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1. Introduction. The systems of ortho-normal functions introduced by
Rademacher and Walsh have many remarkable properties. Especially Fine [2]
has pointed out that the Walsh functions are characters of the dyadic group
and hence it is naturally expected that a series of the Walsh functions has
very similar properties to a trigonometric series. Many authors pursued this
analogy and discussed it in detail. Some of them intended to generalize the
Walsh functions. It may be said that the most efforts of them have done from
the viewpoint of group character influenced by Fine's paper (see Levy [4],
Chrestenson [1] and Watari [6]).

Originally the Rademacher functions are closely related with probabilistic
considerations. A connection between the Rademacher functions and the game
of heads or tails are shown in below. The independent tosses of a coin give
the simplest example of the binomial distribution (n = 1). In this paper we
construct a multiplicatively orthogonal system of functions using the next simple
binomial distribution (n = 2). These functions are real valued and so they are
more convenient than the functions given by Levy or others. We show the
fundamental inequality of the Walsh functions given by Paley [5] remains true
for our functions. That is to say, we know the abelian group character property
of the Walsh functions is not essential for this inequality. Our viewpoint is very
similar to that of Wiener [7] about Brownian motions. In fact, employing the
normal distribution instead of binomial distributions we may arrive at the theory
of Wiener integral. Analogous considerations are possible for general binomial
distributions and for some another distributions but, since the calculations become
considerably troublesome we want to reserve them with some allied topics for
another occasion.

In this paper by t-space we mean the set of positive integers 1, 2, . Let
χ(ί) be a discrete time series taking value 1 or —1 with probabilities 1/2 for
each t = 1,2, . Then every time series satisfying these conditions may be
identified with a point of the unit interval [0,1]. Let us call this unit interval
cί-space. At first we divide the all time series into two classes according to
χ(l) = 1 or — 1 and we make each class correspond to the semi-closed interval

0, — ) and — , 1) of Λ-space respectively. Next divide the set of time series
L ^ / L ίj /
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into four classes according to %(1) = 1, %(2) = 1; %(1) = 1, %(2) = - 1; %(1)

= - 1,%(2) = 1 and χ(l) = - 1,%(2) = - 1 and associate them [θ,-|-)

~9~)) ~9~ ~4~)anc^ ~4~' -0 resPectively. Continuing this process, to every

interval [m/2n, (m + l)/2n) (m is an integer such that 0 g m ̂  2n - 1) of
tf-space we get a set of time series taking a specific value 1 or —1 at each
time t = 1,2, , 72. Then we know ultimately every point a of #-space,
except a set of enumerable points, shows a time series. Hence we denote this
time series by χ(ί, Λ). We put φn(a) = %(τz, αc). Then we know, by the construc-
tion of correspondence between time series and <2-space, φn(oί) (n = l,2, •)
are nothing but the Rademacher functions. In the next section we consider

time series taking values ±*/2 or 0 instead of ± 1 and get a system of
multiplicatively orthogonal functions analogous to the Rademacher functions.

2. Time series %(*,Λ). Let n be a fixed positive integer and let χn(t) be
a discrete time series defined for t — 1, 2, 3, and taking values

(2. 1) n7-|* (A = 0,1,2,... »)
V 72

with probabilities

(2. 2) -̂ - (A = 0,1,2,.-. n)

respectively for each time t. We assume always %w(0) = 0.
Putting n = 1, we obtain a time series of random signs 1 and — 1. This is

just the case stated in introduction. For n = 2, %2(^) has three possibilities, i.e.

X*(t) = \/2 ,= 0 and = — \/2 with probabilities 1/4, 1/2 and 1/4 respectively.
In the following we shall use only the time series χ2(ί) and we may write %(ί)
instead of χ2(*)

We begin to map the set of all time series χ(ί) on the <^-space [0,1]. Since

the probabilities of %(1) having the value x/2, 0 and — +/2 are 1/4, 1/2 and
1/4 respectively, we divide the α-space into three parts [0,1/4), [4/1,3/4) and [3/4,
1). The length of these intervals are equal to the probabilities of having %(1)

— v/2, 0 and — \/2 respectively. We make the interval [0,1/4) correspond to

the subset of time series such that %(1) =\/2. Similarly the interval [1/4,3/4)
corresponds to the time series such that %(1) = 0 and [3/4,1) corresponds to

the series such that %(1) — — >/2.
Next we consider the class of time series which takes values
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-2k
and

_ _
Λ/2

where k = 0, 1 or 2, / = 0, 1 or 2. The probability P(β, /) that %(ί) should have
these values at t = 1 and t — 2 is given by (2CJt/4)(2C|/4). That is

P(0, 0) = 1/16,

P(l, 0) - 2/16,

P(2, 0) = 1/16,

P(0,0)

P(0, 1) = 2/16,

P(l, 1) = 4/16,

P(2, 1) = 2/16,

) + P(0,2) =

P(0, 2) - 1/16

P(l, 2) = 2/16

P(2, 2) = 1/16

P(l, 0) + P(l, 1) + P(l, 2) = 2/4

P(2, 0) + P(2, 1) + P(2, 2) = 1/4.

Observing this relations, we divide each α-intervals [0, 1/4), [1/4, 3/4) and [3/4,
1) into three sub-intervals having the ratio of length 1:2:1 respectively, i.e.

l6 ' 16
_

l6

f J_ JL\= ΓJL JLΛ ΓJL iOΛ Γio JL
L 4 ' 4 )~ I. 4 ' 16 / U L 16 ' 16 / U L 16 ' 4

ΓA ι \ _ ΓJ_ 13 1 Γ13 _15\ Γ
L 4 ' V - L 4 ' 16 J u L i e ' 16 ;u L

15_
16'

Then we can map the classes of time series satisfying the above conditions to
the finer #-subintervals than the first step preserving their probabilities.

