ON A DECOMPOSITION OF AN ALMOST-ANALYTIC VECTOR IN A K-SPACE WITH CONSTANT SCALAR CURVATURE

Kichiro Takamatsu

(Received October 8, 1963)
Y. Matsushima [3] ${ }^{1)}$ proved the following

Theorem. In a compact Kähler-Einstein space ($R>0$), any contravariant analytic vector v^{i} is uniquely decomposed in the form

$$
v^{i}=p^{i}+\phi_{r}{ }^{i} q^{r}
$$

where p^{i} and q^{i} are both Killing vectors.
As a generalization of this theorem, A.Lichnerowicz [2] proved that it holds good in a compact Kählerian space with constant scalar curvature. Recently, S.Sawaki [4] proved that the above theorem is valid for any contravariant almost-analytic vector in a compact Einstein K-space ${ }^{2)}$.

In this paper we shall try to generalize these results to a compact K-space with constant scalar curvature.

Main Theorem. In a compact K-space with constant scalar curvature, any contravariant almost-analytic vector v^{i} is decomposed in the form

$$
v^{i}=p^{i}+\phi_{r}{ }^{i} q^{r}
$$

where p^{i} and q^{i} are both Killing vectors.
In §1 we shall give some definitions and propositions. In §2 we shall state some well known identities in a K-space. In $\S 3$ we shall deal with contravariant almost-analytic vectors in a K-space and prepare some lemmas which are useful for the proof of our main theorem. The last section will be devoted to the proof of the main theorem.

The author wishes to express his sincere thanks to Dr. S.Sawaki who has given valuable suggestions to the author.

1. Preliminaries. Let $X_{2 n}$ be a $2 n$-dimensional almost-Hermitian space which admits an almost complex structure $\phi_{j}{ }^{i}$ and a positive definite Riemannian metric tensor $g_{j i}$ satisfying

$$
\begin{align*}
& \phi_{l}{ }^{i} \phi_{j}{ }^{l}=-\delta_{j}{ }^{i} \tag{1.1}\\
& g_{l t} \phi_{j}{ }^{l} \phi_{i}{ }^{t}=g_{j i} .
\end{align*}
$$

(1. 2)

Then from (1.1) and (1.2), we have

[^0]\[

$$
\begin{equation*}
\phi_{j i}=-\phi_{i j} \tag{1.3}
\end{equation*}
$$

\]

where $\phi_{j i}=\phi_{j}{ }^{l} g_{i i}$.
Now in an almost-Hermitian space $X_{2 n}$, we define the following linear operators

$$
O_{i h}^{m l}=\frac{1}{2}\left(\delta_{i}{ }^{m} \delta_{h}{ }^{l}-\phi_{i}{ }^{m} \phi_{h}{ }^{l}\right), * O_{i h}^{m l}=\frac{1}{2}\left(\delta_{i}{ }^{m} \delta_{h}{ }^{l}+\phi_{i}{ }^{m} \phi_{h}{ }^{l}\right)
$$

and a tensor is called pure (hybrid) in two indices, if it is annihilated by transvection of ${ }^{*} O(O)$ on these indices. We have easily the following

PROPOSITION 1. ${ }^{*} O_{i h}^{a b} \nabla_{j} \phi_{a b}=0, O_{i b}^{i h} \nabla_{j} \phi_{a}{ }^{b}=0$ where ∇_{j} denotes the operator of covariant derivative with respect to the Riemannian connection.

Proposition 2. For two tensors $T_{j i}$ and $S^{j i}$, if $T_{j i}$ is pure in j, i and $S^{j i}$ is hybrid in j, i, then $T_{j i} S^{j i}$ vanishes.

