ON HARMONIC TENSORS IN A COMPACT ALMOST-KÄHLERIAN SPACE

Sumio Sawaki

(Received July 25, 1963)

1. Introduction. S.Kotō [1] proved that in a compact K-space, if a skewsymmetric pure tensor $T_{i_{1} \ldots i_{p}}{ }^{1)}$ is almost-analytic, then it is harmonic. This is an extension of Tachibana's result ${ }^{2}$) on an almost-analytic vector in a compact K-space to an almost-analytic tensor. The main purpose of this paper is to try an extension of the same Tachibana's result ${ }^{3}$) on an almost-analytic vector in a compact almost-Kählerian space to the case of a tensor.

In §2 we shall give some preliminary facts for later use. In §3 we shall prove some lemmas on almost-analytic tensors. Most part of the last section will be devoted to the proof of the main theorem.
2. Almost-Kahlerian spaces. ${ }^{4)}$ Let $X_{2 n}$ be a $2 n$-dimensional almost-complex space ${ }^{5}$) with local coordinates $\left\{x^{i}\right\}$ and $\varphi_{j}{ }^{i}$ its almost-complex structure, then by definition we have

$$
\begin{equation*}
\varphi_{j}{ }^{r} \varphi_{r}{ }^{i}=-\delta_{j}^{i} . \tag{2.1}
\end{equation*}
$$

We define two linear operators

$$
\left.O_{i n}^{m l}=\frac{1}{2}\left(\delta_{i}^{m} \delta_{h}^{l}-\varphi_{i}{ }^{m} \varphi_{h}{ }^{l}\right), * O_{i h}^{m l}=\frac{1}{2}\left(\delta_{i}^{m} \delta_{h}^{l}+\varphi_{i}{ }^{m} \varphi_{h}{ }^{l}\right)^{\mathrm{E}}\right)
$$

and say a tensor is pure (hybrid) in two indices if it is annihilated by transvection of $* O(O)$ on these indices and if a tensor is pure in every pair of indices, then it is called a pure tensor. For instance $\varphi_{j}{ }^{i}$ is pure in j, i. In this place, the following properties can be easily verified.

If $T_{j i}$ is pure (hybrid) in j, i, then we have
$\varphi_{i}{ }^{r} T_{j r}=\phi_{j}{ }^{r} T_{r i}\left(\varphi_{i}{ }^{r} T_{j r}=-\phi_{j}{ }^{r} T_{r i}\right)$.
If $T_{j i}$ is pure in j, i and $S^{j i}$ is hybrid in j, i, then
we have

$$
T_{j i} S^{j i}=0 .
$$

If $T_{3 i}$ is pure in j, i and at the same time hybrid in j, i, then it vanishes.
If $T_{j i}$ is pure in j, i and $S_{j}{ }^{i}$ is pure (hybrid) in j, i, then $T_{j r} S_{i}{ }^{r}$ is pure (hybrid) in j, i.

[^0]For an arbitrary tensor $T_{j i}, T_{j i}+\varphi_{j}{ }^{a} \varphi_{i}{ }^{b} T_{a b}$ is hybrid in j, i, and $T_{j i}$ $-\varphi_{j}{ }^{a} \varphi_{i}{ }^{b} T_{a b}$ is pure in j, i.

Throughout this paper, in every calculation concerning with purity and hybridity, these properties will be used.

Now, an almost-complex space with the structure $\left(\varphi_{j}{ }^{i}, g_{j i}\right)$ satisfying the following relations is called an almost-Kählerian space:

$$
\begin{align*}
& g_{a b} \varphi_{j}{ }^{a} \varphi_{i}{ }^{b}=g_{j i}, \tag{2.2}\\
& \nabla_{j} \varphi_{i h}+\nabla_{i} \varphi_{h j}+\nabla_{h} \varphi_{j i}=0 \tag{2.3}
\end{align*}
$$

where $\varphi_{j i} \equiv g_{r i} \varphi_{j}{ }^{r}$ and ∇_{j} denotes the operator of Riemannian derivation.
It is easily verified that $\nabla_{j} \varphi_{i h}$ is pure in i, h and therefore $\nabla_{j} \varphi_{i}{ }^{h}$ is hybrid in i, h, that is,

$$
\begin{equation*}
{ }^{*} O_{i h}^{a b} \nabla_{j} \varphi_{a b}=0, O_{i b}^{a h} \nabla_{j} \varphi_{a}{ }^{b}=0 . \tag{2.4}
\end{equation*}
$$

