A-GENUS AND DIFFERENTIABLE IMBEDDING

Yasurô Tomonaga

(Received November 15, 1962)

Introduction. Atiyah and Hirzebruch provided us with a very useful mean dealing with the non-imbeddability problem and clarified the relations between the divisibility of A-genus and the differentiable imbedding of a compact orientable differentiable $4 n$-manifold ([2]). Furthermore they exactly computed the index of a $4 n$-manifold imbedded in the ($4 n+4$)-euclidean space ([1]).

In this paper we shall improve our previous paper ([5]) by means of above theorem and we shall clarify the divisibility of the cobordism coefficients in the case of dimension 8,12 , and 16.

1. Let $M_{4 n}$ be a compact orientable differentiable $4 n$-manifold and let

$$
\begin{equation*}
M_{4 n} \sim \sum_{i_{4}+\ldots+i_{i}=n} A_{i_{1} \ldots i_{l}}^{n} P_{2 i_{1}}(c) \cdots P_{2 i_{l}}(c) \bmod \text { torsion } \tag{1.1}
\end{equation*}
$$

be its cobordism decomposition, where $P_{2 i}(c)$ denotes the complex projective space of complex dimension $2 i$ and A 's denote some rational numbers. It is known that $A_{2}^{2}, A_{11}^{2}, A_{3}^{3}, A_{21}^{3}, A_{111}^{3}, 3 A_{4}^{4}, A_{31}^{4}, A_{22}^{4}, A_{211}^{4}, 3 A_{1111}^{4}$ are integers ([4$],[6]$). Let p_{i} or \bar{p}_{i} be the Pontryagin class or dual-Pontryagin class of dimension $4 i$ respectively. Then these cobordism coefficients are expressed as follows ([5]):

$$
\begin{equation*}
\boldsymbol{\tau}=\text { index }=\sum_{i_{1}+\ldots+i_{t}=n} A_{i_{1} \ldots i_{i}}^{n} \tag{1.2}
\end{equation*}
$$

$$
\begin{align*}
& \text { (a) } \quad A_{2}^{2}=\frac{1}{5}\left(-2 p_{2}+p_{1}^{2}\right)\left[M_{8}\right]=\frac{1}{5}\left(2 \bar{p}_{2}-\bar{p}_{1}^{2}\right)\left[M_{8}\right] \text {, } \\
& \text { (a) } A_{2}^{2}=\frac{1}{5}\left(-2 p_{2}+p_{1}^{2}\right)\left[M_{8}\right]=\frac{1}{5}\left(2 \bar{p}_{2}-\bar{p}_{1}^{2}\right)\left[M_{8}\right] \text {, } \\
& \text { (b) } A_{11}^{2}=\frac{1}{9}\left(5 p_{2}-2 p_{1}^{2}\right)\left[M_{8}\right]=\frac{1}{9}\left(-5 \bar{p}_{2}+3 \bar{p}_{1}^{2}\right)\left[M_{8}\right] \text {, } \tag{1.3}\\
& \text { (c) } \quad \tau=\frac{1}{45}\left(7 p_{2}-p_{1}^{2}\right)\left[M_{8}\right]=\frac{1}{45}\left(-7 \bar{p}_{2}+6 \bar{p}_{1}^{2}\right)\left[M_{8}\right] \text {, } \\
& \text { (a) } \quad A_{3}^{3}=\frac{1}{7}\left(3 p_{3}-3 p_{2} p_{1}+p_{1}^{3}\right)\left[M_{12}\right]=\frac{1}{7}\left(3 \bar{p}_{3}-3 \bar{p}_{2} \bar{p}_{1}+\bar{p}_{1}^{3}\right)\left[M_{12}\right] \text {, } \\
& \text { (b) } A_{21}^{3}=\frac{1}{15}\left(-21 p_{3}+19 p_{2} p_{1}-6 p_{1}^{3}\right)\left[M_{\mathrm{I} 2}\right]=\frac{1}{15}\left(-21 \bar{p}_{3}+23 \bar{p}_{2} \bar{p}_{1}\right. \tag{1.4}\\
& \text { (c) } A_{111}^{3}=\frac{1}{27}\left(28 p_{3}-23 p_{2} p_{1}+7 p_{1}^{3}\right)\left[M_{12}\right]=\frac{1}{27}\left(28 \bar{p}_{3}-33 \bar{p}_{2} \bar{p}_{1}\right.
\end{align*}
$$

