denote the maximal
integral manifold through p. Let exp(ί|), t e R, be a 1-parameter group of
isometries with respect to (/. Of course, for any t £ R, exp(ίf) is also isometric
with respect to ~cj by Lemma 3-5. By g(ξ, ξ) = </(§, ξ) = 1, the canonical parameter
is also the arc-length with respect to both g and ~g. We define the map
μ:R x W-+Mby

μ(t, q) = expOf )g, t € R, q € W.

Then μ is well-defined into map. Now, let x be an arbitrary point of M, then
x has a neighborhood U(x) with local coordinates (yk), k = 1, 2, . . ., 2n + 1
(dim M = 2n + 1), such that each slice (y2n+ι = constant) is an integral manifold
of the distribution rj — 0 [ 1 ]. For the slice passing through x, say λ( r), if
ex.p(tξ) X(x) meets U(x), the intersection is contained in some slice, because η
defining the distribution is invariant by exp(ίf) for any t <= R. By this reason,
we can assume that U(x) — {exp(ίf ) λ(.r), — £(x) < t < £(x)}, where £(.x) is
determined by the condition that, for any d € \(x), {exp(ί|)J, \t\ < S(x)}
(Ί \(x) = d. Under these preparations, we can show that μ is onto. Namely,
suppose u be any point of M, and join u and p by a curve /. Then, by the
standard argument, the curve is covered by finite neighborhoods U(xa), a —
0,1, . . .,/, i α d (x0 — u, xf — p) in such a way that U(xβ) Π U(xβ+1) contains
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a point uβ+i <£ I for each β — 0,1,2, . . ,/— 1. Then, for the slice \{u) passing
through u, there exists a number tu such that eκ.p{txξ)uι £ \{tι) and the slice
passing through ux is identical with exp(— t^)*X(u) in U(u). By two similar
processes for (xι,ux) and (xuu2)9 we get t2 having a property that the slice
passing through ux in U{xι

s) is the image of the slice passing through u2 in
U{xι) by exp(t2ξ). Hence, exp(— tx — t2)ξ X(u) is contained in the maximal
integral manifold through u2. After finite steps, we have numbers tl9 ,tf+1,

( \
for which u = expί — ̂  tΎ ) ξ u £ W holds. Therefore, μ maps R X W onto

-7 = 1 '

M. However, it is not difficult to see that there corresponds to I uniquely the
curve 7 in W joining p and ΰ. So we know that u is irrespective of the choice
of the curve which joins p and u. In fact, let lx be another curve connecting p
and u, then we have a homotopy Zr, O r g r i g l , lQ = Z, since M is simply-
connected. z7r corresponding to Zr is a curve in W and is also contained in the
set R(u) = [ex.p(tξ)u, t z R], and R(u) meets W at most countably many
times. Consequently, ΰr = u. Hence, μ is one-one and R X W and M are
homeomorphic. The action Rs oί s € R is defined on each fiber R(ύ), ΰ € T^,
by Rsu = exp(ί + 5)f ϊZ, for w = exp(ί|)w, that is to say, Rs = exp(sξ). By this,
M i s a principal fiber bundle over an almost Kahlerian manifold W with fiber
and structural group R. And it may be proved that η is a connection form in
M [5] . If we denote by π the natural projection M—>W, then dη = τr*Ω
(Proposition 3-1). Now, if W is Kahlerian, the (maximal) integral manifold
W(x) through any point x of M is Kahlerian. By Theorem 3-4, M is normal
when and only when W is Kahlerian.

REMARK 1. By virtue of Lemma 3-5, we see that the integral submanifold
W is totally geodesic with respect to the metric ~g.

REMARK 2. If we assume the completeness of the metric </, then our
decomposition follows easily from the de Rham's Theorem.

As an example, we know that the contact metric structure given to
Euclidean space E2n+ι (w^l) admits the vector Z:Z(Z)η — — η.

4. The case where M is not simply-connected. To establish the fibering,
we have to show first of all that the contact form η is regular. For this
purpose, we give some lemmas.

LEMMA 4-1. For any x of M,Z is related to ξ by

(4. 1) (expCfβZ)* = Zx + tξx.

PROOF. Define Θ(ί) = exp(ί£)Z - Z - tξ. Then θ(0) = 0. And easily we
see that
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- Z
( A ). = "PCOΐS1 t

= exp(s|>2(Z)£ - £ = 0,

since, 2(Z)£ = £. Thus Θ(ί) is identically equal to 0.

LEMMA 4-2. TA^ contact form η is regular. Namely, the distribution
defined by ξ is regular.