Proposition 3. If $T_{j}{ }^{i}$ is pure (hybrid) in j, i, then we have

$$
\begin{equation*}
\phi_{t}{ }^{i} T_{j}{ }^{t}=\phi_{j}{ }^{t} T_{t}{ }^{i} \quad\left(\phi_{t}{ }^{i} T_{j}{ }^{t}=-\phi_{j}{ }^{t} T_{t}{ }^{i}\right) . \tag{1.4}
\end{equation*}
$$

If $S^{j i}$ is pure (hybrid) in j, i, then we have

$$
\begin{equation*}
\phi_{t}{ }^{j} S^{t i}=\phi_{t}{ }^{i} S^{j t} \quad\left(\phi_{t}{ }^{j} S^{t i}=-\phi_{t}{ }^{i} S^{j t}\right) . \tag{1.5}
\end{equation*}
$$

2. K-spaces. An almost-Hermitian space $X_{2 n}$ is called a K-space, if it satisfies

$$
\begin{equation*}
\nabla_{j} \phi_{i h}+\nabla_{i} \phi_{j h}=0, \tag{2.1}
\end{equation*}
$$

from which we have easily

$$
\begin{align*}
& \nabla_{j} \phi_{i}{ }^{j}=0, \tag{2.2}\\
& * O_{j i}^{a b} \nabla_{a} \phi_{b h}=0 .{ }^{3)} \tag{2.3}
\end{align*}
$$

Let $R_{k j i}{ }^{h}$ and $R_{j i}=R_{t j i}{ }^{t}$ be Riemannian curvature tensor and Ricci tensor respectively. Assuming we are in a K-space and putting

$$
R^{*}{ }_{j i}=\frac{1}{2} \phi^{a b} R_{a b i i} \phi_{j}{ }^{t},
$$

then we get the following identities ${ }^{4)}$

$$
\begin{align*}
& \phi_{h k} \nabla^{t} \nabla_{j} \phi_{t}{ }^{h}=R^{*_{k j}}-R_{j k}, \tag{2.4}\\
& O_{j h}^{a b} R_{a b}=0, \tag{2.5}\\
& R^{*}{ }_{j i}=R^{*}{ }_{i j}, \tag{2.6}\\
& \left(\nabla_{j} \phi_{t l}\right) \nabla_{i} \phi^{t l}=R_{j i}-R^{*}{ }_{j i} \tag{2.7}
\end{align*}
$$

where $\nabla^{j}=g^{t j} \nabla_{t}$ and $\phi^{j i}=\phi_{t}{ }^{i} g^{t j}$,

[^1](2. 8)
$$
R-R^{*}=\text { constant }
$$
where $R=g^{j i} R_{j i}$ and $R^{*}=g^{j i} R^{*}{ }_{j i}$,
\[

$$
\begin{equation*}
\nabla_{k}\left(N_{t l}^{k} \nabla^{t} v^{l}\right)=0 \tag{2.9}
\end{equation*}
$$

\]

where $N_{t l}{ }^{k}$ is the Nijenhuis tensor:

$$
N_{t l}^{k}=\phi_{t}{ }^{m}\left(\nabla_{m} \phi_{l}^{k}-\nabla_{l} \phi_{m}{ }^{k}\right)-\phi_{l}{ }^{m}\left(\nabla_{m} \phi_{l}^{k}-\nabla_{t} \phi_{m}{ }^{k}\right) .
$$

In a Riemannian space we know

$$
\begin{equation*}
\frac{1}{2} \nabla_{t} R=\nabla^{j} R_{j t}^{5)} \tag{2.10}
\end{equation*}
$$

and in a K-space

$$
\begin{equation*}
\frac{1}{2} \nabla_{t} R^{*}=\nabla^{j} R^{*}{ }_{j t}{ }^{6)} \tag{2.11}
\end{equation*}
$$

Therefore from (2.8), (2.10) and (2.11), we have

$$
\begin{equation*}
\nabla^{k}\left(R_{t k}-R^{*}{ }_{t k}\right)=\frac{1}{2} \nabla_{t}\left(R-R^{*}\right)=0 \tag{2.12}
\end{equation*}
$$

