ON ABSOLUTE RIESZ SUMMABILITY FACTORS (II)

Ivor J. Maddox

(Received September 11, 1963)

1. In this note we give conditions for a series $\sum a_{n} \epsilon_{n}$ to be summable $|R, \lambda, \kappa|$ whenever $\sum a_{n}$ is bounded $(R, \lambda, \kappa), \kappa \geqq 0$. The case κ a positive integer or zero was dealt with by the author in a recent note [9]. Our object is to consider the truth of the theorem in [9] when κ is non-integral. The same conditions are required whether κ is an integer or not. As usual the proof for non-integral orders is much harder than for integral orders.

Our theorem generalizes theorems on absolute Cesàro summability factors (Chow [6], Ahmad [1]). Also the result is closely related to theorems on the abscissae of summability $(R, \lambda, \kappa),|R, \lambda, \kappa|$ of the Dirichlet series $\sum a_{n} e^{-\lambda_{n} s}$ (Hardy and Riesz [7], Obrechkoff [10], Bosanquet [4], Austin [2], Borwein [3]).
2. Let $\lambda=\left\{\lambda_{n}\right\}$ be an increasing unbounded sequence of positive numbers. We write $\lambda \in \Lambda$ if λ satisfies

$$
\begin{equation*}
0<a \leqq \frac{\Delta \lambda_{n}}{\Delta \lambda_{n-1}} \leqq A, \quad a, A \text { constants } \tag{a}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\lambda_{n+1}}{\lambda_{n}} \text { decreases to } 1 \tag{b}
\end{equation*}
$$

In a certain sense the set of sequences Λ consists of increasing sequences which are 'reasonably regular'. By $\Delta \lambda_{n}$ we mean $\lambda_{n}-\lambda_{n+1}$.

For $\kappa>-1$ we define

$$
A^{\kappa}(\omega)=\sum_{\lambda_{<}<\omega}\left(\omega-\lambda_{\nu}\right)^{)^{\alpha}} a_{\nu}=\int_{0}^{\omega}(\omega-t)^{\kappa} d A(t),
$$

where $A(t)=A^{0}(t)$. Similarly for $B^{\kappa}(\omega)$. If $\omega^{-\kappa} A^{x}(\omega)$ is bounded (of bounded variation) over (λ_{0}, ∞) we say $\sum a_{n}$ is bounded (absolutely summable) (R, λ, κ). In the latter case it is usual to say $\sum a_{n}$ is summable $|R, \lambda, \kappa|$. When $\mu>0$, $\kappa>-1, \kappa+\mu>0$,

$$
A^{\kappa+\mu}(\omega)=\frac{\Gamma(\kappa+\mu+1)}{\Gamma(\kappa+1) \Gamma(\mu)} \int_{0}^{\omega}(\omega-t)^{u-1} A^{\kappa}(t) d t .
$$

Hence if $b_{\nu}=\lambda_{\nu} a_{\nu}, \kappa \geqq 0$ and $A^{\kappa}(\omega)=O\left(\omega^{k}\right)$, then $B^{\kappa}(\omega)=O\left(\omega^{\kappa+1}\right)$.
3. Some lemmas will be needed.

Lemma 1. If $0<\mu \leqq 1, \kappa \geqq 0,0 \leqq \xi \leqq \omega$, then

$$
\frac{\Gamma(\kappa+\mu+1)}{\Gamma(\kappa+1) \Gamma(\mu)}\left|\int_{0}^{\xi}(\omega-t)^{\mu-1} A^{\kappa}(t) d t\right| \leqq \max _{0 \leqq t \leqq \xi}\left|A^{\mu+\kappa}(t)\right|
$$

See Hardy and Riesz [7], Lemma 8. We shall refer to this lemma as 'the Riesz mean-value theorem'.

Lemma 2. If $\kappa \geqq 0, \kappa+q \geqq 0, A^{\kappa}(\omega)=O\left(\omega^{\kappa+q}\right)$, then, for $\mu=0,1,[\kappa]$ and $\lambda_{n}<\omega \leqq \lambda_{n+1}$,

$$
A^{\mu}(\omega)=O\left\{\omega^{\kappa} \lambda_{n}^{q} \Lambda_{n}^{\kappa-\mu}\right\}, \quad \quad \text { where } \Lambda_{n}=\frac{\lambda_{n+1}}{\lambda_{n+1}-\lambda_{n}} .
$$

See Borwein [3], Lemma 2.
Lemma 3. Let $\Lambda_{n}=\lambda_{n+1} /\left(\lambda_{n+1}-\lambda_{n}\right)$ be increasing $, \kappa \geqq 0, q \geqq 0$ and $A^{\kappa}(\omega)$ $=O\left(\omega^{\kappa+q}\right)$. Then for $\lambda_{n}<\omega \leqq \lambda_{n+1}, 0 \leqq \mu<\kappa$,

$$
A^{\mu}(\omega)=O\left\{\omega^{\mu+q} \Lambda_{n}^{\kappa-\mu}\right\}
$$

This follows from [5], Theorem 1.61, on taking $\phi(\omega)=\omega^{k+q}$, and noting that $\lambda_{n+1}=O\left(\lambda_{n}\right)$.

