ON A FREE RESOLUTION OF A DIHEDRAL GROUP

Suguru Hamada

(Received December 20, 1962)
A free resolution of a group G is an exact sequence

$$
\cdots \xrightarrow{d_{i+1}} X_{i} \xrightarrow{d_{i}} X_{i-1} \xrightarrow{d_{i-1}} \cdots \longrightarrow X_{1} \xrightarrow{d_{1}} X_{0} \xrightarrow{\varepsilon} Z \longrightarrow 0,
$$

where $X_{i}(i=0,1,2, \cdots)$ are free G-modules, d_{i}, ε are G-homomorphisms, and Z is the ring of rational integers, on which G operates trivially.

For a cyclic group, we have the well-known simple free resolution. S. Takahashi [2] constructed a free resolution of abelian groups, and applied it to local number field theory, etc.

In this note, we construct a free resolution of a dihedral group, and decide n-dimensional cohomology groups for some modules. The author is grateful to Prof. T. Tannaka and Prof. H. Kuniyoshi who gave him this theme, encouragement and many suggestions.

1. Let G be a dihedral group, i.e. a group generated by s and t with relations $s^{2^{l}}=1, t^{2}=1$, and $t s t=s^{2^{l}-1}$, where $l \geqq 2$.

We introduce the notations:

$$
\begin{aligned}
& \Delta_{1}=1-s, \quad \Delta_{2}=1-t, \quad \Delta_{3}=1-s t, \\
& N_{1}=1+s+\cdots+s^{2^{2}-1}, \quad N_{2}=1+t, N_{3}=1+s t,
\end{aligned}
$$

$$
\Lambda_{0}=Z[s] \quad \text { group ring of the subgroup generated by } s \text { over } Z,
$$

$$
\Lambda=Z[G] \quad \text { group ring of } G \text { over } Z
$$

Then, it follows $\Lambda=\Lambda_{0}+\Lambda_{0} t$ (direct), $N_{3} \Delta_{1}=\Delta_{1} \Delta_{2}, \Delta_{3} \Delta_{1}=\Delta_{1} N_{2}$, $N_{1} \Delta_{3}=\Delta_{2} N_{1}$, and $N_{1} N_{3}=N_{2} N_{1}$.

Lemma 1. We consider the following equations in Λ

$$
\begin{array}{ll}
X N_{i}=0 & (i=1,2,3) \\
Y \Delta_{i}=0 & (i=1,2,3) \\
X \Delta_{1}+Y \Delta_{2}=0 \tag{3}
\end{array}
$$

and

$$
\left\{\begin{array}{l}
X N_{1}+Y N_{3}=0 \tag{4}\\
Y\left(-\Delta_{1}\right)+W N_{2}=0 .
\end{array}\right.
$$

Then, the solutions of these equations are as follows:

$$
\begin{aligned}
& \text { solutions of }(1) \text { are } X=A \Delta_{i} \quad(i=1,2,3) ; \\
& \text { solutions of }(2) \text { are } Y=B N_{i} \quad(i=1,2,3) \\
& \text { solutions of }(3) \text { are }\left\{\begin{array}{l}
X=A N_{1}+B N_{3} \\
Y=B\left(-\Delta_{1}\right)+C N_{2} ;
\end{array}\right. \\
& \text { solutions of (4) are }\left\{\begin{array}{l}
X=A \Delta_{1}+B N_{2} \\
Y=B\left(-N_{1}\right)+C \Delta_{3} \\
W=C \Delta_{1}+D \Delta_{2},
\end{array}\right.
\end{aligned}
$$

where A, B, C and D are arbitrary elements of Λ.
Proof. We prove only the third case. Let

$$
\begin{aligned}
& X=x_{0}+x_{1} t \\
& Y=y_{0}+y_{1} t, \quad x_{i}, y_{i} \in \Lambda_{0}(i=0,1) .
\end{aligned}
$$

Then, from

$$
\left(x_{0}+x_{1} t\right) \Delta_{1}=-\left(y_{0}+y_{1} t\right) \Delta_{2}
$$

it follows that

$$
\begin{equation*}
x_{0} \Delta_{1}+x_{1}\left(1-s^{2^{2}-1}\right)=0 . \tag{5}
\end{equation*}
$$