3. Contravariant almost-analytic vectors. In an almost-Hermitian space a contravariant vector v^{i} is called almost-analytic if it satisfies

$$
\underset{v}{\mathcal{E}} \phi_{j}{ }^{i} \equiv v^{t} \nabla_{t} \phi_{j}{ }^{i}-\phi_{j}{ }^{t} \nabla_{t} v^{i}+\phi_{t}{ }^{i} \nabla_{j} v^{t}=0^{7)}
$$

where $\underset{v}{\underset{f}{f}}$ is the operator of Lie derivative. This is a generalization of the notion of contravariant analytic vectors in a Kählerian space. The above equation is equivalent to

$$
\begin{equation*}
v^{t} \nabla_{t} \phi_{j i}-\phi_{j}{ }^{t} \nabla_{t} v_{i}-\phi_{i}{ }^{t} \nabla_{j} v_{t}=0 \tag{3.1}
\end{equation*}
$$

where $v_{i}=g_{i t} v^{t}$.
In a K-space we know the following lemmas.
LEMMA 3.1.8) In a compact K-space, a necessary and sufficient condition that a contravariant vector v^{i} be almost-analytic is that it satisfies

$$
\begin{gather*}
\nabla^{l} \nabla_{l} v^{i}+R_{t}{ }^{i} v^{t}=0 \tag{3.2}\\
N_{t l k} \nabla^{t} v^{l}+2 v^{t}\left(R_{t k}-R_{t k}^{*}\right)=0 .
\end{gather*}
$$

LEMMA 3.2.9) When a contravariant vector v^{i} in a K-space is almost-

[^2]analytic, a necessary and sufficient condition that $\tilde{v}^{i}=\phi_{t}{ }^{i} v^{t}$ be almost-analytic is that it satisfies
$$
v^{t} \nabla_{t} \phi_{j k}=0
$$

Next, we shall prove following lemmas.
Lemma 3.3. In an almost-Hermitian space, if a tensor $S_{j t i}$ is skewsymmetric, then we have

$$
\begin{equation*}
\nabla^{i} \nabla^{t} S_{j t i}=0 \tag{3.4}
\end{equation*}
$$

Proof. By virtue of the Ricci's identity, we obtain

$$
\begin{aligned}
\nabla^{i} \nabla^{t} S_{j t i} & =\frac{1}{2}\left(\nabla^{i} \nabla^{t} S_{j t i}-\nabla^{t} \nabla^{i} S_{j t i}\right) \\
& =-\frac{1}{2}\left(R^{i t}{ }_{j}{ }^{a} S_{a t i}+R^{i t}{ }_{t}{ }^{a} S_{j a i}+R^{i t}{ }_{i}{ }_{i} S_{j l a}\right) \\
& =-\frac{1}{2}\left(R^{i t}{ }_{j}{ }^{a} S_{a t i}+R^{i a} S_{j a i}-R^{t a} S_{j t a}\right)
\end{aligned}
$$

In this equation, it is easy to see that the last three terms vanish respectively. Hence we have $\nabla^{i} \nabla^{t} S_{j t i}=0$.

Lemma 3.4. In a compact K-space, if v^{i} is an almost-analytic vector and r^{i} is a vector such that $r^{i}=\nabla^{i} r$ for a certain scalar r, then we have

$$
\begin{equation*}
\int_{X_{2 n}} r^{j} v^{h}\left(R_{h j}-R_{n j}^{*}\right) d \sigma=0 \tag{3.5}
\end{equation*}
$$

where $d \sigma$ means the volume element of the space $X_{2 n}$.
Proof. From

$$
\begin{aligned}
\nabla^{j}\left\{r v^{h}\left(R_{h j}-R^{*}{ }_{h j}\right)\right\} & =r^{j} v^{h}\left(R_{h j}-R_{h j}^{*}\right)+r \nabla^{j} v^{h}\left(R_{h j}-R_{h j}^{*}\right) \\
& +r v^{h} \nabla^{j}\left(R_{h j}-R_{h j}^{*}\right),
\end{aligned}
$$

by Green's theorem, we have

$$
\begin{align*}
\int_{X_{2 n}}\left[r^{j} v^{h}\left(R_{h j}-R_{n j}^{*}\right)\right. & +r \nabla^{j} v^{h}\left(R_{h j}-R^{*}{ }_{h j}\right) \tag{3.6}\\
& \left.+r v^{h} \nabla^{j}\left(R_{h j}-R^{*}{ }_{h j}\right)\right] d \sigma=0 .
\end{align*}
$$