Lemma 4. Let $\kappa>0, \lambda \in \Lambda, \epsilon_{n}=G_{\kappa}\left(\lambda_{n}\right)$, then for $\lambda_{n}<\omega \leqq \lambda_{n+1}$,

$$
\begin{align*}
& G_{\kappa}(\omega) \equiv \int_{\omega}^{\infty}(u-\omega)^{\kappa} d g(u) \\
&=O(1) \int_{\lambda_{n}}^{\lambda_{n+[}} u^{\kappa} \mid+1 \\
& d g \tag{1}\\
&(u)\left|+O(1) \sum_{v=0}^{[k]}\right| \epsilon_{n+v} \mid \\
&+O(1)\left(\lambda_{n+1}-\lambda_{n}\right)^{[\kappa]+1} \int_{\lambda_{n+}+[\kappa]+1}^{\infty}\left(u-\lambda_{n}\right)^{\kappa-[\kappa]-1}|d g(u)|
\end{align*}
$$

where we suppose that

$$
\int_{\lambda_{0}}^{\infty} u^{k}|d g(u)|<\infty
$$

If κ is an integer, the final integral in (1) may be omitted.
This lemma follows from the proof of Lemma 9 (Maddox [8]).
For completeness we outline the method. It is possible to determine functions $c_{\nu}(\omega)=O(1)$ such that
$(u-\omega)^{k}=\sum_{\nu=0}^{[k]} c_{\nu}(\omega)\left(u-\lambda_{n+\nu}\right)^{k}+O\left\{\left(\lambda_{n+1}-\lambda_{n}\right)^{[k]+1}\left(u-\lambda_{n}\right)^{\kappa-[k]-1}\right\}$
uniformly for $u \geqq \lambda_{n+[x]+1}$. This is equation (7) Maddox [8].
We now have

$$
\begin{aligned}
G_{k}(\omega) & =\int_{\omega}^{\lambda_{n+[\kappa]+1}}(u-\omega)^{\kappa} d g(u)+\sum_{\nu=0}^{[k]} c_{v}(\omega)\left\{\varepsilon_{n+\nu}-\int_{\lambda_{n+\nu}}^{\left.\left.\lambda_{n+[\kappa k]+1}^{\left(u-\lambda_{n+\nu}\right.}\right)^{\kappa} d g(u)\right\}}\right. \\
& +O(1)\left(\lambda_{n+1}-\lambda_{n}\right)^{[\kappa]+1} \int_{\lambda_{n+}[k]+1}^{\infty}\left(u-\lambda_{n}\right)^{\kappa-[k]-1}|d g(u)| .
\end{aligned}
$$

The result follows.
Lemma 5. If $\kappa>1$ and non-integral, $\mu=\kappa-1$,

$$
\begin{aligned}
& J=\int_{0}^{\omega}(\omega-t)^{\kappa-1}(u-t)^{\kappa} d B(t) \\
& H(\alpha, \beta, \gamma) \equiv H(\alpha, \beta, \gamma ; \omega, u)=\int_{0}^{\omega}(\omega-t)^{\alpha}(u-t)^{\beta} B^{\gamma}(t) d t
\end{aligned}
$$

then

$$
\begin{aligned}
& J=\sum_{\nu=0}^{[\mu]} c H(\mu-\nu, \kappa-p-1+\nu, p) \\
& +\sum_{\nu=[\mu]}^{q} c H(\mu-[\mu]-1, \kappa-p+\nu, p-\nu+[\mu]) \equiv J_{1}+J_{2},
\end{aligned}
$$

where p is the integer such that $0<\kappa-p \leqq 1$, and c denotes a non-zero constant, possibly different at each occurrence.