From (2.2), we have

$$
\begin{equation*}
\varphi_{j i}=-\varphi_{i j} . \tag{2.5}
\end{equation*}
$$

And in an almost-Kählerian space, we know that $\nabla_{j} \varphi_{i n}$ is a pure tensor and therefore $\nabla_{j} \varphi_{i}{ }^{h}$ is hybrid in j, h, that is,

$$
\begin{equation*}
* O_{j h}^{a b} \nabla_{a} \varphi_{i b}=0, O_{j b}^{a h} \nabla_{a} \varphi_{i}{ }^{b}=0^{7)} \tag{2.6}
\end{equation*}
$$

from which it follows

$$
\begin{equation*}
\nabla_{r} \varphi_{i}^{r}=0 . \tag{2.7}
\end{equation*}
$$

Let $R_{k j i}{ }^{h}$ and $R_{j i} \equiv R_{r j i}{ }^{r}$ be Riemannian curvature tensor and Ricci tensor respectively, then by the Ricci's identity and (2.7), we have

$$
\begin{equation*}
\nabla^{r} \nabla_{j} \varphi_{r}{ }^{i}=\frac{1}{2} \varphi^{r s} R_{r s j}{ }^{i}+R_{j}^{r} \varphi_{r}{ }^{i} \tag{2.8}
\end{equation*}
$$

where $\nabla^{r} \equiv g^{t r} \nabla_{t}$ and $\phi^{r s} \equiv g^{t r} \varphi_{t}{ }^{s}$.
3. Almost-analytic tensors. We say that a covariant pure tensor $T_{i_{1} \ldots i_{p}}$ in an almost-complex space is almost-analytic if it satisfies

$$
\boldsymbol{\varphi}_{k}^{l} \partial_{l} T_{i_{1} \ldots i_{p}}-\partial_{k} \widetilde{T}_{i_{1} \ldots i_{p}}+\sum_{r=1}^{p}\left(\partial_{i_{r}} \boldsymbol{\varphi}_{k}^{t}\right) T_{i_{1} \ldots t \ldots i_{p}}=0
$$

where $\widetilde{T}_{i_{1}, i_{p}} \equiv \varphi_{i_{1}}^{t} T_{t_{i_{2}} \ldots i_{p}}$ and $\partial_{i} \equiv \partial / \partial x^{i}$.
This equation can be written in the tensor form

$$
\begin{equation*}
\boldsymbol{\varphi}_{k}^{l} \nabla_{l} T_{i_{1} \ldots i_{p}}-\nabla_{k} \widetilde{T}_{i_{1} \ldots i_{p}}+\sum_{r=1}^{p}\left(\nabla_{i_{r}} \boldsymbol{\varphi}_{k}^{l}\right) T_{i_{1} \ldots t \ldots i_{p}}=0 \tag{3.1}
\end{equation*}
$$

and we notice $\varphi_{i_{1}}^{l} T_{i_{2}, \ldots i_{p}}=\varphi_{i_{r}}^{l} T_{i_{1} \ldots l \ldots i_{p}}$ for every $r(1 \leqq r \leqq p)$.
7) For example, see S. Sawaki [2].

For almost-analytic tensors, the following lemma can be easily verified too by a straightforward calculation.

Lemma 3.1. (S.Tachibana [5]) In an almost-complex space, if $T_{i_{1} . . . i_{p}}$ is a skew-symmetric pure tensor then $\widetilde{T}_{i_{1} \ldots i_{0}}$ is also a skew-symmetric pure tensor and if $T_{i_{1} \ldots i_{p}}$ is almost-analytic, then so is $\widetilde{T}_{i_{1} \ldots i_{p}}$.

Moreover, since

$$
\nabla_{i_{r}}\left(\varphi_{k}{ }^{t} T_{i_{1} \ldots t \ldots i_{p}}\right)=\left(\nabla_{i_{r}} \varphi_{k}{ }^{t}\right) T_{i_{1} \ldots t \ldots i_{p}}+\phi_{k}{ }^{t} \nabla_{i_{r}} T_{i_{1} \ldots t \ldots i_{p}}
$$

we have

$$
\sum_{r=1}^{p}\left(\nabla_{i_{r}} \varphi_{k}^{t}\right) T_{i_{r} \ldots \ldots t \ldots i_{p}}=\sum_{r=1}^{p} \nabla_{i_{r}} \widetilde{T}_{i_{1} \ldots k \ldots i_{p}}-\sum_{r=1}^{p} \phi_{k}^{t} \nabla_{i_{r}} T_{i_{1} \ldots t \ldots i_{p} .} .
$$

But, if $T_{i_{1} \ldots i_{p}}$ is skew-symmetric, then by the above lemma, so is $\widetilde{T}_{i_{1} \ldots i_{\mathrm{p}}}$ and hence (3.1) is equivalent to

$$
\begin{equation*}
\boldsymbol{\varphi}_{k}{ }^{l} \nabla_{[l} T_{\left.i_{1} \ldots i_{l]}\right]}-\widetilde{\nabla_{[k}} T_{i_{1} \ldots i_{p]}}=0 \tag{3.2}
\end{equation*}
$$

Thus we have the following
Lemma 3.2. (S.Kotō[1]) In an almost-complex space, if skew-symmetric pure tensors $T_{i_{1} \ldots i_{p}}$ and $\widetilde{T}_{i_{1} \ldots i_{p}}$ are both closed, then they are almost-analytic.