On the other hand, operating ∇^{k} to (3.3), we have

$$
\begin{equation*}
\nabla^{k}\left(N_{t l k} \nabla^{t} v^{l}\right)+2 \nabla^{k} v^{t}\left(R_{t k}-R_{t k}^{*}\right)+2 v^{t} \nabla^{k}\left(R_{t k}-R_{t k}^{*}\right)=0 . \tag{3.7}
\end{equation*}
$$

In this place, using (2.9) and (2.12), (3.7) turns to

$$
\begin{equation*}
\nabla^{k} v^{t}\left(R_{t k}-R^{*}{ }_{t k}\right)=0 \tag{3.8}
\end{equation*}
$$

Consequently from (3.6) we have

$$
\int_{X_{2 n}} r^{j} v^{h}\left(R_{h j}-R_{n j}^{*}\right) d \sigma=0 .
$$

Lemma 3.5. In a compact K-space with constant scalar curvature, if $\nabla_{j} p_{i}+\nabla_{i} p_{j}$ is pure and r_{i} is a vector such that $r_{i}=\nabla_{i} r$ for a certain scalar r, then we have

$$
\begin{equation*}
\int_{\Gamma_{s i}} p^{i} r^{j} R_{j i} d \sigma=0 . \tag{3.9}
\end{equation*}
$$

Proof. We consider the following equation:

$$
\begin{align*}
& \nabla^{j}\left(r p^{i} R_{j i}\right)=p^{i} r^{j} R_{j i}+r\left(\nabla^{j} p^{i}\right) R_{j i}+r p^{i} \nabla^{j} R_{j i} \tag{3.10}\\
& =p^{i} r^{j} R_{j i}+\frac{1}{2} r\left(\nabla^{j} p^{i}+\nabla^{i} p^{j}\right) R_{j i}+r p^{i} \nabla^{j} R_{j i} .
\end{align*}
$$

In this equation, since $\nabla^{j} p^{i}+\nabla^{i} p^{j}$ is pure in j, i and by (2.5) $R_{j i}$ is hybrid in j, i, then by Proposition 2, we have $\left(\nabla^{j} p^{i}+\nabla^{i} p^{j}\right) R_{j i}=0$. And by the assumption $\nabla^{j} R_{j i}=\frac{1}{2} \nabla_{i} R=0$.

Accordingly, applying Green's theorem to (3.10), we have

$$
\begin{equation*}
\int_{x_{2 n}} p^{i} r^{j} R_{j i} d \sigma=0 \tag{3.11}
\end{equation*}
$$

We conclude this section with the following lemma which is essential in this paper.

Lemma 3.6. In a compact K-space, any contravariant almost-analytic vector v^{i} can be decomposed as

$$
\begin{equation*}
v^{i}=p^{i}+r^{i} \tag{3.12}
\end{equation*}
$$

where $\nabla_{i} p^{i}=0$ and r^{i} is a vector such that $r^{i}=\nabla^{i} r$ for a certain scalar r, and

$$
\begin{gather*}
* O_{a b}^{j i}\left(\nabla^{a} p^{b}+\nabla^{b} p^{a}\right)=0, \tag{3.13}\\
r^{t} \nabla_{t} \phi_{j i}=0 . \tag{3.14}
\end{gather*}
$$

Proof. By the theory of harmonic integrals, (3.12) is the result that holds good for any vector v^{i} in a compact orientable Riemannian space. Next, putting

$$
T_{j i} \equiv \nabla_{j} p_{i}+\nabla_{i} p_{j}+\phi_{j}{ }^{a} \phi_{i}{ }^{b}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)
$$

and writing out the square of $T_{j i}$, we get

$$
\frac{1}{4} T_{j i} T^{j i}=\left(\nabla_{j} p_{i}\right) \nabla^{j} p^{i}+\left(\nabla_{i} p_{j}\right) \nabla^{j} p^{i}+\phi_{j}{ }^{a} \phi_{i}{ }^{b} \nabla^{j} p^{i}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right) .
$$