Hence we have

$$
x_{0}+x_{1} t \equiv x_{1} t(1+s t) \bmod . \Lambda N_{1} .
$$

Therefore, there exist elements A and B in Λ such that

$$
x_{0}+x_{1} t=A N_{1}+B N_{3} .
$$

Conversely,

$$
X=A N_{1}+B N_{3}
$$

satisfies (5) for arbitrary A and B in Λ. Then, we have

$$
Y=B\left(-\Delta_{1}\right)+C N_{2}
$$

As for the last equation we can solve it similarly, and first two cases are trivial. q.e.d.
2. Let X_{i} be a Λ-free module with a basis $\left\{a_{i}^{j}\right\}$, $X_{i}=\Lambda a_{i}^{1}+\Lambda a_{i}^{2}+\cdots+\Lambda a_{i}^{i+1}$.

We now define G-homomorphisms

$$
D_{j}(i)(i \geqq 2) \text {, and } D_{j}^{\prime}(i)(i \geqq 3): X_{i} \rightarrow X_{i-1}, \quad j=1,2,3,4,
$$

as follows:

$$
\left.\begin{array}{lll}
D_{1}(i): & a_{i}^{1} \rightarrow \Delta_{1} a_{i-1}^{1} & D_{1}^{\prime}(i): \begin{array}{l}
a_{i}^{3} \rightarrow \Delta_{1} a_{i-1}^{3} \\
\\
a_{i}^{2} \rightarrow \Delta_{2} a_{i-1}^{1}+\left(-N_{1}\right) a_{i-1}^{2}
\end{array} \\
& a_{i}^{3} \rightarrow N_{3} a_{i-1}^{2} & \\
& a_{2}^{4} \rightarrow N_{2} a_{i-1}^{3} \\
a_{i}^{k} \rightarrow 0 \text { for } k>3
\end{array}\right)
$$

Then we have
Lemma 2. The kernel of the mapping $D_{j}(i)$ in $\Lambda a_{i}^{1}+\Lambda a_{i}^{2}+\Lambda a_{i}^{3}$ coincides with the image of $D_{q}(i+1)+D_{q}^{\prime}(i+1)$, where $q \equiv j+1(\bmod .4)$.

Moreover, if

$$
X a_{i}^{1}+Y a_{i}^{2}+W a_{i}^{3}
$$

belongs to the kernel of $D_{j}(i)$ and if

$$
W a_{i}^{3}=D_{q}^{\prime}(i+1)\left(C a_{i+1}^{3}+D a_{i+1}^{4}\right),
$$

then we can find A and B in Λ such that

$$
X a_{i}^{1}+Y a_{i}^{2}+W a_{i}^{3}=\left\{D_{q}(i+1)+D_{q}^{\prime}(i+1)\right\}\left(A a_{i+1}^{1}+B a_{i+1}^{2}+C a_{i+1}^{3}+D a_{i+1}^{4}\right) .
$$

Proof. In fact,

$$
D_{1}(i)\left(X a_{i}^{1}+Y a_{i}^{2}+W a_{i}^{3}\right)=0
$$

holds if and only if

$$
\begin{equation*}
X \Delta_{1}+Y \Delta_{2}=0 \tag{6}
\end{equation*}
$$

and

$$
\begin{equation*}
Y\left(-N_{1}\right)+W N_{3}=0 \tag{7}
\end{equation*}
$$

hold. Applying Lemma 1 to (6), we have

$$
X=A N_{1}+B N_{3} \text { and } Y=B\left(-\Delta_{1}\right)+C N_{2},
$$

and from (7) we have

$$
W=C N_{1}+D \Delta_{3} .
$$

Thus,

$$
X a_{i}^{1}+Y a_{i}^{2}+W a_{i}^{3}=\left\{D_{2}(i+1)+D_{2}^{\prime}(i+1)\right\}\left(A a_{i+1}^{1}+B a_{i+1}^{2}+C a_{i+1}^{3}+D a_{i+1}^{4}\right)
$$