Now we assume we are in an almost-Kählerian space and let $T_{i_{1} \ldots i_{\mathrm{p}}}$ be an almost-analytic tensor.
Transvecting (3.1) with $\varphi_{h}{ }^{k}$, we have

$$
\nabla_{h} T_{i_{1} \ldots i_{p}}+\phi_{h}{ }^{k} \nabla_{k}\left({\phi_{i_{1}}}^{t} T_{t i_{2} \ldots i_{p}}\right)-\sum_{r=1}^{p} \varphi_{h}{ }^{k}\left(\nabla_{i_{r}} \varphi_{k}{ }^{t}\right) T_{i_{1} \ldots t \ldots i_{p}}=0
$$

from which it follows

$$
\begin{align*}
\nabla_{h} T_{i_{1} \ldots i_{p}} & +\varphi_{h}{ }^{k} \varphi_{i_{1}}{ }^{t} \nabla_{k} T_{t i} \ldots i_{p}-\sum_{r=2}^{p} \phi_{h}{ }^{k}\left(\nabla_{i_{r}} \varphi_{k}^{t}\right) T_{i_{1} \ldots t \ldots i_{p}} \tag{3.3}\\
& =\varphi_{h}{ }^{k}\left(\nabla_{i_{1}} \varphi_{k}{ }^{t}\right) T_{t i_{2} \ldots i_{p}}-\varphi_{h}^{k}\left(\nabla_{k} \varphi_{i_{1}}{ }^{t}\right) T_{t i_{2} \ldots i_{p}} .
\end{align*}
$$

In this equation, $\nabla_{h} T_{i_{1} \ldots i_{p}}+\varphi_{h}{ }^{k} \dot{\varphi}_{i_{1}}{ }^{t} \nabla_{k} T_{i_{i_{2}} \ldots i_{p}}$ is hybrid in h, i_{1}. And $\phi_{h}{ }^{k}\left(\nabla_{i_{r}} \boldsymbol{\varphi}_{k}{ }^{t}\right)$ $T_{i_{1} \ldots t \ldots i_{p}}(r \geqq 2)$ is also hybrid in h, i_{1}, because, by (2.4), $\boldsymbol{\varphi}_{h}{ }^{k} \nabla_{i_{r}} \boldsymbol{\varphi}_{k}{ }^{t}$ is hybrid in h, t and $T_{i_{1} \ldots t \ldots i_{p}}$ is pure in i_{1}, t. Hence the left-hand side of (3.3) is hybrid in h, i_{1}. Similarly, by (2.6) the right-hand side of (3.3) is pure in h, i_{1}.

Consequently, from (3.3) we have

$$
\begin{equation*}
\nabla_{h} T_{i_{1} \ldots i_{p}}+\varphi_{h}{ }^{k} \varphi_{i_{1}}^{t} \nabla_{k} T_{t i_{2} \ldots i_{p}}-\sum_{\vec{r}=2}^{p} \boldsymbol{\varphi}_{h}{ }^{l}\left(\nabla_{i_{r}} \varphi_{l}{ }^{t}\right) T_{i_{1} \ldots t \ldots i_{p}}=0 \tag{3.4}
\end{equation*}
$$

and

$$
\boldsymbol{\varphi}_{h}{ }^{k}\left(\nabla_{i_{1}} \boldsymbol{\varphi}_{k}{ }^{t}-\nabla_{k} \boldsymbol{\varphi}_{i_{t}}^{t}\right) T_{t_{2}, \ldots i_{\mathrm{p}}}=0
$$

or by (2.1) and (2.3), the latter is equivalent to

$$
\begin{equation*}
\left(\nabla^{t} \phi_{h i_{1}}\right) T_{t_{i_{2}}, \ldots i_{p}}=0 . \tag{3.5}
\end{equation*}
$$

Thus we have the following
Lemma 3.3. ${ }^{8}$ In an almost-Kählerian space, a pure tensor $T_{i_{1} \ldots i_{p}}$ is almost-analytic if and only if

$$
\begin{gather*}
\nabla_{h} T_{i_{1} \ldots i_{\mathrm{p}}}+\varphi_{h}{ }^{l} \boldsymbol{\varphi}_{i_{1}}{ }^{t} \nabla_{l} T_{t_{2}, \ldots i_{\mathrm{p}}}-\varphi_{h}{ }^{l} \sum_{r=2}^{p}\left(\nabla_{i_{r}} \varphi_{l}\right) T_{i_{1} \ldots t \ldots i_{p}}=0, \tag{1}\\
\left(\nabla^{t} \boldsymbol{\varphi}_{h i_{1}}\right) T_{t i_{2} \ldots i_{\mathrm{p}}}=0 . \tag{2}
\end{gather*}
$$