Therefore, from

$$
\nabla^{i}\left(p^{i} T_{j i}\right)-p^{j} \nabla^{i} T_{j i}=\left(\nabla^{i} p^{j}\right) T_{j i}=\frac{1}{4} T_{j i} T^{j i}
$$

it follows that

$$
\begin{align*}
\nabla^{i}\left(p^{j} T_{j i}\right) & =\frac{1}{4} T_{j i} T^{j i}+p^{j} \nabla^{i} T_{j i} \tag{3.15}\\
& =\frac{1}{4} T_{j i} T^{j i}+p^{j}\left\{\nabla^{i}\left(\nabla_{j} p_{i}+\nabla_{i} p_{j}\right)+\phi_{j}{ }^{a}\left(\nabla^{i} \phi_{i}{ }^{b}\right)\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)\right. \\
& \left.+\left(\nabla^{i} \phi_{j}{ }^{a}\right) \phi_{i}{ }^{b}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)+\phi_{j}{ }^{a} \phi_{i}{ }^{b} \nabla^{i}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)\right\} \\
& =\frac{1}{4} T_{j i} T^{j i}+p^{j}\left\{\nabla^{i}\left(\nabla_{j} p_{i}+\nabla_{i} p_{j}\right)+\phi_{j}{ }^{a} \phi_{i}{ }^{b} \nabla^{i}\left(\nabla_{a} p_{b}+\nabla_{b} p_{a}\right)\right\}
\end{align*}
$$

because, $\nabla^{i} \phi_{i}{ }^{b}=0$ since by (1.5) and (2.3), $\phi_{i}{ }^{b} \nabla^{i} \phi_{j}{ }^{a}=\phi_{i}{ }^{a} \nabla^{b} \phi_{j}{ }^{i}=-\phi_{i}{ }^{a} \nabla^{i} \phi_{j}{ }^{b}$, $\phi_{i}{ }^{b} \nabla^{i} \phi_{j}{ }^{a}$ is skew-symmetric with respect to a and b, and therefore $\left(\nabla^{i} \phi_{j}{ }^{a}\right) \phi_{i}{ }^{b}\left(\nabla_{a} p_{b}\right.$ $\left.+\nabla_{b} p_{a}\right)$ vanishes.

On the other hand, if we interchange j and i in (3.1) and subtract the equation thus obtained from (3.1), then we get

$$
\begin{equation*}
2 v^{t} \nabla_{t} \phi_{j i}-\phi_{j}{ }^{t}\left(\nabla_{t} v_{i}-\nabla_{i} v_{t}\right)+\phi_{t i}\left(\nabla_{j} v^{t}-\nabla^{t} v_{j}\right)=0 . \tag{3.16}
\end{equation*}
$$

Substituting (3.12) into (3.16) and taking account of $\nabla_{j} r_{i}=\nabla_{i} r_{j}$, we have

$$
2\left(p^{t}+r^{t}\right) \nabla_{t} \phi_{j i}-\phi_{j}^{t}\left(\nabla_{t} p_{i}-\nabla_{i} p_{t}\right)+\phi_{t i}\left(\nabla_{i} p^{t}-\nabla^{t} p_{j}\right)=0 .
$$

Since $\nabla_{i} \phi_{j}{ }^{i}=0$ and $\nabla_{i} p^{i}=0$, this equation can be easily written as

$$
\begin{align*}
& \phi_{j}^{t}\left(\nabla_{i} p_{t}+\nabla_{t} p_{i}\right)-\phi_{i}^{t}\left(\nabla_{j} p_{t}+\nabla_{t} p_{j}\right) \tag{3.17}\\
& =-2 r^{t} \nabla_{t} \phi_{j i}+2 \nabla^{t}\left(\phi_{j t} p_{i}+\phi_{t i} p_{j}+\phi_{i j} p_{t}\right) .
\end{align*}
$$