Moreover, if X, Y and W satisfy (6) and (7) with

$$
W=C N_{1}+D \Delta_{3},
$$

then, putting W into (7), we have

$$
Y=B\left(-\Delta_{1}\right)+C N_{2}
$$

and, by the same process,

$$
X=A N_{1}+B N_{3} .
$$

For $j=2,3$ and 4 we can prove the lemma similarly. q.e.d.
We remark here that $D_{j}^{\prime}(i)$ maps Λa_{i}^{3} and Λa_{i}^{4} into Λa_{i-1}^{3} just as $D_{r}(i)$ maps Λa_{i}^{1} and Λa_{i}^{2} into Λa_{i-1}^{1}, respectively, where $r \equiv j+2(\bmod .4)$.
3. Now, we construct a free resolution for a dihedral group G. Let X_{i} ($i=0,1,2, \cdots$) be G-free modules described in 2. ε is defined by

$$
\varepsilon\left(m \sigma a_{0}^{1}\right)=m \text { for } m \in Z \text { and } \sigma \in G .
$$

We define d_{1} and d_{2} as follows:

$$
d_{1}\left(X a_{1}^{1}\right)=X \Delta_{1} a_{0}^{1}, \quad d_{1}\left(X \quad a_{1}^{2}\right)=X \Delta_{2} a_{0}^{1}
$$

and

$$
\begin{array}{ll}
d_{2}\left(X a_{2}^{1}\right)=X N_{1} a_{1}^{1}, & d_{2}\left(X a_{2}^{2}\right)=X N_{3} a_{1}^{1}+X\left(-\Delta_{1}\right) a_{1}^{2} \\
d_{2}\left(X a_{2}^{3}\right)=X N_{2} a_{1}^{2}, &
\end{array}
$$

where $X \in \Lambda$. These mappings are clearly G-homomorphisms.
For $i \geqq 3$, we put

$$
d_{i}=D_{j}(i)+d_{i-2}^{\prime},
$$

where $j \equiv i(\bmod .4)$, and d_{i-2}^{\prime} is the G-homomorphism which maps
$\Lambda a_{i}^{3}+\Lambda a_{i}^{4}+\cdots$ to $\Lambda a_{i-1}^{3}+\Lambda a_{i-1}^{4}+\cdots$
just as d_{i-2} maps

$$
\Lambda a_{i-2}^{1}+\Lambda a_{i-2}^{2}+\cdots \text { to } \Lambda a_{i-3}^{1}+\Lambda a_{i-3}^{2}+\cdots
$$

Proposition 1. The above defined $\left\{X_{i}, d_{i}, \varepsilon\right\}$ gives a free resolution of a dihedral group G.

Proof. The kernel of ε is clearly the image of d_{1}. For $i=1$ and $i=2$ the exactness follows from (3) and (4) of Lemma 1, respectively. When $i=3$,

$$
d_{3}\left(X a_{3}^{1}+Y a_{3}^{2}+W a_{3}^{3}+V a_{3}^{4}\right)=0
$$

holds if and only if

$$
\begin{equation*}
D_{3}(3)\left(X a_{3}^{1}+Y a_{3}^{2}+W a_{3}^{3}\right)=0 \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{1}^{\prime}(3)\left(W a_{3}^{3}+V a_{3}^{4}\right)=0 \tag{9}
\end{equation*}
$$

hold.
As we have already showed the exactness for $i=1$, there exist from (9) C, D and E in Λ such that

$$
W a_{3}^{3}+V a_{3}^{4}=d_{2}^{\prime}\left(C a_{4}^{3}+D a_{4}^{4}+E a_{4}^{5}\right),
$$

and then

$$
\begin{equation*}
W a_{3}^{3}=D_{4}^{\prime}(4)\left(C a_{4}^{3}+D a_{4}^{4}\right) \tag{10}
\end{equation*}
$$

as we remarked in 2. Applying Lemma 2 to (8) and (10), we can find A, B in Λ such that

$$
X a_{3}^{1}+Y a_{3}^{2}+W a_{3}^{3}=\left\{D_{4}(4)+D_{4}^{\prime}(4)\right\}\left(A a_{4}^{1-}+B a_{4}^{2}+C a_{4}^{3}+D a_{4}^{4}\right) .
$$

Thus,
$X a_{3}^{1}+Y a_{3}^{2}+W a_{3}^{3}+V a_{3}^{4}=\left\{D_{4}(4)+d_{2}^{\prime}\right\}\left(A a_{4}^{1}+B a_{4}^{2}+C a_{4}^{3}+D a_{4}^{4}+E a_{4}^{5}\right)$.
We now proceed by induction on i. Assume that the exactness has been proved for $n \leqq i-1$.