$$
\begin{aligned}
& \left.+12 \bar{p}_{1}^{3}\right)\left[M_{12}\right], \\
& \text { (d) } \boldsymbol{\tau}=\frac{1}{3^{3} \cdot 5 \cdot 7}\left(62 p_{3}-13 p_{2} p_{1}+2 p_{1}^{3}\right)\left[M_{12}\right] \\
& =\frac{1}{3^{3} \cdot 5 \cdot 7}\left(62 \bar{p}_{3}-111 \bar{p}_{2} \bar{p}_{1}+51 \overline{p_{1}^{3}}\right)\left[M_{12}\right], \\
& \text { ((a) } A_{4}^{4}=\frac{1}{9}\left(-4 p_{4}+4 p_{3} p_{1}+2 p_{2}^{2}-4 p_{2} p_{1}^{2}+p_{1}^{4}\right)\left[M_{16}\right] \\
& =\frac{1}{9}\left(4 \bar{p}_{4}-4 \bar{p}_{3} \bar{p}_{1}-2 \bar{p}_{2}^{2}+4 \bar{p}_{2} \bar{p}_{1}^{2}-\bar{p}_{1}^{4}\right)\left[M_{16}\right], \\
& \text { (b) } A_{31}^{4}=\frac{1}{21}\left(36 p_{4}-33 p_{3} p_{1}-18 p_{2}^{2}+33 p_{2} p_{1}^{2}-8 p_{1}^{4}\right)\left[M_{16}\right] \\
& =\frac{1}{21}\left(-36 \bar{p}_{4}+39 \bar{p}_{3} \bar{p}_{1}+18 \bar{p}_{2}^{2}-39 \bar{p}_{2} \overline{p_{1}^{2}}+10 \overline{p_{1}^{4}}\right)\left[M_{16}\right], \\
& \text { (c) } \quad A_{22}^{4}=\frac{1}{25}\left(18 p_{4}-18 p_{3} p_{1}-7 p_{2}^{2}+16 p_{2} p_{1}^{2}-4 p_{1}^{4}\right)\left[M_{16}\right] \\
& =\frac{1}{25}\left(-18 \bar{p}_{4}+18 \bar{p}_{3} \bar{p}_{1}+11 \bar{p}_{2}^{2}-20 \bar{p}_{2} \bar{p}_{1}^{2}+5 \overline{p_{1}^{4}}\right)\left[M_{16}\right], \\
& \text { (d) } A_{211}^{4}=\frac{1}{45}\left(-180 p_{4}+159 p_{3} p_{1}+80 p_{2}^{2}-150 p_{2} p_{1}^{2}+36 p_{1}^{4}\right)\left[M_{16}\right] \\
& =\frac{1}{45}\left(180 \bar{p}_{4}-201 \bar{p}_{3} \bar{p}_{1}-100 \bar{p}_{2}^{2}+212 \bar{p}_{2} \bar{p}_{1}^{2}-55 \overline{p_{1}^{4}}\right)\left[M_{16}\right], \\
& \text { (e) } A_{1111}^{4}=\frac{1}{81}\left(165 p_{4}-137 p_{3} p_{1}-70 p_{2}^{2}+127 p_{2} p_{1}^{2}-30 p_{1}^{4}\right)\left[M_{16}\right] \\
& =\frac{1}{81}\left(-165 \bar{p}_{4}+193 \bar{p}_{3} \bar{p}_{1}+95 \bar{p}_{2}^{2}-208 \bar{p}_{2} \bar{p}_{1}^{2}+55 \overline{p_{1}^{4}}\right)\left[M_{16}\right] \text {, } \\
& \text { (f) } \quad \boldsymbol{\tau}=\frac{1}{3^{4} \cdot 5^{2} \cdot 7}\left(381 p_{4}-71 p_{3} p_{1}-19 p_{2}^{2}+22 p_{2} p_{1}^{2}-3 p_{1}^{4}\right)\left[M_{16}\right] \\
& =\frac{1}{3^{4} \cdot 5^{2} \cdot 7}\left(-381 \bar{p}_{4}+691 \bar{p}_{3} \bar{p}_{1}+362 \bar{p}_{2}^{2}-985 \bar{p}_{2} \bar{p}_{1}^{2}+310 \bar{p}_{1}^{4}\right)\left[M_{16}\right] .
\end{aligned}
$$