Operating ∇^{i} to (3.17) we have

$$
\begin{gather*}
\nabla^{i} \phi_{j}^{t}\left(\nabla_{i} p_{t}+\nabla_{t} p_{i}\right)+\phi_{j}^{t} \nabla^{i}\left(\nabla_{i} p_{t}+\nabla_{t} p_{i}\right)-\phi_{i}{ }^{t} \nabla^{i}\left(\nabla_{j} p_{t}+\nabla_{t} p_{j}\right) \tag{3.18}\\
=-2\left(\nabla^{i} r^{t}\right) \nabla_{t} \phi_{j i}-2 r^{t} \nabla^{i} \nabla_{t} \phi_{j i}+2 \nabla^{i} \nabla^{t} S_{j t i}
\end{gather*}
$$

where $S_{j t i}=\phi_{j t} p_{i}+\phi_{t i} p_{j}+\phi_{i j} p_{t}$.
In the above equation (3.18), since $\nabla^{i} \phi_{j}{ }^{t}$ is skew-symmetric with respect to i and $t, \nabla^{i} \phi_{j}{ }^{t}\left(\nabla_{i} p_{t}+\nabla_{t} p_{i}\right)=0$ and similarly $\left(\nabla^{i} r^{t}\right) \nabla_{t} \phi_{j i}=0$. And, by Lemma $3.3 \nabla^{i} \nabla^{t} S_{j t i}=0$.

Hence, (3.18) turns to

$$
\phi_{j}{ }^{t} \nabla^{i}\left(\nabla_{i} p_{t}+\nabla_{t} p_{i}\right)-\phi_{i}{ }^{t} \nabla^{i}\left(\nabla_{j} p_{t}+\nabla_{t} p_{j}\right)=-2 r^{t} \nabla^{i} \nabla_{t} \phi_{j i}
$$

or transvecting this equation with $p^{h} \phi_{h}{ }^{j}$, we get

$$
p^{h}\left\{\nabla^{i}\left(\nabla_{i} p_{h}+\nabla_{h} p_{i}\right)+\phi_{h}{ }^{j} \phi_{i}{ }^{t} \nabla^{i}\left(\nabla_{j} p_{l}+\nabla_{t} p_{j}\right)\right\}=2 p^{h} \phi_{h}{ }^{j} r^{l} \nabla^{i} \nabla_{l} \phi_{j i} .
$$

Moreover, by (2.4), it can be written as

$$
\begin{equation*}
p^{h}\left\{\nabla^{i}\left(\nabla_{i} p_{h}+\nabla_{h} p_{i}\right)+\phi_{h}{ }^{j} \phi_{i}{ }^{t} \nabla^{i}\left(\nabla_{j} p_{t}+\nabla_{l} p_{j}\right)\right\} \tag{3.19}
\end{equation*}
$$

$$
=2 p^{h} r^{t}\left(R^{*}{ }_{t h}-R_{t h}\right)
$$

Thus, substituting (3.19) into (3.15) and making use of Green's theorem, we have

$$
\begin{equation*}
\int_{X_{2 n}}\left[\frac{1}{4} T_{j i} T^{j i}+2 p^{h} r^{t}\left(R_{h t}^{*}-R_{h t}\right)\right] d \sigma=0 \tag{3.20}
\end{equation*}
$$

Furthermore, substituting $p^{h}=v^{h}-r^{h}$ into (3.20), then (3.20) becomes

$$
\begin{equation*}
\int_{X_{2 n}}\left[\frac{1}{4} T_{j i} T^{j i}+2 v^{h} r^{t}\left(R_{n t}^{*}-R_{h t}\right)+2 r^{h} r^{t}\left(R_{h t}-R^{*}{ }_{h t}\right)\right] d \sigma=0 \tag{3.21}
\end{equation*}
$$