Let

$$
\alpha=X a_{i}^{1}+Y a_{i}^{2}+W a_{i}^{3}+\cdots+V a_{i}^{i+1}
$$

be an element of Ker $d_{i} \subset X_{i}$. Then from $d_{i}(\alpha)=0$ we have

$$
\begin{equation*}
D_{j}(i)\left(X a_{i}^{1}+Y a_{i}^{2}+W a_{i}^{3}\right)=0, \quad j \equiv i(\bmod .4) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
d_{i-2}^{\prime}\left(W a_{i}^{3}+\cdots+V a_{i}^{i+1}\right)=0 \tag{12}
\end{equation*}
$$

From (12), by assumption, we can find C, D, \cdots, E in Λ such that

$$
\begin{equation*}
W a_{i}^{3}+\cdots+V a_{i}^{i+1}=d_{i-1}^{\prime}\left(C a_{i+1}^{3}+D a_{i+1}^{4}+\cdots+E a_{i+1}^{i+2}\right) . \tag{13}
\end{equation*}
$$

Since

$$
d_{i-1}^{\prime}=D_{q}(i+1) \quad \text { on } \Lambda a_{3+1}^{i}+\Lambda a_{i+1}^{4}, q \equiv i+1(\bmod .4),
$$

we have from (13)

$$
W a_{i}^{3}=D_{q}^{\prime}(i+1)\left(C a_{i+1}^{3}+D a_{i+1}^{1}\right) .
$$

From this and (11), by Lemma 2, there exist A and B in Λ such that

$$
\begin{aligned}
X a_{i}^{1} & +Y a_{i}^{2}+W a_{i}^{3} \\
& =\left\{D_{q}(i+1)+D_{q}^{\prime}(i+1)\right\}\left(A a_{i+1}^{1}+B a_{i+1}^{2}+C a_{i+1}^{3}+D a_{i+1}^{4}\right) .
\end{aligned}
$$

Thus we have

$$
\alpha=\left\{D_{q}(i+1)+d_{i-1}^{\prime}\right\}\left(A a_{i+1}^{1}+B a_{i+1}^{2}+C a_{i+1}^{3}+D a_{i+1}^{1}+\cdots+E a_{i+1}^{i+2}\right),
$$

where $D_{q}(i+1)+d_{i-1}^{\prime}=d_{i+1}, q \equiv i+1(\bmod .4)$. Finally,

$$
d_{i-1} d_{i}(\alpha)=0 \text { for arbitrary } \alpha \in X_{i}
$$

follows immediately from Lemma 2 and the assumption of induction. q.e.d.
4. By our exact sequence, we define cohomology groups as usual. Let A be a G-module, and $A_{r}=\operatorname{Hom}^{G}\left(X_{r}, A\right)$ be the group of all G-homomorphisms from X_{r} to A.

Then, we can consider $f \in A_{r}$ to be a vector ($\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r+1}$) with elements in A, where $f\left(a_{r}^{1}\right)=\alpha_{1}, f\left(a_{r}^{2}\right)=\alpha_{2}, \cdots, f\left(a_{r}^{r+1}\right)=\alpha_{r+1}$. And coboundary
operator $\delta_{r}: A_{r} \rightarrow A_{r+1}$ is translated into a mapping between additive groups of vectors.