PROOF. Assume that there is a point p such that any coordinate system
at p is not regular with respect to the distribution ξ. And let W(p, r) be the
open connected submanifold of the integral manifold W(p) through p composed
of the points whose distances from p are less than (sufficiently small) r with
respect to g. Then we take U = {exp (tξ)q : q £ W(p,r), \t\ < b] as a coordinate
neighborhood of p, where b is a sufficiently small (§3) fixed positive number.
By the hypothesis, there exist two points x and y in W(p, r) such that x and
y are in the same leaf R(x). That is, we get a number s for which y = exp(5|)x
holds good. As exρ(5f)*(/y = g.x, with the help of Lemma 4-1, we have

9x(ZX9ξx) = gv{exφξ)Zχ>ξv)

= Qv(Zv> ξv) + 9v(s£y> h)-

And hence

(4. 2) \ηx{Z) - ηv{Z)\ = \s\>b.

On the other hand, r may be taken so that \ηx(Z) — ηv{Z)\ is smaller than b,
in contradiction to the inequality (4. 2). Q. E. D.

Similarly we have

LEMMA 4-3. Each leaf R(p), p £ M, cannot be a circle, but homeomorphic
to the real line R.

THEOREM 4-4. If in a K-contact manifold M, ξ generates a 1-parameter
group of isometries {in particular, M is complete). And if there exists a
vector field Z such that Z{Z)η — — η, in particular if Lφ φ δl, then M is a
principal fiber bundle over an almost Kdhlerian manifold M/ξ with R as the
structural group and fiber. Denoting by £2 the fundamental 2-form on M/ξ
and by ir the projection, the relation dη — 7r*Ώ holds good. Of course, η defines
a connection in M. Further M is normal if and only if M/ξ is Kdhlerian.

PROOF. Since the contact form is regular, B = M/ξ has a differentiate
structure [ 4 ]. And it can be shown that B is a Hausdorff space. The proof of
the fact that M i s a principal bundle over B with R as the structural group and
fiber and that η is a connection form in M is almost similar to [ 5 ]. And so
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we shall omit it. Let X and Y be two vector fields on B. If the vector fields

X* and Y* on M satisfy τ?(X*) = η(X*) = 0 and τrpX* = X^, *r,Y* = Y w for

any 7r̂ , p € M, we call X*, Y* the lifts of X, Y with respect to η. The Riemann-

ian metric Tf and almost complex stπicture φ in B are defined by

(4.3) ^ x , y ) = ίj(x»,y*),

(4. 4)

where p z B and /> is an arbitrary point such that πp — p. We see that the

right hand sides of (4. 3) and (4. 4) are independent of the choice of p £ p,
since η, g and φ are invariant under the transformation Rt = exp (if). Then the
fundamental 2-form ί2 on B satisfies

τr*ίχx*, Y*) = H(X,φΫ) = ί

Hence we can deduce dη = 7rrrίl, because any tangent vector 7 to M is
expressed as a sum of η(V)ξ and some lift. We refer to [ 9 ] for the verification
that M is normal when and only when B is Kahlerian. We remark that the
base space B may be understood also by another approach if M is complete
with respect to ~g in §3 [ 3 ].

REFERENCES

[ 1 ] C. CHEVALLEY, Theory of Lie Groups, Princeton 1946.
[ 2 ] G. DERHAM, Sur la reductibilite d'un espace de Riemann, Comm. Math. Helv.,

26(1952),328-344.
[ 3 ] A. G. WALKER, The fibring of Riemannian manifolds, Proc. London Math. Soc.,

3(1953),1-19.
[ 4 ] R. S. PALAIS, A global formulation of the Lie theory of transformation groups, Memoirs

of Amer. Math. Soc. 22.1957.
[ 5 ] W. M. BOOTHBY AND H. C. WANG, On contact manifolds, Ann. of Math. 68(1958),

721-734.
[ 6 ] S.SASAKI, On differentiable manifolds with certain structures which are closely related

to almost contact structure I,Tόhoku Math. Journ., 12(1960) ,459-476.
[ 7 ] S.SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structures

which are closely related to almost contact structure Π, Tόhoku Math. Journ.,
13(1961), 281-294.

[ 8 ] S.TANNO, Note on infinitesimal transformations over contact manifolds, Tόhoku Math.
Journ., 14 (1962), 416-430.

[ 9 ] Y. HATAKEYAMA, Some notes on differentiable manifolds with almost contact structures
Tόhoku Math. Journ., 15(1963), 176-181.

TOHOKU UNIVERSITY.