Hence, by Lemma 3.4 and (2.7), (3.21) turns to

$$
\int_{X_{2 n}}\left[\frac{1}{4} T_{j i} T^{j i}+2\left(r^{h} \nabla_{h} \phi_{j i}\right) r^{t} \nabla_{t} \phi^{j i}\right] d \sigma=0
$$

from which we can deduce $T_{j i}=0$ and $r^{t} \nabla_{t} \phi_{j i}=0$.
4. Proof of the main theorem. First of all, in order to prove that p^{i} in (3.12) is a Killing vector, we put

$$
U_{j i} \equiv \nabla_{j} p_{i}+\nabla_{i} p_{j}
$$

Operating ∇^{i} to $p^{j} U_{j i}$ and using $p_{i}=v_{i}-r_{i}$, we have

$$
\begin{aligned}
\nabla^{i}\left(p^{j} U_{j i}\right) & =\frac{1}{2} U_{j i} U^{j i}+p^{j} \nabla^{i}\left(\nabla_{j} p_{i}+\nabla_{i} p_{j}\right) \\
& =\frac{1}{2} U_{j i} U^{j i}+p^{j}\left(\nabla^{i} \nabla_{j} v_{i}+\nabla^{i} \nabla_{i} v_{j}-2 \nabla^{i} \nabla_{j} r_{i}\right) .
\end{aligned}
$$

This equation can be written in the following form :

$$
\begin{align*}
\nabla^{i}\left(p^{j} U_{j i}\right) & =\frac{1}{2} U_{j i} U^{j i}+p^{j}\left(\nabla^{i} \nabla_{i} v_{j}+\nabla^{i} \nabla_{j} v_{i}\right. \tag{4.1}\\
& \left.-\nabla_{j} \nabla^{i} v_{i}+\nabla_{j} \nabla^{i} v_{i}-2 \nabla^{i} \nabla_{j} r_{i}+2 \nabla_{j} \nabla^{i} r_{i}-2 \nabla_{j} \nabla^{i} r_{i}\right) .
\end{align*}
$$

In this place, by the Ricci's identity and (3.2), we have

$$
\begin{equation*}
\nabla^{i} \nabla_{i} v_{j}+\nabla^{i} \nabla_{j} v_{i}-\nabla_{j} \nabla^{i} v_{i}=\nabla^{i} \nabla_{i} v_{j}+R_{j i} v^{i}=0 \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\nabla^{i} \nabla_{j} r_{i}-\nabla_{j} \nabla_{i} r^{i}=r^{i} R_{j i} \tag{4.3}
\end{equation*}
$$

Hence, making use of (4.2) and (4.3), from (4.1) by Green's theorem, we find

$$
\int_{X_{2 n}}\left[\begin{array}{l}
1 \tag{4.4}\\
2
\end{array} U_{j i} U^{j i}-2 p^{j} r^{i} R_{j i}+p^{j} \nabla_{j} \alpha\right] d \sigma=0
$$

where $\alpha=\nabla^{i} v_{i}-2 \nabla^{i} r_{i}$.
And from $\nabla_{i}\left(\alpha p^{i}\right)=p^{i} \nabla_{i} \alpha+\alpha \nabla_{i} p^{i}=p^{i} \nabla_{i} \alpha$, we have

$$
\begin{equation*}
\int_{X_{2 n}} p^{i} \nabla_{i} \alpha d \sigma=0 \tag{4.5}
\end{equation*}
$$

Thus, by Lemma 3.5 and (4.5), (4.4) becomes

$$
\begin{equation*}
\int_{X_{2 n}} \frac{1}{2} U_{j i} U^{j i} d \sigma=0 \tag{4.6}
\end{equation*}
$$

from which it follows

$$
\begin{equation*}
U_{j i}=\nabla_{j} p_{i}+\nabla_{i} p_{j}=0 \tag{4.7}
\end{equation*}
$$

that is, p^{i} is a Killing vector.
Secondly we shall show that r^{i} is almost-analytic.
Interchanging j and i in (3.1) and adding the equation thus obtained to (3.1), we get

$$
\nabla_{j} v_{i}+\nabla_{i} v_{j}-\phi_{j}{ }^{a} \phi_{i}{ }^{b}\left(\nabla_{a} v_{b}+\nabla_{b} v_{a}\right)=0
$$