There exists a relation such that
(1. 6)

$$
\bar{p} \cdot p=1
$$

where

$$
\begin{equation*}
p=\sum_{k \geqq 0}(-1)^{k} p_{k} \tag{1.7}
\end{equation*}
$$

and
(1. 8)

$$
\bar{p}=\sum_{k \geqq 0} \bar{p}_{k} .
$$

We have from (1.6)
(1. 9)

$$
\left\{\begin{array}{l}
p_{1}=\bar{p}_{1} \\
p_{2}=-\bar{p}_{2}+\bar{p}_{1}^{2} \\
p_{3}=\bar{p}_{3}-2 \bar{p}_{2} \bar{p}_{1}+\bar{p}_{1}^{3}, \\
p_{4}=-\bar{p}_{4}+2 \bar{p}_{3} \bar{p}_{1}+\bar{p}_{2}^{2}-3 \bar{p}_{2} \overline{p_{1}^{2}}+\overline{p_{1}^{4}}
\end{array}\right.
$$

The A-genus is defined by

$$
\begin{equation*}
A\left(M_{4 n}\right)=\Pi_{i} \frac{2 \sqrt{r_{i}}}{\sinh 2 \sqrt{r_{i}}}\left[M_{4 n}\right] \tag{1.10}
\end{equation*}
$$

where

$$
\begin{equation*}
p=\prod_{i}\left(1-r_{i}\right) \tag{1.11}
\end{equation*}
$$

and it is known that ([3] p.14)

$$
\left\{\begin{align*}
\text { (a) } A\left(M_{4}\right) & =-\frac{2}{3} p_{1}\left[M_{4}\right]=-\frac{2}{3} \bar{p}_{1}\left[M_{4}\right] \\
\text { (b) } A\left(M_{8}\right) & =\frac{2}{45}\left(-4 p_{2}+7 p_{1}^{2}\right)\left[M_{8}\right]=\frac{2}{45}\left(4 \bar{p}_{2}+3 \overline{p_{1}^{2}}\right)\left[M_{8}\right] \\
\text { (c) } A\left(M_{12}\right) & =-\frac{4}{3^{3} \cdot 5 \cdot 7}\left(16 p_{3}-44 p_{2} p_{1}+31 p_{1}^{3}\right)\left[M_{12}\right] \tag{1.12}\\
& =-\frac{4}{3^{3} \cdot 5 \cdot 7}\left(16 \bar{p}_{3}+12 \bar{p}_{2} \bar{p}_{1}+3 \bar{p}_{1}^{3}\right)\left[M_{12}\right] \\
\text { (d) } A\left(M_{16}\right) & =\frac{1}{3^{4} \cdot 5^{2} \cdot 7}\left(384 \bar{p}_{4}+256 \bar{p}_{3} \bar{p}_{1}+32 \overline{p_{2}^{2}}+80 \bar{p}_{2} \bar{p}_{1}^{2}+10 \overline{\left.p_{1}^{4}\right)}\left[M_{16}\right] .\right.
\end{align*}\right.
$$

