ON IYENGAR'S TAUBERIAN THEOREM FOR NÖRLUND SUMMABILITY

O. P. Varshney

(Received November 26, 1963)

1. Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of real, non-negative constants, and let us write

$$
P_{n}=p_{0}+p_{1}+\cdots+p_{n} .
$$

The sequence-to-sequence transformation:

$$
\begin{equation*}
t_{n}=\frac{p_{0} s_{n}+p_{1} s_{n-1}+\cdots+p_{n} s_{0}}{P_{n}} \quad\left(P_{n} \neq 0\right) \tag{1.1}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of Nörlund means of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficients $\left\{p_{n}\right\}$. The sequence $\left\{s_{n}\right\}$ is said to be summable (N, p_{n}) to the sum s, if $\lim _{n \rightarrow \infty} t_{n}$ exists and equals $s[1, \mathrm{p} .64]$.

In the special case in which p_{n} is defined by

$$
\begin{equation*}
\sum_{n=0}^{\infty} p_{n} x^{n}=\left(\sum_{0}^{\infty} \frac{x^{n}}{n+1}\right)^{k}=\left\{\frac{\log (1-x)^{-1}}{x}\right\}^{k},|x|<1,(k=1,2, \cdots), \tag{1.2}
\end{equation*}
$$

t_{n} reduces to the familiar 'Harmonic mean of order k.' In this case we say that the sequence $\left\{s_{n}\right\}$ is summable (H, k) to the sum s. The case $k=1$ is due to Riesz [6] and the general case is due to Iyengar [2]. It should be noted that Iyengar writes (N, k) in place of (H, k). We do not use his notation to avoid confusion with $\left(N, p_{n}\right)$ where $p_{n}=k$.

The main interest of this method of summation lies in the following Tauberian theorem :

THEOREM 1 [2]. If $s_{n}(n=0,1, \cdots)$ is a sequence summable (H, k) to 0 , and if

$$
\begin{equation*}
s_{n}-s_{n-1} \equiv a_{n} \leqq A n^{-\mu}(A>0,1>\mu>0) \tag{1.3}
\end{equation*}
$$

then $s_{n} \rightarrow 0$.
Rajagopal [4] has given a simple proof of this theorem in the case $k=1$ which has been adapted by Rangachari [5] to the general case.

Iyengar [3], after proving the case $k=1$ of Theorem 1 , states without proof the following extension which is interesting in view of the application which he has made of it, to obtain a scale of convergence tests for Fourier
series of which the simplest is a test due to Hardy and Littlewood [7, p. 35].
THEOREM 2. Let $p_{n}(n=0,1, \cdots)$ be a strictly positive sequence such that $\left\{p_{n+1} / p_{n}\right\}$ monotonically increases to the limit 1 , and $P_{n} \rightarrow \infty$. Suppose that $\left\{s_{n}\right\}$ is summable $\left(N, p_{n}\right)$ to 0 and

$$
\begin{equation*}
s_{n}-s_{n-1}=a_{n} \leqq \frac{A}{N}(A>0) \tag{1.4}
\end{equation*}
$$

where $N=N(n)$ is a positive integer defined by

$$
\begin{equation*}
P_{N} \leqq \mu P_{n}<P_{N+1}, 0<\mu<1 \tag{1.5}
\end{equation*}
$$

Then $s_{n} \rightarrow 0$.
In connection with this theorem Rangachari [5] remarks, "Unfortunately, however, it does not seem possible to prove it like Theorem 1, and Iyengar's proof of it is not known since he died apparenly before he could fulfil his promise to publish the proof...".

The object of this paper is to give a simple proof of Theorem 2.
2. We shall neeed the following lemmas for proving Theorem 2.

Lemma 1 [1, p. 68]. If $p(x)=\sum p_{n} x^{n}$ is convergent for $|x|<1$, and

$$
\begin{equation*}
p_{0}=1, \quad p_{n}>0, \frac{p_{n+1}}{p_{n}} \geqq \frac{p_{n}}{p_{n-1}} \quad(n>0), \tag{2.1}
\end{equation*}
$$

then

$$
\begin{equation*}
\{p(x)\}^{-1}=1-c_{1} x-c_{2} x^{2}-\cdots \tag{2.2}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{n} \geqq 0(n>0) ; \text { (ii) } p_{n+1} \leqq p_{n}(n \geqq 0) . \tag{2.3}
\end{equation*}
$$