This lemma is established by suitable partial integrations; see Maddox [8], equation (38).
4. We now prove

Theorem 1. If $\kappa \geqq 0, \lambda \in \Lambda, A^{\kappa}(\omega)=O\left(\omega^{*}\right)$ and
(i) $\sum\left|\epsilon_{n}\right|<\infty$,
(ii) there exists a function $g(u)$, defined for $u \geqq \lambda_{0}$, such that for $\nu=0,1$,

$$
\epsilon_{\nu}=\int_{\lambda_{\nu}}^{\infty}\left(u-\lambda_{\nu}\right)^{k} d g(u) \quad \text { with } \int_{\lambda_{0}}^{\infty} u^{\kappa}|d g(u)|<\infty,
$$

then $\sum a_{n} \epsilon_{n}$ is summable $|R, \lambda, \kappa|$.
Proof. When $\kappa=0$ the result follows trivially from (i). Now consider
two cases.
Case 1. $0<\kappa<1$. We have

$$
\begin{align*}
I & =\kappa \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\sum_{\lambda_{\nu}<\omega}\left(\omega-\lambda_{\nu}\right)^{\kappa-1} \lambda_{\nu} a_{\nu} \varepsilon_{\nu}\right| \\
& =\kappa \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\int_{0}^{\omega}(\omega-t)^{\kappa-1} G_{\kappa}(t) d B(t)\right|, \tag{2}
\end{align*}
$$

where $G_{\kappa}(t)=\int_{t}^{\infty}(u-t)^{\kappa} d g(u), B(t)=\sum_{\lambda_{\nu}<t} \lambda_{\nu} a_{\nu}$.
We note that

$$
\begin{equation*}
G_{k}^{\prime}(t)=-\kappa \int_{t}^{\infty}(u-t)^{\kappa-1} d g(u) \text { p. p. in }\left(\lambda_{0}, \infty\right) . \tag{3}
\end{equation*}
$$

Integrating the inner integral in (2) by parts, we have for $\lambda_{n}<\omega \leqq \lambda_{n+1}$, $\left(\omega-\lambda_{n}\right)^{\kappa-1} \epsilon_{n} B\left(\lambda_{n}\right)+c \int_{0}^{\lambda_{n}}(\omega-t)^{\kappa-2} G_{\kappa}(t) B(t) d t+c \int_{0}^{\lambda_{n}}(\omega-t)^{\kappa-1} G_{\kappa}^{\prime}(t) B(t) d t$.
By Lemma 2, since $B^{\kappa}(\omega)=O\left(\omega^{\kappa+1}\right)$, we have $B\left(\lambda_{n}\right)=O\left(\lambda_{n} \Lambda_{n}^{\kappa}\right)$.
Thus

$$
\begin{align*}
& \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1}\left(\omega-\lambda_{n}\right)^{\kappa-1}\left|\epsilon_{n} B\left(\lambda_{n}\right)\right| d \omega \\
& \quad=\sum_{n=0}^{\infty} \int_{\lambda_{n}}^{\lambda_{n+1}} \omega^{-\kappa-1}\left(\omega-\lambda_{n}\right)^{\kappa-1}\left|\epsilon_{n}\right| O\left(\lambda_{n} \Lambda_{n}^{\kappa}\right) d \omega \\
& \quad=O(1) \sum_{n=0}^{\infty}\left|\epsilon_{n}\right| \lambda_{n} \Lambda_{n}^{\kappa} \int_{\lambda_{n}}^{\lambda_{n+1}} \omega^{-\kappa-1}\left(\omega-\lambda_{n}\right)^{\kappa-1} d \omega \\
& \quad=O(1) \sum_{n=0}^{\infty}\left|\epsilon_{n}\right|<\infty . \tag{5}
\end{align*}
$$

Consider the contribution of the second term in (4) to I :

$$
\begin{aligned}
& \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\int_{0}^{\lambda n}(\omega-t)^{\kappa-2} G_{k}(t) B(t) d t\right| \\
& \quad \leqq \sum_{n=1}^{\infty} \int_{\lambda_{n}}^{\lambda_{n+1} \omega^{-\kappa-1}} d \omega \sum_{v=0}^{n-1} \int_{\lambda_{v}}^{\lambda_{v+1}}(\omega-t)^{\kappa-2}\left|G_{k}(t) B(t)\right| d t \\
& \quad=\sum_{v=0}^{\infty} \sum_{n=v+1}^{\infty} \int_{\lambda_{n}}^{\lambda_{n+1}} \omega^{-k-1} d \omega \int_{\lambda_{v}}^{\lambda_{\nu+1}}(\omega-t)^{\kappa-2}\left|G_{k}(t) B(t)\right| d t
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{\nu=0}^{\infty} \int_{\lambda_{\nu+1}}^{\infty} \omega^{-\kappa-1} d \omega \int_{\lambda_{\nu}}^{\lambda_{\nu+1}}(\omega-t)^{\kappa-2}\left|G_{k}(t) B(t)\right| d t \\
& \leqq \sum_{\nu=0}^{\infty} \lambda_{\nu+1}^{-\kappa-1} \int_{\lambda_{\nu}}^{\lambda_{v}+1} G_{\kappa}(t) \mid O\left(\lambda_{\nu} \Lambda_{\nu}^{\kappa}\right)\left(\lambda_{\kappa+1}-t\right)^{\kappa-1} d t,
\end{aligned}
$$

