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1. Introduction. In a recent paper [6], S. Kobayashi obtained the following
improvement of a theorem due to W. Klingenberg [5]:

A complete holomorphically pinched Kaehler manifold with holomorphic
pinching > 11/13 has the homotopy type of complex projective space.

The latter employed Morse theory in order to obtain his constant whereas
the former used the Sphere Theorem (for odd dimensional Riemannian
manifolds) due to M. Berger [ 1 ] and Klingenberg [ 4 ], together with the bounds
on sectional curvature, expressed in terms of the holomorphic pinching, found
by Berger [ 2 ].

It is the purpose of this paper to improve these bounds on curvature, thereby
resulting in a corresponding improvement of the constant 11/13 in the above
theorem. In fact, it is shown that the bounds we obtain are the best possible
that can be derived by considering only the algebra of the curvature tensor (at
one point). We state our main result.

THEOREM. A complete holomorphically pinched Kaehler manifold with
holomorphic pinching > 4/5 has the homotopy type of complex projective space.

Since our key statement (Proposition 5.1) is an improvement of proposition
11 of [ 6 ] due essentially to the sharp bounds on curvature obtained in
Proposition 4.2, the material leading to that result will not be duplicated. The
reader is therefore asked to refer to this paper both for the sake of completess
and notation.

2. Holomorphic curvature. A plane section is called holomorphic if it
has a basis {X, JX} for some X and anti-holomorphic if it has a basis {X,Y}
where X is perpendicular to both Y and JY. More generally, with each section
we associate an acute angle θ which measures by how much the section fails to
be holomorphic. If [X, Y] is an orthonormal basis of the section, cos θ =
I (X, JY) I it is readily verified that this is independent of the choice of X
and Y.

The holomorphic curvature H(X) of a non-zero vector X is the curvature
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of the holomorphic section spanned by X and JX, i.e., H(X) = k(X,JX).
In a Riemannian manifold, it is well-known that the curvature tensor is

determined algebraically by the biquadratic curvature form B:

In fact,

6K(X,Y,Z,W) = 3 ^ Φ ( X + sZ9 Y + tW) - B(X + sW, Y

Since sectional curvature ^(X, Y) is the quotient of B(X, Y) and
(X,X)(Y,Y) — (X, Y)\ it follows that the curvature tensor is algebraically
determined by the functions k and ( , ).

In a Kaehler manifold, we define the quartic holomorphic curvature form
Q'

Q(X)-X(X,JX,X,JX).

That the holomorphic sectional curvatures are of fundamental importance is
given by

PROPOSITION 2.1. B is determined algebraically by Q.

Perhaps more interesting is the formula which reduces the proof to a
verification:

(2. 1) B(X,Y) = -i- [3Q(X + JY) + 3Q(X - JY) - Q(X + Y)

As an immediate consequence of this formula, we derive

COROLLARY 2.1. Let X and Y be orthonormal vectors, and (X, JY)
= cos θ ̂  0. Then

(2. 2) 4(X, Y) = r |- [3(1 + cos ΘfHiX + JY) + 3(1 - cos θ)Ή(X - JY)

- H(X + Y) - H(X - Y) -

Moreover, if (X,JY) = 0, then

(2. 3) £(X,Y) + KX,JY) = i [H(X + JY) + H(X - JY) + H(X + Y)

- Y) - H(X) -

and, more generally,

(2. 4) k{X, Y) + k{X, JY) sin2^

= - j - [(1 + cos <?)2H(X + JY) + (1 - cos ̂ )2fί(X - JY) + H(X + Y)

- Y) - H(X) - H(Y)l

As a consequence, we obtain a well-known result:
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If holomorphic curvature is a constant H, then curvature is given by

(2. 5) k(X,Y) = ^ (1 + 3cos20).

Formulas (2.2)—(2.4) will be used in §4 to derive the inequalities between
curvature and holomorphic curvature required for the proof of Theorem.

3. Curvature as an average. When holomorphic curvature is constant,
anti-holomorphic curvature is also a constant A = H/4, and (2.5) may be
re-written as

k(X,Y) = H - 3Asin20.

For any two orthonormal vectors X and Y such that (X,JY) > 0, we say
that the holomorphic sections generated by X cos a + Y sin a are the
holomorphic sections associated with the section spanned by the pair X,Y, and
the sections spanned by the vectors X cos a + Y sin a, — JX sin a + JY cos a
the anti-holomorphic sections associated with X, Y. These 'circles' of sections
depend only on the plane of X and Y, and not on the choice of the vectors
X,Y. If the manifold has constant holomorphic curvature, then H may clearly
be interpreted as the average associated holomorphic curvature, and A as the
average associated anti-holomorphic curvature. Thus, the following result may
be viewed as a generalization of formula (2. 5).

PROPOSITION 3.1. Let H(X,Y) be the average associated holomorphic
curvature and A(X,Y) the average associated anti-holomorphic curvature to
the plane of the vectors X and Y, i.e., when X and Y are orthonormal,

H(X, Y) = — Γ H(X cos a + Y sin a)da,
* Jo

1 r*
A(X, Y) = — / k(X cos a + Y sin a, - JX sin a + JY cos a)da.

w Jo

Then,

(3. 1) k(X, Y) = H(X, Y) - 3A(X, Y)sin2θ.