If $\sum p_{n}=\infty$, then

$$
\begin{equation*}
\sum c_{n}=1 \tag{2.4}
\end{equation*}
$$

We note that under the conditions of Theorem $2, \frac{p_{n+1}}{p_{n}} \rightarrow 1$ and this implies that $p(x)$ is convergent for $|x|<1$. Further, we assume, without any loss of generality, that $p_{0}=1$ in Theorem 2. Hence all the conditions of this lemma are satisfied. Clearly

$$
\begin{equation*}
p_{n}=c_{1} p_{n-1}+c_{2} p_{n-2}+\cdots+c_{n} p_{0}(n>0) \tag{2.5}
\end{equation*}
$$

Lemma 2. If $\left\{p_{n}\right\}$ satisfies the conditions of Lemma 1 , and if $P_{n} \rightarrow \infty$, then

$$
\left\{\begin{array}{l}
d_{n} \equiv c_{n+1}+c_{n+2}+\cdots=1-c_{1}-c_{2}-\cdots-c_{n} \leqq \frac{1}{P_{n}} \quad(n>0) \tag{2.6}\\
1+d_{1}+d_{2}+\cdots+d_{n} \leqq \frac{1}{p_{n}} \quad(n>0)
\end{array}\right.
$$

Proof. Using (2.5) repeatedly we have

\[

\]

Adding we obtain

$$
p_{n}+d_{1} p_{n-1}+\cdots+d_{n-1} p_{1}=\left(c_{1}+c_{2}+\cdots+c_{n}\right) p_{0}
$$

which reduces to

$$
\begin{equation*}
p_{n}+d_{1} p_{n-1}+\cdots+d_{n} p_{0}=p_{0}=1 . \tag{2.7}
\end{equation*}
$$

Now using (2. 3) we have

$$
\begin{equation*}
1 \geqq d_{n} \geqq d_{n+1}(n>0) ; \quad 1 \geqq p_{n} \geqq p_{n+1}(n \geqq 0) \tag{2.8}
\end{equation*}
$$

Finally using (2.7) and (2.8) we prove (2.6).
Lemma 3. If $\left\{s_{n}\right\}$ is summable $\left(N, p_{n}\right)$ to 0 , then
(2. 9)

$$
\lim _{n \rightarrow \infty}\left[\frac{\sum_{r=0}^{n} p_{r+m} s_{n-r}}{P_{n+m}}\right]=0,
$$

where $\left\{p_{n}\right\}$ and $N=N(n)$ are defined as in Theorem 2 and $m=m(n)=[\lambda N]$, $0<\lambda<1$.

Proof:-Making use of the definition of t_{n} and (2.5) we write

$$
s_{n}=P_{n} t_{n}-\left(c_{1} P_{n-1} t_{n-1}+c_{2} P_{n-2} t_{n-2}+\cdots+c_{n} P_{0} t_{0}\right) .
$$

Now inserting the expression for $s_{n-r}(r=0,1, \cdots n)$, we have

$$
\begin{aligned}
\sum_{r=0}^{n} p_{r+m} s_{n-r} & =\sum_{r=0}^{n}\left(p_{r+m}-c_{1} p_{r-1+m}-\cdots-c_{r} p_{m}\right) P_{n-r} t_{n-r} \\
& =\sum_{r=0}^{n} A_{n-r} P_{r} t_{r},
\end{aligned}
$$

where

$$
A_{n-r}=\left\{\begin{array}{l}
p_{n-r+m}-c_{1} p_{n-r-1+m}-\cdots-c_{n-r} p_{m}(r<n), p_{m}(r=n) \tag{2.10}\\
c_{n-r+1} p_{m-1}+c_{n-r+2} p_{m-2}+\cdots+c_{n-r+m} p_{0}(r \leqq n),
\end{array}\right.
$$

the second expression for A_{n-r} in (2.10) being derived from the first by (2. 5). Clearly $A_{n-r} \geqq 0(r \leqq n)$.
Now

$$
\begin{equation*}
\sum_{r=0}^{n} A_{n-r} P_{r} t_{r}=\sum_{r=0}^{n-m}+\sum_{r=n-m+1}^{n}=\sum_{1}+\sum_{2}, \quad \text { say } \tag{2.11}
\end{equation*}
$$