by Lemma 2.
Now by Lemma 4, since $[\kappa]=0$, we have for $\lambda_{\nu}<t<\lambda_{\nu+1}$,

$$
G_{\kappa}(t)=O(1) \int_{\lambda_{v}}^{\lambda_{v+1}^{k}} u^{\prime} d g(u)\left|+O\left(\left|\epsilon_{v}\right|\right)+O(1)\left(\lambda_{v+1}-\lambda_{\nu}\right) \int_{\lambda_{v+1}}^{\infty}\left(u-\lambda_{\nu}\right)^{\kappa-1}\right| d g(u) \mid .
$$

Hence

$$
\begin{align*}
& O(1) \sum_{\nu=0}^{\infty} \lambda_{\nu+1}^{-\kappa-1} \lambda_{\nu} \Lambda_{\nu}^{\kappa}\left(\int_{\lambda_{\nu}}^{\lambda_{v+1}^{k} \mid} u^{2} d g(u)\left|+\left|\epsilon_{\nu}\right|\right) \int_{\lambda_{\nu}}^{\lambda_{\nu+1}}\left(\lambda_{\nu+1}-t\right)^{\kappa-1} d t\right. \\
& =O(1) \sum_{\nu=0}^{\infty} \lambda_{\nu+1}^{-1} \lambda_{\nu}\left(\int_{\lambda_{\nu}}^{\left.u_{\nu+1}^{\kappa}|d g(u)|+\left|\epsilon_{\nu}\right|\right)}\right. \\
& =O(1)\left(\int_{\lambda_{v}}^{\infty} u^{\kappa}|d g(u)|+\sum_{\nu=0}^{\infty}\left|\epsilon_{\nu}\right|\right)<\infty . \tag{6}
\end{align*}
$$

Also

$$
\begin{align*}
& O(1) \sum_{\nu=0}^{\infty} \lambda_{\nu+1}^{-\kappa-} \lambda_{\nu} \Lambda_{\nu}^{\kappa}\left(\lambda_{\nu+1}-\lambda_{\nu}\right) \int_{\lambda_{v+1}}^{\infty}\left(u-\lambda_{\nu}\right)^{\kappa-1}|d g(u)| \int_{\lambda_{\nu}}^{\lambda_{\nu+1}}\left(\lambda_{\nu+1}-t\right)^{\kappa-1} d t \\
& =O(1) \sum_{\nu=0}^{\infty}\left(\lambda_{\nu+1}-\lambda_{v}\right) \int_{\lambda_{\nu+1}}^{\infty}\left(u-\lambda_{\nu}\right)^{\kappa-1}|d g(u)| \\
& =O(1) \sum_{\nu=0}^{\infty} \int_{\lambda_{\nu}}^{\lambda_{\nu+1}} d t \int_{t}^{\infty}(u-t)^{\kappa-1}|d g(u)| \\
& =O(1) \int_{\lambda_{0}}^{\infty} d t \int_{t}^{\infty}(u-t)^{\kappa-1}|d g(u)| \\
& =O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa}|d g(u)|<\infty . \tag{7}
\end{align*}
$$

Finally, consider the contribution of the third term in (4) to I. By (3) we have

$$
\begin{aligned}
& c \int_{0}^{\lambda n}(\omega-t)^{\kappa-1} B(t) d t \int_{t}^{\infty}(u-t)^{\kappa-1} d g(u) \\
= & c \int_{0}^{\lambda n}(\omega-t)^{\kappa-1} B(t) d t\left(\int_{t}^{\omega}+\int_{\omega}^{\infty}\right)
\end{aligned}
$$

$$
\begin{align*}
= & c \int_{0}^{\omega} d g(u) \int_{0}^{m}(\omega-t)^{\kappa-1}(u-t)^{\kappa-1} B(t) d t \\
& +c \int_{\omega}^{\infty} d g(u) \int_{0}^{\lambda_{n}}(\omega-t)^{\kappa-1}(u-t)^{\kappa-1} B(t) d t . \tag{8}
\end{align*}
$$

where $m=\min \left(\lambda_{n}, u\right)$. Now $(\omega-t)^{\kappa-1}$ increases in $(0, m)$.
Hence, by the second mean-value theorem and the Riesz mean-value theorem,

$$
\begin{align*}
\int_{0}^{m}(\omega-t)^{\kappa-1}(u-t)^{\kappa-1} B(t) d t & =(\omega-m)^{\kappa-1} \int_{\xi}^{m}(u-t)^{\kappa-1} B(t) d t \\
& =O\left((\omega-u)^{\kappa-1} u^{\kappa+1}\right) \tag{9}
\end{align*}
$$