Again we consider an almost-analytic skew-symmetric tensor $T_{i_{1} \ldots i_{2}}$. Since $\widetilde{T}^{i_{1} \ldots i_{p}} \equiv g^{i_{1_{1}}} \cdots g^{i_{v} \nu_{\nu}} \widetilde{T}_{r_{1} \ldots r_{p}}$ is pure in $i_{r}, i_{s}(r \neq s)$ and by (2.6), $\left(\nabla_{i_{r}} \varphi_{k}{ }^{t}\right) T_{i_{1} \ldots t \ldots i_{p}}$ is hybrid in i_{r}, i_{s}, we have

$$
\begin{equation*}
\widetilde{T}^{i_{1} \ldots i_{p}} \sum_{r=1}^{p}\left(\nabla_{i_{r}} \boldsymbol{\varphi}_{k}^{t}\right) T_{i_{1} \ldots t \ldots i_{p}}=0 . \tag{3.6}
\end{equation*}
$$

Multiplying (3.1) by $\widetilde{\widetilde{T}_{1} \ldots i_{p}}$ and making use of (3.6), we find

$$
\boldsymbol{\varphi}_{k}{ }^{\prime} \widetilde{T}^{i_{1} \ldots i_{i}} \nabla_{l} T_{i_{1} \ldots i_{p}}-\widetilde{T}^{i_{1} \ldots i_{p}} \nabla_{k} \widetilde{T}_{i_{1} \ldots i_{v}}=0 .
$$

Operating ∇^{k} to this equation and using (2.7), we have

$$
\begin{align*}
& \varphi_{k}{ }^{l}\left(\nabla^{k} \widetilde{T}^{i_{1} \ldots i_{p}}\right) \nabla_{l} T_{i_{1} \ldots i_{p}}+\varphi_{k} \widetilde{T}^{T_{1} \ldots i_{p}} \nabla^{k} \nabla_{l} T_{i_{1} \ldots i_{p}} \tag{3.7}\\
&-\left(\nabla^{k} \widetilde{T}^{i_{1} \ldots i_{p}}\right) \nabla_{k} \widetilde{T}_{i_{1} \ldots i_{p}}-\widetilde{T}^{i_{1} \ldots i_{p}} \nabla^{k} \nabla_{k} \widetilde{T}_{i_{1} \ldots i_{p}}=0 .
\end{align*}
$$

On the other hand, multiplying (3.1) by $\nabla^{k} \widetilde{T_{1} \ldots i_{p}}$, we have

$$
\begin{equation*}
\boldsymbol{\varphi}_{k}{ }^{l} \nabla^{k}\left(\widetilde{T_{1} \ldots i_{p}}\right) \nabla_{l} T_{i_{1} \ldots i_{p}}-\left(\nabla^{*} \widetilde{T}^{i_{1} \ldots i_{p}}\right) \nabla_{k} \widetilde{T}_{i_{1} \ldots i_{p}}+p\left(\nabla_{i_{1}} \varphi_{k}{ }^{t}\right) T_{t_{2} \ldots i_{v}} \nabla^{k} \widetilde{T}^{i_{1} \ldots i_{p}}=0 \tag{3.8}
\end{equation*}
$$

Forming the difference (3.7)-(3.8), we have

$$
\begin{align*}
\boldsymbol{\varphi}_{k} \widetilde{T}^{l} \widetilde{T}_{1}^{i_{1}} i_{p} \nabla^{k} \nabla_{l} T_{i_{1} \ldots i_{p}} & -\widetilde{T^{i_{1}} \ldots i_{p}} \nabla^{k} \nabla_{k} \widetilde{T}_{i_{1} \ldots i_{p}} \tag{3.9}\\
& -p\left(\nabla_{i_{1}, \varphi_{k}}^{l}\right) T_{t i_{2} \ldots i_{p}} \nabla^{k} \widetilde{T}^{i_{1} \ldots i_{p}}=0 .
\end{align*}
$$