2. Let $M_{4 n}$ be a compact orientable differentiable $4 n$-manifold. If $M_{4 n}$ is differentiably imbedded in the $(4 n+q)$-euclidean space $E_{4 n+q}$, it holds that

$$
\begin{equation*}
\bar{p}_{k}=0, \quad 2 k \geqq q+1 . \tag{2.1}
\end{equation*}
$$

When $q=2 k$ we have, moreover,

$$
\begin{equation*}
\bar{p}_{k}=0, \quad(2 k=q) \tag{2.2}
\end{equation*}
$$

because in this case

$$
\begin{equation*}
\bar{p}_{k}=E^{2} \tag{2.3}
\end{equation*}
$$

where E denotes the Euler class of the normal bundle and
(2. 4)

$$
E=0
$$

in such a case. The following theorem is fundamental for our purpose:
Theorem 1 (Atiyah-Hirzebruch [2])
Let $M_{4 n}$ be a compact orientable differentiable $4 n$-manifold differentiably imbedded in the $E_{8 n-2 q}$. Then $A\left(M_{4 n}\right)$ is divisible by 2^{q+1} and if moreover $q \equiv 2$ $\bmod 4, A\left(M_{4 n}\right)$ is divisible by 2^{q+2}.

Hereafter $M_{4 n} \subset E_{4 n+q}$ means the differentiable imbedding and $M_{4 n}$ denotes a compact orientable differentiable $4 n$-manifold. Let us investigate the individual cases of differentiable imbedding.
$M_{8} \subset E_{12}$. In this case we have from (2.1) and (2.2)

$$
\begin{equation*}
\bar{p}_{2}=0 . \tag{2.5}
\end{equation*}
$$

Hence we have from (1.12b)

$$
\begin{equation*}
A\left(M_{8}\right)=\frac{2}{15} \bar{p}_{1}^{2}\left[M_{8}\right] . \tag{2.6}
\end{equation*}
$$

Meanwhile we have from Theorem 1
(2.7)

$$
A\left(M_{8}\right) \equiv 0 \quad \bmod 16
$$

We have from (2.6) and (2.7)

$$
\begin{equation*}
\bar{p}_{i}^{2}\left[M_{8}\right] \equiv 0 \quad \bmod 120 . \tag{2.8}
\end{equation*}
$$

Hence we have from (1.3), (2.5) and (2.8)

$$
\left\{\begin{array}{l}
A_{2}^{2} \equiv 0 \bmod 24 \tag{2.9}\\
A_{11}^{2} \equiv 0 \bmod 40 .
\end{array}\right.
$$

$M_{8} \subset E_{14}$. In this case we have from Theorem 1

$$
\begin{equation*}
A\left(M_{8}\right) \equiv 0 \quad \bmod 4 \tag{2.10}
\end{equation*}
$$

Hence we have from (1.12)

$$
\begin{equation*}
\bar{p}_{2}^{2}\left[M_{8}\right] \equiv 0 \quad \bmod 2 . \tag{2.11}
\end{equation*}
$$

We have from (2.11) and (1.3a)

$$
\begin{equation*}
A_{2}^{2} \equiv 0 \quad \bmod 2 \tag{2.12}
\end{equation*}
$$

Moreover we have from (1.3c)

$$
\begin{equation*}
\bar{p}_{2}\left[M_{8}\right] \equiv \boldsymbol{\tau} \quad \bmod 2 . \tag{2.13}
\end{equation*}
$$

Meanwhile we have from (1.3b) and (2.11)

$$
\begin{equation*}
A_{11}^{2} \equiv \bar{p}_{2}\left[M_{8}\right] \quad \bmod 2 \tag{2.14}
\end{equation*}
$$

We have from (2.13) and (2.14)

$$
\begin{equation*}
A_{11}^{2} \equiv \boldsymbol{\tau} \quad \bmod 2 \tag{2.15}
\end{equation*}
$$

Thus we have the following table:

	$M_{8} \subset E_{12}$	$M_{8} \subset E_{14}$
A_{2}^{2}	$\equiv 0 \bmod 24$	$\equiv 0 \quad \bmod 2$
A_{11}^{2}	$\equiv 0 \bmod 40$	$\equiv \tau \bmod 2$
A	$\equiv 0 \bmod 16$	$\equiv 0 \bmod 4$
τ	$\equiv 0 \bmod 16$	

3. In this paragraph we shall deal with the case where $M_{12} \subset M_{12+q}$.
$M_{12} \subset E_{18}$. In this case we have from (2.1), (2.2) and Theorem 1
(3. 1)

$$
\bar{p}_{2}=\bar{p}_{3}=0
$$

and
(3. 2)

$$
A\left(M_{12}\right) \equiv 0 \quad \bmod 2^{5} .
$$

Hence we have from (1.12c)
(3. 3)

$$
2 \bar{p}_{1}^{3}\left[M_{12}\right] \equiv 0 \quad \bmod 7!
$$

We have from (3.1), (3.3) and (1.4)

$$
\begin{cases}A_{3}^{3} \equiv 0 & \bmod 2^{3} \cdot 3^{2} \cdot 5 \tag{3.4}\\ A_{21}^{3} \equiv 0 & \bmod 2^{6} \cdot 3 \cdot 7 \\ A_{111}^{3} \equiv 0 & \bmod 2^{5} \cdot 5 \cdot 7\end{cases}
$$

$M_{12} \subset E_{18}$. In this case we have from (2.1), (2.2) and Theorem 1

$$
\begin{equation*}
\bar{p}_{3}=0 \tag{3.5}
\end{equation*}
$$

and
(3. 6) $\quad A\left(M_{12}\right) \equiv 0 \bmod 16$.

Hence we have from (1.12c)

$$
\begin{equation*}
\overline{p_{1}^{3}}\left[M_{12}\right] \equiv 0 \quad \bmod 4 . \tag{3.7}
\end{equation*}
$$

If $\boldsymbol{\tau} \equiv 0 \bmod 4$, we have from (3.5), (3.7) and (1.4d)
(3. 8) $\quad \bar{p}_{2} \bar{p}_{1}\left[M_{12}\right] \equiv 0 \quad \bmod 4$.

We have from (1.4), (3.7) and (3.8)
(3. 9)

$$
\left\{\begin{array}{ll}
A_{3}^{3} \equiv 0 & \bmod 4 \\
A_{21}^{3} \equiv 0 & \bmod 4 \\
A_{111}^{3} \equiv 0 & \bmod 4
\end{array} \quad(\tau \equiv 0 \quad \bmod 4)\right.
$$

Moreover we have from (1.4d), (3.5) and (3.7)

$$
\begin{equation*}
\bar{p}_{2} \bar{p}_{1}\left[M_{12}\right] \equiv \boldsymbol{\tau} \quad \bmod 2 . \tag{3.10}
\end{equation*}
$$

Hence we have from (1.4), (3.5) and (3.10)

$$
\begin{cases}A_{3}^{3} \equiv \boldsymbol{\tau} & \bmod 2 \tag{3.11}\\ A_{21}^{3} \equiv \boldsymbol{\tau} & \bmod 2 \\ A_{111}^{3} \equiv \boldsymbol{\tau} & \bmod 2\end{cases}
$$

$M_{12} \subset E_{20}$. In this case we have from Theorem 1
(3.12)

$$
A\left(M_{12}\right) \equiv 0 \quad \bmod 16
$$

Hence we have from (1.12c)

$$
\begin{equation*}
\bar{p}_{1}^{3}\left[M_{12}\right] \equiv 0 \quad \bmod 4 \tag{3.13}
\end{equation*}
$$

We have from (1.4d) and (3.13)

$$
\begin{equation*}
\bar{p}_{2} \bar{p}_{1}\left[M_{12}\right] \equiv \tau \quad \bmod 2 . \tag{3.14}
\end{equation*}
$$

Hence we have from (1.4c)

$$
\begin{equation*}
A_{111}^{3} \equiv \boldsymbol{\tau} \quad \bmod 2 \tag{3.15}
\end{equation*}
$$