Also $(u-t)^{\kappa-1}$ increases in $\left(0, \lambda_{n}\right)$, so that

$$
\begin{align*}
\int_{0}^{\lambda_{n}}(\omega-t)^{\kappa-1}(u-t)^{\kappa-1} B(t) d t & =\left(u-\lambda_{n}\right)^{\kappa-1} \int_{\xi}^{\lambda_{n}}(\omega-t)^{\kappa-1} B(t) d t \\
& =O\left((u-\omega)^{\kappa-1} \omega^{\kappa+1}\right) \tag{10}
\end{align*}
$$

By (8) and (9) it follows that

$$
\begin{align*}
& O(1) \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega \int_{0}^{\omega}(\omega-u)^{\kappa-1} u^{\kappa+1}|d g(u)| \\
= & O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa+1}|d g(u)| \int_{u}^{\infty} \omega^{-\kappa-1}(\omega-u)^{\kappa-1} d \omega \\
= & O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa}|d g(u)|<\infty . \tag{11}
\end{align*}
$$

Also (8) and (10) yield

$$
\begin{align*}
& O(1) \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega \int_{\omega}^{\infty}(u-\omega)^{\kappa-1} \omega^{\kappa+1}|d g(u)| \\
= & O(1) \int_{\lambda_{0}}^{\infty}|d g(u)| \int_{\lambda_{0}}^{u}(u-\omega)^{\kappa-1} d \omega \\
= & O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa}|d g(u)|<\infty . \tag{12}
\end{align*}
$$

If we now combine the relevant equations (2)--(12), we see that $I<\infty$, i.e. $\sum a_{n} \epsilon_{n}$ is summable $|R, \lambda, \kappa|$. This proves the theorem when $0<\kappa<1$.

CASE 2. $\kappa \geqq$. I have already dealt with the case when κ is a positive
integer in a recent note [9]. Suppose then that $\kappa>1$ and non-integral. We have

$$
\begin{aligned}
I & =\kappa \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\sum_{\lambda_{\nu}<\omega}\left(\omega-\lambda_{\nu}\right)^{\kappa-1} \lambda_{\nu} a_{\nu} \epsilon_{\nu}\right| \\
& =\kappa \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\sum_{\lambda_{\nu}<\omega}\left(\omega-\lambda_{\nu}\right)^{\kappa-1} \lambda_{\nu} a_{\nu}\left(\int_{\lambda_{\nu}}^{\omega}+\int_{\omega}^{\infty}\right)\right| \\
& \leqq \kappa I_{1}+\kappa I_{2}
\end{aligned}
$$

where

$$
\begin{aligned}
& I_{1}=\int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\int_{\lambda_{0}}^{\omega} d g(u) \int_{0}^{u}(\omega-t)^{\kappa-1}(u-t)^{\kappa} d B(t)\right| \\
& I_{2}=\int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\int_{\omega}^{\infty} d g(u) \int_{0}^{\omega}(\omega-t)^{\kappa-1}(u-t)^{\kappa} d B(t)\right|
\end{aligned}
$$

It will be shown that $I_{1}, I_{2}<\infty$. In [9] it was proved that $I_{1}<\infty$ for any $\kappa>0$. For completeness we indicate the argument. If p is the integer such that $0<\kappa-p \leqq 1$, we integrate the inner integral in I_{1} by parts $p+1$ times to obtain a sum of integrals of the form

$$
c \int_{0}^{u}(\omega-t)^{\kappa-r-1}(u-t)^{\kappa-p+r-1} B^{p}(t) d t \quad(0 \leqq r \leqq p+1)
$$

Since $\kappa>1$, $(\omega-t)^{\kappa-r-1}(u-t)^{r}$ decreases in ($0, u$). Applying the second meanvalue theorem and the Riesz mean value theorem, we find that each integral is $O\left(\omega^{\kappa-1} u^{\kappa+1}\right)$. Hence

$$
\begin{equation*}
I_{1}=O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa+1}|d g(u)| \int_{u}^{\infty} \omega^{-2} d \omega=O(1) \int_{\lambda_{0}}^{\infty} u^{k}|d g(u)|<\infty . \tag{13}
\end{equation*}
$$