To see this, observe that since H(X cos a + Y sin ά) and k(X cos a + Y sin a,
— JX sin a + JY cos #) are quartic polynomials in cos a, sin a, indeed, quadratic
polynomials in cos 2a, sin 2a, their average may be obtained by averaging
any four equally spaced values, i.e.,

H(X,Y) = ^ [H(X) + H(X + Y) + H(Y) + H(X - Y)],

A(X,Y) - - j - [*(X, JY) + KX + Y,-JX + JY) + k(Y,JX) + jfe(X-Y>
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= 4 " ίKXJY) + KX + Y,- JX + JY)l

4. Inequalities. In the sequel, assume that the metric of our Kaehler

manifold has been normalized so that holomorphic curvature satisfies δ 5g H(X)

^ 1. The Kaehler manifold is then said to be 8-holomorphically pinched.

To begin with, we consider anti-holomorphic curvature. From formula

(2.2), with cos θ = 0, we obtain

PROPOSITION 4.1. If X,Y span an anti-holomorphic section, then

38 — 2 , v V Λ 3 — 28
— — ^ k{X, Y) ^ — — .

To get an upper bound for an arbitrary sectional curvature, we eliminate

the function H(X, Y) occurring in (2. 2) and (3.1), thereby obtaining

k{X,Y) = - j - [(1 + cos Θ)*H(X + JY) + (1 - cos θfH{X - JY)\ - A(X, y)sin2^.

Using the lower bound for A(X, Y) obtained from Proposition 4.1 results in

the inequality

) ^ 1 ^ — .

To obtain a lower bound we apply formula (2.2) directly. Thus,

k (X, Y) ^ 4 - [6(1 + cos2#)S - 4].
o

PROPOSITION 4. 2. Let X and Y be orthonormal vectors on a ̂ -holomor-

phic ally pinched Kaehler manifold. Then, if (X, JY) — cos θ,

\ [3(1 + cos'6i)δ - 2] ^

5. Proof of Theorem. To begin with, an analogue of proposition 11 in

[ 6 ] is obtained by employing Proposition 4.2 above. Indeed, we prove [see 6,

proposition 11 for notation]

PROPOSITION 5.1. If

\ [3(1 + cos^δ - 2] =g * <i i

[see Proposition 4.2], and if

38 - 2 ^ 4α2 ̂  8,

then, ^Γ^

S(p) is the sectional curvature of the principal circle bundle over the

Kaehler manifold whose pinching is given by Proposition 4.2 [see 6, §5].

By proposition 5 of [6], we have
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S(p) ^ ^-(1-X°X° - YΎ°) [4 - 38 (1 - cos2#) - 12α2cos20] + α2 (X°X° + YΎ°)

^ -j-Cl - X°X° -YΎ°) [4 - 3δ + 3(δ - 4α2)] + α2(X°X° +YΎ")

= (1 - 3α2) + (4α2 - 1) (X°X° + YΎ°)
^ 1 - 3α2.

Moreover,

S(p) ^ -^-(1 - X°X° - Y°Y0) [3(1 + cos20)δ - 2 - 12α2cos20] + α2 (X°X° + Y0Y°)

2: -^-(1 - X°X° - YΎ°) (38 - 2) + α2(X°X° + Y°Y°)

= -|-[(38 - 2) + (4a2 + 2 - 3δ)(X°X° + 7°^°)]

Ξ= - ί (38 - 2).

COROLLARY 5.1. //" δ = 4α2, then

Hence, the method used in the proof of theorem 1 of [6] gives

Let M be a complete Kaehler manifold with holomorphic pinching > δ.
Then, there are a principal circle bundle P over M and a Riemannian metric
on P with Riemannian pinching > (3δ — 2)/(4 — 38).

Consequently, if 8 = 4/5, then (38 - 2)/(4 - 38) = 1/4. The proof of
Theorem is now a consequence of the Sphere Theorem.

6. Remarks: (a) Further improvement of Proposition 4.2 by the methods
employed above (consideration of the curvature at one point) is precluded by
the example given below where the curvature components Rίm = K (Xiy Xh Xk9

Xι) are taken with respect to an orthonormal basisXi,X2>^3 = JX\,X± = *7X2

In this example, 8 ^ H{X) ^ 1.

T a k e -R1212 = (2—8)/4, JR1 2 1 3 = Ruu — ^1224 — Run = ^1424 = 0, i ? i 3 1 3 =i^2424

= 1 and jR1414 = (38 - 2)/4.
The other curvature components are determined by the usual curvature

identities together with the identity K{Xi,Xj,Xk,X1) = K(JXi9JXj,Xk9Xι).

We therefore have (38 - 2)/4 ^ k(X, Y) ^ 1.

(b) Theorems 3 and 4 of [ 6 ] have been greatly improved by a different
method. In fact, the best possible statements have been obtained [ 3 ] :
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Let M be a complete Kaehler manifold of strictly positive curvature.
Then

H%M, R) = R.

A homogeneous Kaehler manifold of strictly positive curvature is an
Einstein space, i.e., a space of constant mean curvature.

Let M be a compact h-holomorphically pinched Kaehler manifold with
δ > 1/2. Then,

H*(M,R) = R.
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