Since $t_{n} \rightarrow 0$, we have by (2.10) and by Lemma 2,

$$
\begin{aligned}
\left|\sum_{1}\right| & \leqq o\left(P_{n}\right) \sum_{r=0}^{n-m}\left|A_{n-r}\right| \\
& =o\left(P_{n}\right) \sum_{r=0}^{n-m} \sum_{k=0}^{m-1} p_{k} c_{n-r+m-k} \\
& =o\left(P_{n}\right) \sum_{k=0}^{m-1} p_{k}\left(c_{2 m-k}+c_{2 m-k+1}+\cdots+c_{n+m-k}\right) \\
& \leqq o\left(P_{n}\right) \sum_{k=0}^{m-1} p_{k} d_{2 m-k-1} \\
& \leqq o\left(P_{n}\right) \sum_{k=0}^{m-1} p_{k} / P_{2 m-k-1} \\
& \leqq o\left(P_{n}\right) P_{m-1} / P_{m}
\end{aligned}
$$

$$
\begin{equation*}
=o\left(P_{n}\right) \tag{2.12}
\end{equation*}
$$

Further, by the first expression for A_{n-r} in (2.10) and by (2.3), (i), (ii) and (2.6), we have

$$
\begin{aligned}
\left|\sum_{2}\right| & \leqq o\left(P_{n}\right) \sum_{n-m+1 \leq r \leqq n}\left|A_{n-r}\right|=o\left(P_{n}\right) \sum_{k=0}^{m-1} d_{k} p_{m+k} \\
& \leqq o\left(P_{n}\right) p_{m}\left(1+d_{1}+d_{2}+\cdots+d_{m-1}\right) \\
& \leqq o\left(P_{n}\right) .
\end{aligned}
$$

The lemma now follows from (2.11), (2.12) and (2.13).
3. Proof of Theorem 2. The proof follows the usual argument and it is only for the sake of completeness that we give it here. We suppose that
(3.1) $\quad \lim \inf s_{n}=-h, h>0$.

Then there exists a sequence of positive integers $n_{0}<n_{1}<\cdots<n_{k} \rightarrow \infty$, such that

$$
\begin{equation*}
s_{n_{k}} \leqq-h_{1}, 0<h_{1}<h . \tag{3.2}
\end{equation*}
$$

Let us assume, without any loss of generality, that $A>h_{1} / 2$. Now choose $\lambda=h_{1} /(2 A)$ in Lemma 3. Then by (1.4)
(3. 3) $s_{n}=s_{n_{k}}+a_{n_{k}+1}+\cdots+a_{n} \leqq-h_{1}+a_{1} / 2, \quad n_{k} \leqq n \leqq n_{k}+m_{k}$
where $m_{k}=m\left(n_{k}\right)$.
Now
(3. 4)

$$
\sum_{r=0}^{n+m} p_{n+m-r} s_{r}=\sum_{r=0}^{n}+\sum_{r=n+1}^{n+m}=S_{1}+S_{2}, \text { say. }
$$

From Lemma 3,

$$
\begin{equation*}
S_{1}=0\left(P_{n+m}\right) \tag{3.5}
\end{equation*}
$$

Choosing $n=n_{k}$, we have by (3.3)

$$
\begin{align*}
S_{2} & \leqq-\frac{h_{1}}{2} \sum_{r=n+1}^{n+m} P_{n+m-r} \\
& =-\frac{h_{1}}{2} P_{m-1} . \tag{3.6}
\end{align*}
$$

Now in view of (1.5) and (2.3) (ii), we can show that there exists a $\nu>0$ such that

$$
P_{m-1}=P_{[\lambda N]-1} \geqq \nu P_{N+1}>\mu \nu P_{n} \geqq \frac{\mu \nu}{2} P_{n+m}, k>k_{0} .
$$

Hence

$$
S_{2} / P_{n_{k}+m_{k}} \leqq-\frac{h_{1}}{2} \cdot \frac{\mu \nu}{2} \quad\left(k>k_{0}\right),
$$

which contradicts the assumption that the sequence $\left\{s_{n}\right\}$ is summable (N, p_{n}) to 0 .

We can easily see that $\lim \inf s_{n} \neq-\infty$. Hence lim inf $s_{n}=0$.

Similarly $\lim \sup s_{n}=0$.
This completes the proof of Theorem 2.

References

[1] G. H. HARDY, Divergent Series, Oxford, (1949).
[2] K.S.K. IYENGAR, A Tauberian theorem and its application to convergence of Fourier series, Proc. Indian Acad. of Sciences, 18 A (1943), 81-87.
[3] K.S. K. IYENGAR, New convergence and summability tests for Fourier series, Proc. Indian Acad. of Sciences, 18 A. (1943), 113-120.
[4] C. T. Rajagopal, Convergence and summability of a class of Fourier series, Indian Journ. Math., 3(1961), 63-72.
[5] M. S. Rangachari, Remarks on some Tauberian theorems for Nörlund summability, Indian Journ. Math., 3(1961), 73-76.
[6] M. Riesz, Sur l'équivalence de certaines méthodes de sommation, Proc. London Math. Soc., 22(1924), 412-419.
[7] A. Zygmund, Trigonometrical Series, New York, (1952).
University of Roorkee,
Roorkee (India)