Consider now the inner integral in I_{2}. In the notation of Lemma 5, we may write this as

$$
\begin{equation*}
J=J_{1}+J_{2} . \tag{14}
\end{equation*}
$$

Putting $\mu=\kappa-1,0<\kappa-p \leqq 1, p$ integral, we have $[\mu]=p-1$. Since $(\omega-t)^{\mu-\nu}(u-t)^{\nu}$ decreases in $(0, \omega)$ for $0 \leqq \nu \leqq[\mu]$, the second mean-value theorem and the Riesz mean-value theorem give

$$
J_{1}=\sum_{\nu=0}^{[\mu]} c \omega^{\mu-\nu} u^{\nu} \int_{0}^{\xi}(u-t)^{\kappa-p-1} B^{p}(t) d t \quad(0 \leqq \xi \leqq \omega)
$$

$$
\begin{equation*}
=\sum_{\nu=0}^{[\mu]} O\left(\omega^{\mu-\nu} u^{\nu} \omega^{\kappa+1}\right)=O\left(u^{\kappa-1} \omega^{\kappa+1}\right) \tag{15}
\end{equation*}
$$

Hence

$$
\begin{gather*}
\int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\int_{\omega}^{\infty} J_{1} d g(u)\right| \\
=O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa-1}|d g(u)| \int_{\lambda_{0}}^{u} d \omega=O(1) \int_{\lambda_{0}}^{\infty} u^{k}|d g(u)|<\infty . \tag{16}
\end{gather*}
$$

Now consider J_{2} :

$$
\begin{equation*}
J_{2}=c H(\kappa-p-1, \kappa-1, p)+c H(\kappa-p-1, \kappa, p-1) . \tag{17}
\end{equation*}
$$

Since $(u-t)^{\kappa-1}$ decreases in $(0, \omega)$, the second mean-value theorem and the Riesz mean-value theorem show that the first term in (17) is equal to

$$
\begin{gather*}
u^{\kappa-1} \int_{0}^{\xi}(\omega-t)^{\kappa-p-1} B^{p}(t) d t \\
\quad=O\left(u^{\kappa-1} \omega^{\kappa+1}\right) . \tag{18}
\end{gather*}
$$

$$
(0 \leqq \xi \leqq \omega)
$$

Take the second term in (17). Partial integration gives

$$
\begin{align*}
H(\kappa-p-1, \kappa, p-1) & =c(u-\omega)^{\kappa} B^{\kappa-1}(\omega) \\
+ & c \int_{0}^{\omega}(u-t)^{\kappa-1} d t \int_{0}^{t}(\omega-x)^{\kappa-p-1} B^{p-1}(x) d x \\
= & c(u-\omega)^{\kappa} B^{\kappa-1}(\omega)+c H(\kappa-p-1, \kappa-1, p) \\
+ & c \int_{0}^{\omega}(u-t)^{\kappa-1} d t \int_{0}^{t}(\omega-x)^{\kappa-p-2} B^{p}(x) d x \tag{19}
\end{align*}
$$

We have already dealt with the term $H(\kappa-p-1, \kappa-1, p)$, (see (18)). Consider the repeated integral in (19). Changing the order of integration, and nothing that

$$
(\omega-x)^{-1} \int_{x}^{\omega}(u-t)^{\kappa-1} d t
$$

is a decreasing function of x in $(0, \omega)$, the second mean-value theorem and the Riesz mean-value theorem show that the repeated integral is equal to

$$
\begin{align*}
& \omega^{-1} \int_{0}^{\omega}(u-t)^{k-1} d t \int_{0}^{\xi}(\omega-x)^{k-p-1} B^{p}(x) d x(0 \leqq \xi \leqq \omega) \\
& =\omega^{-1} O\left(u^{\kappa-1} \omega^{\kappa+2}\right)=O\left(u^{k-1} \omega^{k+1}\right) \tag{20}
\end{align*}
$$

The contribution to I_{2} of the terms in (18) and (20) is

$$
\begin{equation*}
O(1) \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega \int_{\omega^{\circ}}^{\infty} u^{\kappa-1} \omega^{\kappa+1}|d g(u)|=O(1) \int_{\lambda_{0}}^{\infty} u^{\kappa}|d g(u)|<\infty . \tag{21}
\end{equation*}
$$