For the first term of the left-hand side of (3.9), by virtue of the Ricci's identity, we have

$$
\begin{aligned}
& \varphi_{k} \widetilde{T}^{i_{1} \ldots i_{p}} \nabla^{k} \nabla_{l} T_{i_{1} \ldots i_{p}} \\
= & \frac{1}{2} \varphi^{k l} \widetilde{T}_{T_{1} \ldots i_{p}}^{i_{p}}\left(\nabla_{k} \nabla_{l} T_{i_{1} \ldots i_{p}}-\nabla_{l} \nabla_{k} T_{i_{1} \ldots i_{p}}\right) \\
= & -\frac{1}{2} \phi^{k l} \widetilde{T}^{i_{1} \ldots i_{p}} \sum_{r=1}^{p} R_{k i_{r}}{ }^{s} T_{i_{1} \ldots s \ldots i_{p}} \\
= & -\frac{1}{2} p \varphi^{k l} \widetilde{T}^{i_{1} \ldots i_{p}} R_{k l l_{1}}^{s} T_{s_{2} \ldots i_{p}} .
\end{aligned}
$$

Hence (3.9) can be written in the form
8) S. Sawaki [2].

$$
\begin{array}{r}
\frac{1}{2} p p^{k l} \widetilde{T}^{i_{1} \ldots i_{p}} R_{k l_{\mathrm{s}}}{ }^{s} T_{s_{i_{2}} \ldots i_{p}}+\widetilde{T}_{i_{1} \ldots i_{p}} \nabla^{k} \nabla_{k} \widetilde{T}_{i_{1} \ldots i_{p}} \tag{3.10}\\
+p\left(\nabla_{i_{1}} \varphi_{k}{ }^{l}\right) T_{t_{2} \ldots i_{p}} \nabla^{k} \widetilde{T}^{i_{1} \ldots i_{p}}=0 .
\end{array}
$$

But, since $\widetilde{T}_{i_{1} \ldots i_{\mathrm{p}}}$ is also almost-analytic, from (2) of Lemma 3.3, we have

$$
\left(\nabla^{i_{1}} \varphi_{k t}\right) \widetilde{T}_{i_{1} \ldots i_{p}}=0 \text { or }\left(\nabla_{i_{1}} \varphi_{k}^{t}\right) \widetilde{T_{1} \ldots i_{p}}=0
$$

and then operating ∇^{k} to the last equation, we get

$$
\left(\nabla^{k} \nabla_{i_{1}} \varphi_{k}{ }^{t}\right) \widetilde{T}^{i_{1} \ldots i_{p}}+\left(\nabla_{i_{1}} \varphi_{k}{ }^{t}\right) \nabla^{k} \widetilde{i_{1} \ldots i_{p}}=0
$$

or making use of (2.8)

$$
\begin{equation*}
\left.\frac{1}{2} \varphi^{a b} R_{a b i_{i}}^{t}+R_{i_{1}}^{s} \varphi_{s}^{t}\right) \widetilde{T^{j_{1} \ldots i_{p}}}+\left(\nabla_{i,} \varphi_{k}^{t}\right) \nabla^{k} \widetilde{T}^{i_{1} \ldots i_{p}}=0 \tag{3.11}
\end{equation*}
$$

Accordingly, forming the difference (3.10) $-p T_{t i_{2} \ldots i_{p}} \times$ (3.11), we get

$$
\widetilde{T}^{a^{1} \ldots i_{p}} \nabla^{k} \nabla_{k} \widetilde{T}_{i_{1} \ldots i_{p}}-p \widetilde{T}^{j \ldots \ldots i_{p}} R_{i_{1}}{ }^{s} \varphi_{s}{ }^{t} T_{t_{2} \ldots i_{p}}=0
$$

that is,

$$
\begin{equation*}
\left(\nabla^{k} \nabla_{k} \widetilde{T}_{i_{1} \ldots i_{p}}-p R_{i_{1}}{ }^{s} \widetilde{T}_{s i_{2} \ldots i_{p}}\right) \widetilde{T}^{i_{1} \ldots i_{p}}=0 \tag{3.12}
\end{equation*}
$$

Thus if we use the relation $T_{i_{1} \ldots i_{p}}=-\widetilde{\widetilde{T}}_{i_{1} \ldots i_{p}}$, then by Lemma 3.1 we have the following

Lemma 3.4. In an almost-Kählerian space, if $T_{i_{1} \ldots i_{p}}$ is a skew-symmetric almost-analytic tensor, then we have

$$
\left(\nabla^{i} \nabla_{l} T_{i_{1} \ldots i_{p}}-p R_{i_{1}}{ }^{s} T_{s i_{2} \ldots i_{p}}\right) T^{i_{1} \ldots i_{p}}=0
$$

4. Main theorem.

THEOREM 4.1. In a compact almost-Kählerian space, if a skew-symmetric pure tensor $T_{i_{1} \ldots i_{p}}$ is almost-analytic, then it is harmonic.