From this we have
Proposition 2. If A is a Z-torsion free module, on which G operates trivially,

$$
\begin{aligned}
& H^{0}(G, A)=A / 2^{l+1} A \\
& H^{4 n+1}(G, A)=2 n \cdot(A / 2 A) \\
& H^{4 n+2}(G, A)=2(n+1) \cdot(A / 2 A) \\
& H^{4 n+3}(G, A)=(2 n+1) \cdot(A / 2 A) \\
& H^{4 n+4}(G, A)=A / 2^{l} A+2(n+1) \cdot(A / 2 A)
\end{aligned}
$$

where + means direct sum, and $m \cdot B$ is direct sum of m copies of module B.
Proof. First of all, we remark the following fact: consider a subgroup

$$
C=\left\{\left(\alpha_{1}, \alpha_{2}\right) ; \alpha_{1}, \alpha_{2} \in A \text { and } 2 \alpha_{1}-2^{l} \alpha_{2}=0\right\}
$$

of additive group of vectors and a subgroup

$$
D=\left\{\left(2^{l} \alpha, 2 \alpha\right) ; \alpha \in A\right\}
$$

of C, then

$$
C / D \cong A / 2 A
$$

Using these facts, the results follow from direct computations, for $n=0,1,2$.
Then we have from the proof of Theorem 1,

$$
\begin{array}{lll}
H^{n}(G, A)=A / 2^{l} A+H^{n-2}(G, A) & \text { (direct) } & \text { for } n \equiv 0(\bmod .4) \\
H^{n}(G, A)=A / 2 A+H^{n-2}(G, A) & \text { (direct) } & \text { for } n \equiv 1 \text { (mod.4) } \\
H^{n}(G, A)=A / 2 A+\bar{H}^{n-2}(G, A) & \text { (direct) } & \text { for } n \equiv 2 \text { (mod.4) } \\
H^{n}(G, A)=A / 2 A+H^{n-2}(G, A) & \text { (direct) } & \text { for } n \equiv 3 \text { (mod.4), }
\end{array}
$$

where $\bar{H}^{n-2}(G, A)$ is the group obtained by replacing only the first component of $H^{n-2}(G, A)$ by $A / 2 A$. From these equations we have the results. q.e.d.

Corollary 1. Let Z be the ring of rational integers, then

$$
\begin{aligned}
& H^{0}(G, Z)=Z / 2^{l+1} Z \\
& H^{4 n}(G, Z)=Z / 2^{l} Z+2 n \cdot(Z / 2 Z) \\
& H^{2 n+1}(G, Z)=n \cdot(Z / 2 Z)
\end{aligned}
$$

and

$$
H^{4 n+2}(G, Z)=2(n+1) \cdot(Z / 2 Z)
$$

Let k be a p-adic number field and K its Galois extension. T. Tannaka
(3) considered the structure of the group $G(k / K)=\left\{\alpha ; \alpha \in K, N_{K / k}(\alpha)=1\right\}$ and decided it using a suitable factor set and $K .{ }^{1-\sigma} \mathrm{H}$. Kuniyoshi (1) decided the structure of $G(k / K)$ in another form when the Galois group G is abelian. When G is a dihedral group, we can decide the group $G(k / K)$ as analogous form in [1].

Corollary 2. Let k be a p-adic number field, and K be a normal extension, of which Galois group is a dihedral group. Then

$$
G(k / K) / K^{1-\sigma}=Z / 2 Z
$$

where

$$
K^{1-\sigma}=\left\{\Pi \alpha^{1-\sigma} ; \alpha \in K, \sigma \in G\right\} .
$$

Proof. The left-hand side is $H^{-1}\left(G, K^{*}\right)$, where K^{*} is the multiplicative group of K. And this group is isomorphic with $H^{-3}(G, Z)$ by Tate's theorem, while

$$
H^{-3}(G, Z)=H^{3}(G, Z)
$$

and the last group is isomorphic to $Z / 2 Z$ by Corollary 1 . q.e.d.

References

[1] H. Kuniyoshi, On a certain group concerning the p-adic number field, Tôhoku Math. Journ., 1(1950), 186-193.
[2] S. TAKAHASHI, Cohomology groups of finite abelian groups, Tôhoku Math. Journ., 4 (1952), 294-302.
[3] T. TANNAKA, Some remarks concerning p-adic number fields, Journ. Math. Soc. Japan, 3 (1951), 252-257.
Tôkai University.