Substituting $v_{i}=p_{i}+r_{i}$ into this equation and using (4.7), we have

$$
\begin{equation*}
\nabla_{j} r_{i}-\phi_{j}{ }^{a} \phi_{i}{ }^{b} \nabla_{a} r_{b}=0 \quad \text { i.e. } \quad-\phi_{j}{ }^{t} \nabla_{t} r_{i}-\phi_{i}{ }^{t} \nabla_{j} r_{t}=0 . \tag{4.8}
\end{equation*}
$$

Hence, adding this last equation to (3.14), we obtain

$$
r^{t} \nabla_{t} \phi_{j i}-\phi_{j}{ }^{t} \nabla_{t} r_{i}-\phi_{i}{ }^{t} \nabla_{j} r_{t}=0
$$

which shows that r^{i} is almost-analytic.
Now, if we put

$$
r^{i}=\phi_{t}{ }^{i} q^{t} \quad \text { i. e. } \quad q^{i}=-\phi_{t}{ }^{i} r^{t}
$$

then, $v^{i}=p^{i}+r^{i}$ can be written as

$$
\begin{equation*}
v^{i}=p^{i}+\phi_{t}{ }^{i} q^{t} \tag{4.9}
\end{equation*}
$$

Lastly, we shall prove that q^{i} is a Killing vector. Taking account of (3.14), from Lemma 3.2 it follows that q^{i} is almost-analytic and therefore it satisfies

$$
\begin{equation*}
\nabla^{t} \nabla_{t} q^{i}+R_{t}{ }^{i} q^{t}=0 \tag{4.10}
\end{equation*}
$$

On the other hand, by $\nabla^{j} r^{i}=\nabla^{i} r^{j}$ and $\nabla_{i} \phi_{l}{ }^{i}=0$, we have

$$
\begin{equation*}
\nabla_{i} q^{i}=-\phi_{t}{ }^{i} \nabla_{i} r^{l}=0 \tag{4.11}
\end{equation*}
$$

Thus, since our space is compact, (4.10) and (4.11) show that q^{i} is a Killing vector.

Bibliography

[1] S. Kotō, Some theorems on almost Kählerian spaces, Journ. Math. Soc. Japan, 12 (1960), 422-433.
[2] A. Lichnerowicz, Géométrie des groupes de transformations, Paris, (1958).
[3] Y. MATSUSHIMA, Sur la structure du groupe d'homéomorphismes analytiques d'une certaine variété kählérienne, Nagoya Math. Journ., 11(1957), 145-150.
[4] S. SAWAKI, On the Matsushima's theorem in a compact Einstein K-space, Tohoku Math. Journ., 13 (1961), 455-465.
[5] S. SAWAKI, A generalization of Matsushima's theorem, Math. Ann. 146(1962), 279286.
[6] S. TACHIBANA, On almost-analytic vectors in certain almost-Hermitian manifolds, Tôhoku Math. Journ., 11(1959), 351-363.
[7] S. TACHIBANA, On infinitesimal conformal and projective transformations of compact K-space, Tôhoku Math. Journ., 13 (1961), 386-392.
[8] K. YANO, AND S. Bochner, Curvature and Betti numbers, Ann. of Math. Studies, 32 (1953).

NiIGATA UNIVERSITY.

[^0]: 1) The number in brackets refers to Bibliography at the end of the paper.
 2) For a compact almost-Kähler-Einstein space, see S. Sawaki [5].
[^1]: 3) See S. Kotô [1].
 4) S. Tachibana [7]
[^2]: 5) For example see K. Yano and S. Bochner [8].
 6) S. Sawaki [4].
 7) S.Tachibana [6].
 8) S. Tachibana [6].
 9) S. Sawaki [4].