Proof. From Lemma 3.3, we have

$$
\begin{equation*}
\nabla_{h} T_{i_{1} \ldots i_{p}}+{\varphi_{h}}^{l} \varphi_{i_{1}}{ }^{t} \nabla_{l} T_{t_{2} \ldots i_{p}}-\boldsymbol{\varphi}_{h}{ }^{l} \sum_{r=2}^{p}\left(\nabla_{i_{r}} \varphi_{l}{ }^{t}\right) T_{i_{1} \ldots t \ldots i_{p}}=0, \tag{4.1}
\end{equation*}
$$

$$
\begin{equation*}
\left(\nabla^{t} \boldsymbol{\varphi}_{n i_{1}}\right) T_{t i_{2} \ldots i_{p}}=0 \tag{4.2}
\end{equation*}
$$

Operating $\nabla^{i_{2}}$ to (4.2), we find

$$
\begin{equation*}
\left(\nabla^{i_{2}} \nabla^{t} \boldsymbol{\varphi}_{h i_{1}}\right) T_{t_{2} \ldots i_{p}}+\left(\nabla^{t} \boldsymbol{\varphi}_{n i_{1}}\right) \nabla^{i_{2}} T_{t_{2} \ldots i_{p}}=0 . \tag{4.3}
\end{equation*}
$$

On the other hand, by the Ricci's identity

$$
\left(\nabla^{a} \nabla^{b} \varphi_{h i_{1}}\right) T_{a b i_{1} . . . i_{\mathrm{p}}}=\frac{1}{2}\left(\nabla^{a} \nabla^{b} \boldsymbol{\varphi}_{h i_{1}}-\nabla^{b} \nabla^{a} \varphi_{h i_{1}}\right) T_{a b i_{3}, i_{p}}
$$

$$
=-\frac{1}{2}\left(R^{a b}{ }_{h}{ }^{t} \boldsymbol{\varphi}_{t i_{1}}+R^{a b}{ }_{i_{1}}{ }^{t} \boldsymbol{\varphi}_{h t}\right) T_{a b i_{3} \ldots i_{r}}
$$

and therefore (4.3) turns to

$$
\begin{equation*}
\left(R^{a b}{ }_{h}{ }^{t} \varphi_{t_{i_{1}}}+R^{a b_{i_{1}}{ }^{t}} \varphi_{h t}\right) T_{a b_{3} \ldots i_{p}}+2\left(\nabla^{t} \varphi_{h i_{1}}\right) \nabla^{i_{2}} T_{t i_{2} \ldots i_{p}}=0 . \tag{4.4}
\end{equation*}
$$

Transvecting (4.4) with $\varphi_{c}^{i_{1}}$, we get

$$
\left(R^{a b}{ }_{n c}-. \boldsymbol{\varphi}_{h}{ }^{t} \boldsymbol{\varphi}_{c} i_{1} R^{a b}{ }_{t_{1}}\right) T_{a b_{s} \ldots i_{p}}+2 \varphi_{c}{ }_{c}^{i_{1}}\left(\nabla^{t} \boldsymbol{\varphi}_{n i_{1}}\right) \nabla^{i_{2}} T_{t i_{2} \ldots i_{p}}=0
$$

i.e.

$$
\begin{align*}
-\left(R_{h c}^{a b}+\varphi_{h}{ }^{t} \varphi_{c}^{i_{1}} R^{a b}{ }_{t i_{1}}\right) T_{a b i_{3} \ldots i_{p}} & +2 R^{a b}{ }_{h c} T_{a i_{s} \ldots i_{p}} \tag{4.5}\\
& +2 \varphi_{c}^{i_{1}}\left(\nabla^{t} \varphi_{h i_{1}}\right) \nabla^{i_{2}} T_{t i_{2} \ldots i_{n}}=0 .
\end{align*}
$$

But, we have

$$
\left(R^{a b}{ }_{h c}+{\left.\boldsymbol{q}_{h}{ }^{t} \boldsymbol{\varphi}_{c}{ }_{c}^{i_{1}} R^{a b_{i_{1}}}\right) T_{a b b_{3} \ldots i_{p}} T^{h c_{3} \ldots i_{p}}=0}^{0}\right.
$$

because $R^{a b}{ }_{h c}+{\varphi_{h}}^{t} \varphi_{c}{ }^{i_{1}} R^{a b}{ }_{t i_{1}}$ is hybrid in h, c and $T^{h c_{3} \ldots i_{v}}$ is pure in h, c. Hence, multiplying (4.5) by $T^{h c_{s} . . . i_{p}}$, we find (4. 6) $\quad\left[R^{a b}{ }_{c c} T_{a b_{i_{3}} \ldots i_{p}}+\varphi_{c}{ }^{i_{1}}\left(\nabla^{t} \varphi_{h i_{1}}\right) \nabla^{i_{2}} T_{t i_{3} \ldots i_{p}}\right] T^{h c i_{3} \ldots i_{p}}=0$.