Finally, we must find the contribution to I_{2} of the first term in (19). We have

$$
\begin{aligned}
& \int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|\int_{\omega}^{\infty}(u-\omega)^{\kappa} B^{k-1}(\omega) d g(u)\right| \\
& =\int_{\lambda_{0}}^{\infty} \omega^{-\kappa-1} d \omega\left|B^{\kappa-1}(\omega) G_{\kappa}(\omega)\right| d \omega \\
& =T_{1}+T_{2}+T_{3}
\end{aligned}
$$

where by Lemmas 3 and 4 , and the fact that $\lambda_{n+1} / \lambda_{n}=O(1)$,

$$
\begin{align*}
T_{1} & =O(1) \sum_{n=0}^{\infty} \Lambda_{n} \int_{\lambda_{n}}^{\lambda_{n+1}} \omega^{-1} d \omega \int_{\lambda_{n}}^{u^{\kappa} \mid[n]+1} d g(u) \mid \\
& \left.=O(1) \sum_{n=0}^{\infty} \frac{\lambda_{n+1}}{\lambda_{n}} \int_{\lambda_{n}}^{\left.\lambda_{n++} \mid k\right]+1} d g(u) \right\rvert\,<\infty, \tag{22}\\
T_{2} & =O(1) \sum_{n=0}^{\infty} \frac{\lambda_{n+1}}{\lambda_{n}} \sum_{\nu=0}^{[k]}\left|\epsilon_{n+v}\right|<\infty, \tag{23}
\end{align*}
$$

and

$$
\begin{aligned}
T_{3} & =O(1) \sum_{n=0}^{\infty} \frac{\lambda_{n+1}}{\lambda_{n}}\left(\lambda_{n+1}-\lambda_{n}\right)^{[k]+1} \int_{\lambda_{n+[k]+1}}^{\infty}\left(u-\lambda_{n}\right)^{\kappa-[k]-1}|d g(u)| \\
& =O(1) \sum_{n=0}^{\infty} \int_{\lambda_{n}}^{\lambda_{n+1}}\left(\omega-\lambda_{n}\right)^{[k]} d \omega \int_{\lambda_{n}+[k]+1}^{\infty}\left(u-\lambda_{n}\right)^{k-[\kappa]-1}\left|d_{y}(u)\right| \\
& =O(1) \sum_{n=0}^{\infty} \int_{\lambda_{n}}^{\lambda_{n+1}} \omega^{[k]} d \omega \int_{\omega}^{\infty}(u-\omega)^{k-[k]-1}|d g(u)| \\
& =O(1) \int_{\lambda_{0}}^{\infty} \omega^{[k]} d \omega \int_{\omega}^{\infty}(u-\omega)^{k-[k]-1}|d g(u)| \\
& =O(1) \int_{\lambda_{0}}^{\infty}|d g(u)| \int_{\lambda_{0}}^{u} \omega^{[k]}(u-\omega)^{k-[k]-1} d \omega
\end{aligned}
$$

$$
\begin{equation*}
=O(1) \int_{\lambda_{0}}^{\infty} u^{k}|d g(u)|<\infty . \tag{24}
\end{equation*}
$$

If we combine the relevant equations (13)-(24) we see that $I<\infty$ in the case $\kappa>1$ and non-integral. The theorem is thus proved for all $\kappa \geqq 0$.
5. If we write l_{n} instead of λ_{n} (in line with the notation of Bosanquet [4] and Borwein [3]), we obtain from our Theorem 1 a theorem due to these authors on the abscissae of summability of the Dirichlet series $\sum a_{n} l_{n}^{-s}$. This result can be stated as

$$
\begin{equation*}
\dot{\overline{\sigma_{\kappa}}}-\sigma_{\kappa} \leqq D=\varlimsup_{n \rightarrow \infty} \frac{\log n}{\log l_{n}}<\infty \tag{25}
\end{equation*}
$$

where $\sigma_{\kappa}, \overline{\sigma_{\kappa}}$ are respectively the abscissae of summability $(R, l, \kappa),|R, l, \kappa|$ of the Dirichlet series $\sum a_{n} l_{n}^{-s}$.

The proof of (25) was made to depend on the following theorem (Bosanquet [4], Borwein [3]), which we deduce from Theorem 1.

THEOREM 2. If $\sum a_{n}$ is bounded $(R, l, \kappa), \kappa \geqq 0$, then for $\sigma>D, \sum a_{n} l_{n}^{-\sigma}$ is summable $|R, l, \kappa|$.

PRoof. In Theorem 1 take $g(u)=-\frac{\Gamma(\kappa+\sigma+1)}{\Gamma(\sigma) \Gamma(\kappa+1)} u^{-\kappa-\sigma}$. Since $\sigma>D \geqq 0$, we have

$$
\int_{l_{0}}^{\infty} u^{\kappa}|d g(u)|<\infty,
$$

and $\epsilon_{n}=l_{n}^{-\sigma}$. Also, since $\sigma>D, \sum\left|\epsilon_{n}\right|=\sum l_{n}^{-\sigma}<\infty$. The hypotheses of
Theorem 1 are satisfied, so that $\sum a_{n} l_{n}^{-\sigma}$ is summable $|R, l, \kappa|$.
As it stands Theorem 2 is weaker than Borwein's result, since I suppose $l \in \Lambda$, whereas Borwein does not. However $G_{k}(\omega)=\omega^{-\sigma}$ in this case, so that my argument is considerably simplified. Lemma 4 may be avoided, and it is easy to check that the theorem is true without restriction on l_{n}.