Thus we have the following table:

	$M_{12} \subset E_{16}$	$M_{12} \subset E_{18}$	$M_{12} \subset E_{20}$
A_{3}^{3}	$\equiv 0 \mathrm{mod} 2^{3} \cdot 3^{3} \cdot 5$	$\begin{aligned} & \equiv \tau \bmod 2 \\ & \equiv 0 \bmod 4(\tau \equiv 0 \bmod 4) \end{aligned}$	
A_{21}^{3}	$\equiv 0 \bmod { }^{66.3} \cdot 7$	$\stackrel{\equiv \tau \bmod 2}{\equiv 0} \bmod 4(\tau \equiv 0 \bmod 4)$	
A_{111}^{3}	$\equiv 0 \bmod { }^{5} 5.5 \cdot 7$	$\begin{aligned} & \equiv \tau \bmod 2 \\ & \equiv 0 \bmod 4(\tau \equiv 0 \bmod 4) \end{aligned}$	$\equiv \boldsymbol{\tau} \bmod 2$
A	$\equiv 0 \bmod 2^{5}$	$\equiv 0 \bmod 16$	$\equiv 0 \bmod 16$
τ	$\equiv 0 \bmod 2^{3} \cdot 17$		

4. In this paragraph we shall deal with the case where $M_{16} \subset E_{16+q}$. $M_{16} \subset E_{20}$. In this case we have from (2.1),(2.2) and Theorem 1
(4. 1)

$$
\bar{p}_{2}=\bar{p}_{3}=\bar{p}_{4}=0
$$

and
(4. 2)

$$
A\left(M_{16}\right) \equiv 0 \quad \bmod 2^{8}
$$

Hence we have from (1.12d)
(4. 3)

$$
\bar{p}_{1}^{4}\left[M_{16}\right] \equiv 0 \quad \bmod 9!.
$$

We have from (1.5), (4.1) and (4.3)

$$
\left\{\begin{array}{l}
A_{4}^{4} \equiv 0 \bmod 8! \tag{4.4}\\
A_{31}^{4} \equiv 0 \bmod 2^{8} \cdot 3^{3} \cdot 5^{2} \\
A_{22}^{4} \equiv 0 \bmod 2^{7} \cdot 3^{4} \cdot 7 \\
A_{241}^{4} \equiv 0 \bmod 11 \cdot 8! \\
A_{1111}^{4} \equiv 0 \bmod 2^{7} \cdot 5^{2} \cdot 7 \cdot 11
\end{array}\right.
$$

$M_{18} \subset E_{22}$. In this case we have from (2.1), (2.2) and Theorem 1
(4. 5)

$$
\bar{p}_{3}=\bar{p}_{4}=0
$$

and
(4. 6)

$$
A\left(M_{18}\right) \equiv 0 \quad \bmod 2^{6} .
$$

Hence we have from (1.12d)
(4. 7)

$$
\bar{p}_{1}^{4}\left[M_{16}\right] \equiv 0 \quad \bmod 8
$$

Meanwhile we have from (1.5) and (4.5)
(4. 8)

$$
\left\{\begin{array}{l}
\text { (a) } A_{4}^{4}=\frac{1}{9}\left(-2 \bar{p}_{2}^{2}+4 \bar{p}_{2} \bar{p}_{1}^{2}-\bar{p}_{1}^{4}\right)\left[M_{16}\right], \\
\text { (b) } A_{31}^{4}=\frac{1}{21}\left(18 \bar{p}_{2}^{2}-39 \bar{p}_{2} \overline{p_{1}^{2}}+10 \overline{p_{1}^{4}}\right)\left[M_{16}\right], \\
\text { (c) } A_{22}^{4}=\frac{1}{25}\left(11 \bar{p}_{2}^{2}-20 \bar{p}_{1} \bar{p}_{1}^{2}+5 \overline{p_{1}^{4}}\right)\left[M_{16}\right] \\
\text { (d) } A_{211}^{4}=\frac{1}{45}\left(-100 \bar{p}_{2}+212 \bar{p}_{2} \bar{p}_{1}^{2}-55 \overline{p_{1}^{4}}\right)\left[M_{16}\right], \\
\text { (e) } A_{1111}^{4}=\frac{1}{81}\left(95 \bar{p}_{2}^{2}-208 \bar{p}_{2} \bar{p}_{1}^{2}+55 \bar{p}_{1}^{4}\right)\left[M_{16}\right] .
\end{array}\right.
$$