In this place, since by (2.6) $\nabla_{t} \varphi_{h i_{1}}$ is pure in t, i_{1}, we have

$$
\varphi_{c}^{i_{1}} \nabla_{t} \varphi_{h i_{1}}=\varphi_{t}{ }^{i_{1}} \nabla_{i_{1}} \varphi_{h c}
$$

and consequently (4.6) can be written in the form

$$
\begin{equation*}
\left[R^{a b}{ }_{c c} T_{a b_{i_{3}} \ldots i_{p}}+\phi^{i_{i}}\left(\nabla_{i_{1}} \varphi_{h c}\right) \nabla^{i_{2}} T_{t_{i_{2}} \ldots i_{p}}\right] T^{h c_{3} \ldots i_{p}}=0 . \tag{4.7}
\end{equation*}
$$

In the next place, transvecting (4.1) with $g^{i_{1} i_{2}}$ and taking account of skewsymmetricity of $T_{i_{1} \ldots i_{p}}$, we get

$$
\boldsymbol{\varphi}_{h}{ }^{l} \phi^{i_{2} t} \nabla_{l} T_{t i_{2} \ldots i_{p}}=\varphi_{h}{ }^{l}\left(\nabla^{i_{1}} \varphi_{l}\right) T_{i_{l} i_{\mathrm{l}} \ldots i_{p}}
$$

and again transvecting the last equation with $\boldsymbol{\varphi}_{k}{ }^{h}$, we have

$$
\begin{equation*}
\phi^{i_{2} t} \nabla_{k} T_{t i_{2} \ldots i_{p}}=\left(\nabla^{i_{1}} \varphi_{k}{ }^{t}\right) T_{i_{1} t_{\mathrm{i}} \ldots i_{\mathrm{o}}} . \tag{4.8}
\end{equation*}
$$

Since, by (4.2) the right-hand side of (4.8) vanishes, we have

$$
\begin{equation*}
\phi^{t i_{2}} \nabla_{k} T_{t_{i} \ldots i_{\mathrm{p}}}=0 \tag{4.9}
\end{equation*}
$$

On the other hand, $\phi^{t i_{2}} T_{t i_{2} \ldots i_{p}}=0$ because $\phi^{t i_{2}}$ is hybrid in t, i_{2} and $T_{t i_{2} \ldots i_{p}}$ is pure in t, i_{2}. Operating ∇_{k} to the last equation, we get

$$
\phi^{t t_{2}} \nabla_{k} T_{t i_{2} \ldots i_{p}}+\left(\nabla_{k} \phi^{t i_{2}}\right) T_{t i_{2} \ldots i_{p}}=0
$$

from which and (4.9), it follows

$$
\begin{equation*}
\left(\nabla_{k} \varphi^{t i_{2}}\right) T_{t i_{2} \ldots i_{p}}=0 \tag{4.10}
\end{equation*}
$$

Accordingly from (4.7), we have

$$
\begin{equation*}
R^{a b}{ }_{h c} T_{a b i_{3} \ldots i_{p}} T^{h i_{3} \ldots i_{p}}=0 \tag{4.11}
\end{equation*}
$$

Hence, if in an almost-Kählerian space a skew-symmetric tensor $T_{i_{1} \ldots i_{p}}$ is almost-analytic, then by Lemma 3.4 and (4.11) we find

$$
\begin{gather*}
\left(\Delta T_{i_{1} \ldots i_{p}}\right) T^{i_{1} \ldots i_{p}} \tag{4.12}\\
=\left(\nabla^{h} \nabla_{h} T_{i_{1} \ldots i_{p}}-\sum_{r=1}^{p} R_{i_{r}}{ }^{t} T_{i_{1} \ldots t \ldots i_{p}}-\sum_{t<s}^{p} R^{a b}{ }_{i_{i} i_{s}} T_{i_{1} \ldots a \ldots b \ldots i_{p}}\right) T^{i_{1} \ldots i_{p}} \\
=\left(\nabla^{h} \nabla_{h} T_{i_{1} \ldots i_{p}}-p R_{i_{1}}{ }^{t} T_{t_{i_{2}} \ldots i_{p}}-\frac{p(p-1)}{2} R^{a b}{ }_{i_{1} i_{2}} T_{a b_{s} \ldots i_{p}}\right) T^{i_{1} \ldots i_{p}}=0
\end{gather*}
$$

where $\Delta T_{i_{1} \ldots i_{p}}$ is the Laplacian of $T_{i_{1} \ldots i_{i}}$.
Thus, from the well known integral formula

$$
\begin{array}{r}
\int_{x_{2 n}}\left[\left(\Delta T_{i_{1} \ldots i_{p}}\right) T^{i_{1} \ldots i_{p}}+(p+1) \nabla^{[h} T^{\left.i_{1} \ldots i_{p}\right]} \nabla_{[h} T_{\left.i_{1} \ldots i_{p}\right]}\right. \tag{4.13}\\
\left.+p\left(\nabla_{l} T^{l i_{2} \ldots i_{p}}\right) \nabla^{t} T_{\left.t i_{2} \ldots i_{p}\right]}\right] \sigma=0^{9)}
\end{array}
$$

we can deduce $\nabla_{[h} T_{\left.i_{1} \ldots i_{\mathrm{p}}\right]}=0$ and $\nabla^{t} T_{t i_{2} \ldots i_{p}}=0$, that is, $T_{i_{1} \ldots i_{p}}$ is a harmonic tensor. q.e.d.