We may now generalize Theorem 1 to some extent if we replace the hypothesis that $\sum a_{n}$ is bounded (R, λ, κ) by $\omega^{-\kappa} A^{\kappa}(\omega)=O(\phi(\omega))$. To ensure the existence of the Stieltjes integrals we suppose that $\phi(\omega)$ is a positive, non-
decreasing function of ω which has no common points of discontinuity with $g(u)$ in $\left(\lambda_{0}, \infty\right)$. Also we suppose that $\phi\left(\lambda_{n+1}\right)=O\left(\phi\left(\lambda_{n}\right)\right)$, i. e. ϕ does not increase too rapidly. Lemma 2 is then replaced by

Lemma 2'. If $\kappa \geqq 0, \kappa+q \geqq 0, A^{\kappa}(\omega)=O\left(\omega^{\kappa+q} \phi(\omega)\right), \phi(\omega)>0$ and nondecreasing, with $\phi\left(\lambda_{n+1}\right)=O\left(\phi\left(\lambda_{n}\right)\right)$, then for $\mu=0,1, \ldots[\kappa]$, and $\lambda_{n}<\omega \leqq \lambda_{n+1}$, $A^{\mu}(\omega)=O\left\{\omega^{\mu} \lambda_{n}^{q} \phi\left(\lambda_{n}\right) \Lambda_{n}^{\kappa-\mu}\right\}$.

The proof of Theorem 1 goes through as before, if we suppose now that

$$
\begin{gathered}
\sum \phi\left(\lambda_{n}\right)\left|\epsilon_{n}\right|<\infty, \\
\epsilon_{\nu}=\int_{\lambda_{v}}^{\infty}\left(u-\lambda_{v}\right)^{\kappa} d g(u), \text { with } \int_{\lambda_{0}}^{\infty} u^{\kappa} \phi(u)|d g(u)|<\infty .
\end{gathered}
$$

Hence we have
THEOREM 3. Suppose that $\phi(\omega)>0$, non-decreasing, with $\phi\left(\lambda_{n+1}\right)=O\left(\phi\left(\lambda_{n}\right)\right)$, and that ϕ has no common points of discontinuity with $g(u)$ in $\left(\lambda_{0}, \infty\right)$. If $\omega^{-\kappa} A^{\kappa}(\omega)=O(\phi(\omega)), \kappa \geqq 0, \lambda \in \Lambda$, and

$$
\begin{equation*}
\sum \phi\left(\lambda_{n}\right)\left|\epsilon_{n}\right|<\infty, \tag{i}
\end{equation*}
$$

(ii) there exists $g(u)$, such that

$$
\epsilon_{\nu}=\int_{\lambda_{v}}^{\infty}\left(u-\lambda_{v}\right)^{)^{\kappa}} d g(u) \text { with } \int_{\lambda_{0}}^{\infty} u^{\kappa} \phi(u)|d g(u)|<\infty,
$$

then $\sum a_{n} \epsilon_{n}$ is summable $|R, \lambda, \kappa|$.

References

[1] Z. U. Ahmad, On the absolute Cesàro summability factors of infinite series, Math. Zeit., 76(1961), 295-310
[2] M. C. AUSTIN, On the absolute summability of a Dirichlet series, Journ. London Math. Soc., 27(1952), 189-198.
[3] D. BORWEIN, On the abscissae of summability of a Dirichlet series, Journ. London Math. Soc., 30(1955), 68-71.
[4] L.S. BOSANQUET, On convergence and summability factors in a Dirichlet series, Journ. London Math. Soc., 22 (1947), 190-195.
[5] K. Chandrasekharan and S. Minakshisundaram, Typical Means, Tata Institute Monographs, Oxford University Press, 1952.
[6] H. C. Chow, Note on convergence and summability factors, Journ. London Math. Soc., 29(1954), 459-476.
[7] G. H. Hardy and M. Riesz, The General Theory of Dirichlet's series, Cambridge Tract No. 18, 1915.
[8] I. J. Maddox, Convergence and summability factors for Riesz means, Proc. London

Math. Soc., (3) 12 (1962), 345-366.

[9] I. J. Maddox, On absolute Riesz summability factors, Tohoku Math. Journ., 15 (1963), 116-120.
[10] N. ObRECHKOFF, Uber die Absolute Summierung der Dirichletschen Reihen, Math. Zeit., 30 (1929), 375-386.

Department of Mathematics,
The University, Birmingham, England.