We have from (4.7) and (4.8a)
(4. 9)

$$
3 A_{4}^{4} \equiv 0 \quad \bmod 2
$$

Next we have from (4.7) and (4.8d)
(4.10) $\quad A_{211}^{4} \equiv 0 \quad \bmod 4$.

Meanwhile we have from (4.8d) or (4.8c)

$$
\begin{equation*}
\overline{p_{2}} \overline{p_{1}^{2}}\left[M_{16}\right] \equiv 0 \quad \bmod 5 \tag{4.11}
\end{equation*}
$$

or
(4.12)

$$
\overline{p_{2}^{2}}\left[M_{16}\right] \equiv 0 \quad \bmod 5
$$

respectively. Hence we have from (4.8b), (4.11) and (4.12)

$$
\begin{equation*}
A_{31}^{4} \equiv 0 \quad \bmod 5 \tag{4.13}
\end{equation*}
$$

Moreover we have from (4.8e) and (4.11)
(4.14)

$$
3 A_{111}^{4} \equiv 0 \quad \bmod 5
$$

In this case we have from (1.5f) and (4.5)

$$
\begin{equation*}
\boldsymbol{\tau}=\frac{1}{3^{4} \cdot 5^{2} \cdot 7}\left(362 \bar{p}_{2}^{2}-985 \bar{p}_{2} \bar{p}_{1}^{2}+310 \bar{p}_{1}^{4}\right)\left[M_{16}\right] . \tag{4.15}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\boldsymbol{\tau} \equiv \bar{p}_{2} \bar{p}_{1}^{2}\left[M_{16}\right] \quad \bmod 2 . \tag{4.16}
\end{equation*}
$$

We have from (4.8b) and (4.16)

$$
\begin{equation*}
A_{31}^{4} \equiv \boldsymbol{\tau} \quad \bmod 2 . \tag{4.17}
\end{equation*}
$$

Moreover we have from (4.7), (4.8c) and (4.8e)

$$
\begin{equation*}
A_{22}^{4} \equiv \bar{p}_{22}^{2}\left[M_{16}\right] \equiv 3 A_{1111}^{4} \quad \bmod 2 \tag{4.18}
\end{equation*}
$$

$M_{16} \subset E_{30}$. In this case we have from Theorem 1

$$
\begin{equation*}
A\left(M_{18}\right) \equiv 0 \quad \bmod 4 \tag{4.19}
\end{equation*}
$$

Hence we have from (1.12d)

$$
\begin{equation*}
\bar{p}_{1}^{4}\left[M_{16}\right] \equiv 0 \quad \bmod 2 \tag{4.20}
\end{equation*}
$$

We have from (1.5a) and (4.20)

$$
\begin{equation*}
3 A_{4}^{4} \equiv 0 \quad \bmod 2 \tag{4.21}
\end{equation*}
$$

Thus we have the following table:

	$M_{10} \subset E_{20}$	$M_{16} \subset E_{22}$	$M_{1 \mathrm{e}} \subset E_{24}$	$M_{16} \subset E_{26}$	$M_{16} \subset E_{28}$	$A_{16} \subset E_{30}$
A_{4}^{4}	$\equiv 0 \bmod 8$!	$\begin{gathered} 3 A_{4}^{4}=0 \\ \bmod 2 \end{gathered}$	$\begin{aligned} & 3 A_{4}^{4} \equiv 0 \\ & \bmod 2 \end{aligned}$	$\begin{aligned} & 3 A_{4}^{4} \equiv 0 \\ & \quad \text { mod } 2 \end{aligned}$	$\begin{aligned} & 3 A_{4}^{4} \equiv 0 \\ & \quad \bmod 2 \end{aligned}$	$\begin{aligned} & 3 A_{4}^{4} \equiv 0 \\ & \quad \bmod 2 \end{aligned}$
A_{31}^{4}	$\equiv 0 \bmod 2^{8 .} 3^{3} .5^{2}$	$\begin{aligned} & \equiv 0 \bmod 5 \\ & \equiv \tau \bmod 2 \end{aligned}$				
A_{22}^{4}	$\equiv 0 \mathrm{mod} 2^{7} \cdot 3^{4} \cdot 7$	$\equiv 3 A_{1111}^{4} \bmod 2$				
A_{211}^{4}	$\equiv 0 \bmod 11 \cdot 8!$	$\equiv 0 \bmod 4$				

A_{1111}^{4}	$\equiv 0 \bmod 2^{27} \cdot 5^{2 \cdot} \cdot 7$	$3 A_{1111}^{4} \equiv 0$ $\bmod 5$				
A	$\equiv 0 \bmod 2^{8}$	$\equiv 0 \bmod 2^{6}$	$\equiv 0 \bmod 2^{5}$	$\equiv 0 \bmod 2^{4}$	$\equiv 0 \bmod 2^{4}$	$\equiv 0 \bmod 2^{2}$
$\boldsymbol{\tau}$	$\equiv 0 \bmod 2^{8} \cdot 31$					

5. It is known that
(5. 1) $\begin{aligned} \tau\left(M_{20}\right)=\frac{1}{3^{5} \cdot 5^{2} \cdot 7 \cdot 11}\left(5110 p_{5}\right. & -919 p_{4} p_{1}-336 p_{3} p_{2}+237 p_{3} p_{1}^{2}+127 p_{2}^{2} p_{1} \\ & \left.-83 p_{2} p_{1}^{3}+10 p_{1}^{5}\right)\left[M_{20}\right] \text { ([3]p.13). }\end{aligned}$

When $M_{20} \subset E_{26}$ we have

$$
\begin{equation*}
\overline{p_{5}}=\overline{p_{4}}=\bar{p}_{3}=0 \tag{5.2}
\end{equation*}
$$

and
(5. 3)

$$
p_{5}=3 \bar{p}_{2}^{2} \bar{p}_{1}-4 \bar{p}_{2} \bar{p}_{1}^{3}+\bar{p}_{1}^{5} .
$$

Hence we have from (5.1), (5.2) and (5.3)

$$
\begin{equation*}
\tau=\frac{1}{3^{5} \cdot 5^{2} \cdot 7 \cdot 11}\left(13866 \bar{p}_{2}^{2} \bar{p}_{1}-17320 \bar{p}_{2} \bar{p}_{1}^{3}+4146 \bar{p}_{1}^{5}\right)\left[M_{20}\right] . \tag{5.4}
\end{equation*}
$$

Therefore $\tau\left(M_{20}\right)$ is even, if $M_{20} \subset E_{26}$.

References

[1] M.F. Atiyah und F. Hirzebruch, Characteristische Klassen und Anwendungen, L' Enseignement Mathématique 7(1961), 188-213.
[2] M.F.Atiyah et F. Hirzebruch, Quelques théorémes de non-plongement pour les variétés différentiables, Bull. Soc. Math. France, 87(1959), 383-396.
[3] F. Hirzebruch, Neue topologische Methoden in der algebraischen Geometrie, 1956, Springer.
[4] F. Hirzebruch, Some problems on differentiable and complex manifolds, Ann. of Math., 60(1954), 213-236.
[5] Y. Tomonaga, Differentiable imbedding and cobordism of orientable manifolds, Tôhoku Math. Journ., 14(1962), 15-23.
[6] Y. Tomonaga, Generalized Hirzebruch polynomials, Tôhoku Math. Journ., 14(1962), 321-327.
Utsunomiya University.