Moreover, according to this theorem, Lemma 3.1 and Lemma 3.2, we have the following

ThEOREM 4.2. ${ }^{10)}$ In a compact almost-Kählerian space, a necessary and sufficient condition that a skew-symmetric pure tensor $T_{i_{1} \ldots i_{p}}$ be almost-analytic is that $T_{i_{1} \ldots i_{p}}$ and $\widetilde{T}_{i_{1} \ldots i_{p}}$ are both harmonic.

We conclude this section with the following two theorems.
THEOREM 4. 3. In an almost-Kählerian space, if a skew-symmetric almostanalytic tensor $T_{i_{1} \ldots i_{\mathrm{p}}}$ is closed, then $T_{i_{1} \ldots i_{\mathrm{p}}}$ and $\widetilde{T}_{i_{1} \ldots i_{\mathrm{p}}}$ are both harmonic.

Proof. Transvecting (4.1) with $g^{n i_{1}}$, we get

$$
\begin{equation*}
2 \nabla^{h} T_{h i_{2}, \ldots i_{\mathrm{p}}}=\sum_{r=2}^{p} \boldsymbol{\varphi}^{h l}\left(\nabla_{i_{r}} \boldsymbol{\varphi}_{l}^{t}\right) T_{h_{2} \ldots, \ldots i_{\mathrm{p}}} \tag{4.14}
\end{equation*}
$$

but since $\nabla_{i_{r}} \varphi_{l}{ }^{t}$ is pure in i_{r}, l, we have $\phi^{h l} \nabla_{i_{r}} \varphi_{l}{ }^{t}=\phi_{i_{r}}{ }^{l} \nabla_{l} \varphi^{h t}$ and therefore (4.14) turns to

$$
\begin{equation*}
2 \nabla^{h} T_{h i_{2} \ldots i_{p}}=\sum_{r=2}^{p} \phi_{\iota_{r}}{ }^{l}\left(\nabla_{\iota} \varphi^{n t}\right) T_{h i_{2} \ldots t \ldots i_{p}} . \tag{4.15}
\end{equation*}
$$

From (4.15), we have

$$
\nabla^{h} T_{h_{2} \ldots i_{p}}=0
$$

because by virtue of (4.10), the right-hand side of (4.15) vanishes. Hence for $\widetilde{T}_{i_{1} \ldots i_{\mathrm{p}}}$ also, we have
9) K. Yano and S. Bochner [7].
10) For a vector, see S. Tachibana [3].

$$
\nabla^{n} \widetilde{T}_{n_{i_{1}, \ldots, i_{p}}}=0
$$

and if $T_{i_{1} \ldots i_{p}}$ is closed, then by (3.2) $\widetilde{T}_{i_{1} \ldots i_{p}}$ is also closed. q.e.d.
By this theorem and Lemma 3.2, we have
THEOREM 4.4. In an almost-Kählerian space, if skew-symmetric pure tensors $T_{i_{1} \ldots i_{p}}$ and $\widetilde{T}_{i_{1} \ldots i_{p}}$ are both closed, then they are both harmonic.

References

[1] S. Kotō, On harmonic tensors in an almost Tachibana space, Tôhoku Math. Journ., 13(1961), 423-426.
[2] S. SAWAKI, On almost-analytic tensors in *O-spaces, Tôhoku Math. Journ., 13(1961), 154-178.
[3] S. TAChibana, On almost-analytic vectors in almost-Kählerian manifolds, Tôhoku Math. Journ., 11(1959), 247-265.
[4] S. Tachibana, On almost-analytic vectors in certain almost-Hermitian manifolds, Tôhoku Math. Journ., 11(1959), 351-363.
[5] S. TAChibana, Analytic tensor and its generalization, Tôhoku Math. Journ., 12(1960), 208-221.
[6] K. Yano, The theory of Lie derivatives and its applications, Amsterdam (1957).
[7] K. Yano and S. Bochner, Curvature and Betti numbers, Annals of Math. Studies, 32 (1953).

NiIGATA University.

[^0]: 1) As to the notations we follow S. Sawaki [2]. Indices run over $1,2, \cdots, 2 n$.
 2) S. Tachibana [4].
 3) S. Tachibana [3].
 4), 5),6) For example, see K. Yano [6].