Continuing this process for t = 3, 4, , we get finer and finer sub-intervals
of ci-space. Thus ultimately we are possible to assign for every point oί of
a-space (except for a set of measure zero) a time series, which we write %(£,<#).

Now let us consider the function χ(n,ct) defined on a-space for a fixed n.
%(1, a) is given as follows

(2. 3)

a

0,

• ί)
1 3

We denote the intevrals 0, -|-, -|-)and

i.i}

-f-.l') by 7(1,1), 7(1, 2Ϊ and

7(1, 3) respectively. Similarly we have
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4 6 \ Γ 12 13— —

o α 6 ΓJL A \ U Γ _ 6 _ ιo\ . . [ i s j5
U ' ^ I 16' 16 ;U Ll6Ί6; U I 16 '16

(2.4) %(2,α)=J

We also denote the intervals [0, -̂ ), [-̂ , -̂ ), [-̂ , ̂ ), , [|f, 1)

by 1(2,1), 7(2,2), 7(2, 3), ,7(2, 32), respectively. We can define the functions
%(3, α), χ(4, a\ and intervals 7(3,1), , 7(3, 33); 7(4,1), , 7(4,
34); analogously.

As is easily seen, the functions χ(n, a) are normal and mutually orthogonal
for different n : i. e.

(2.5) f χ(m,a )χ(n,a)da = ϊ>mn
Jo

where δmw means Kronecker's delta. It is also easy to see that the system of
functions is not complete, since for every n

Γ

l

χ(n9
JQ

Analogous to the Rademacher functions, we can generate a system of multi-
plicatively orthogonal functions from these {%(n, oί)}, but the system obtained is
not complete. This fact will be seen in the next section in detail.

3. Construction of ortho-normal functions. Let L2(ί) and L2(#) be real
Hubert spaces of real functions defined on ί-space and <2-space respectively.

no

That is, f(f) e L2(ί) if and only if ]Γ |/(ί)l2 < °° and g(a) e L\ά) if and only
ί = l

1

if f \g(a)\*da < oo. Now using the time series χ(t9cc) stated in the preceding
Jo

section, zve can map L2(t) linearly and isometric ally into L2(oί).
Let en(t) be a characteristic function of a point n in t-space; that is,

f 1 for t — n,
(3. 1) *»(*) =

1 0 for t Φ n,

where n is a fixed positive integer. It is easy to see that the system [en(f)}
(n — 1, 2, ) forms a complete orthonormal system in L2(t\ i. e.
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(3. 2) Σ g(f) em(f) = 0 for all m
t = l

implies g(t) = 0 and

CO

(3. 3) Σ en(t) en(f) = Bmn.
t = l

Let f(f) and g(f) be normalized orthogonal functions in L\f) having the
following forms:

/(ί) - Σ cnen(f), g(f) = Σ dnen(t).
n=l n=l

By the assumption they satisfy

Σ /(%(*) = Σ Cndn = 0,
ί = l 7Z=1

Σ /*(«) = Σ ^2 = i, Σ ^2ω = Σ <42 = i.
ί=l τz=l t=l n=l

Define the transform of f(t) by X^/(ί)%(ί, Λ), that is

Σ /(̂ )%(̂  «) = Σ

This is a function in L\oί). Then we have

ί. «)] ίΣ )̂%(ί, «)
J L £s=1

1 . / V Ί Γ ^ Ί "̂

= / Σ CnX(n, Oί) Σ ^»%(W, Λ) U/QC = Σ Cndn = 0

JO L 7Z = 1 ~" '-72 = 1 -I 7Z = 1

by (2. 5) and similarly

9(t')χ(t,a)Ί[
= l -̂

This proves the proposition.

Σ

dot = dj - 1.
M)
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Now we define on t- space homogeneous functions of zero degree, of first
degree, of second degree etc. as follows. KQ is a function of zero degree if it
is a constant. Kλ(t) is homogeneous of the first degree if it is given by

JV

(3.4) #,(f) = Σ «»*»(*)•
71=1

A homogeneous function of the second degree is given as

M M

(3. 5) Kt(tlt *2) = Σ Σ α»»β»(ί,>»(ί»)
m = l n—l

(where amn = anm). This function Kz(tl9 £2) i
§ clearly symmetric with respect to

tl9 t2. Similarly a homogeneous function of the third degree is given by

L L L

3. 6) £,(*!, tt, ί3) = Σ Σ Σ ΛmnβίίίiX CίίX Cίί)
1=1 m=ι n=l

where almn = ainm = amln = amnl = anlm = anml. In general a homogeneous func-
tion of the 72-th degree is given by the same manner. A linear combination of
such homogeneous functions

(3. 7) Kn(tl9 tι, ' ,fn) + Xn-ifc, ίa, , ί«-ι) + + JS^) + K0

is called a function of n-th degree. We show every function of an arbitrary
degree can be transformed to a function belonging to U(d). By a function of
the zero degree we mean the same constant. For a function of the first degree
we take the transformation stated at the beginning of this section. For a function
of the second degree

we put
C O O O C O 0 0 M M _

Σ Σ ^ι(*ι» «t)x(ίι. «)κ(ίι, «) = Σ Σ Σ Σ «»«β-(ίι>»(ί«) χ(ίι,
ί1 = l ί, = i ί1 = l ί2=l ^-m = l 7»==1 -̂

J!f J!ί

= Σ Σ amnX(m, ά)χ(n, OL)
m=l n= 1

In general, we define the transform of a homogeneous functions of n-Ui degree
Kn(tί9t2, A) as

L L L

(3. 8) Σ Σ Σ ««»...»xα αOxto α) •%(«> «).
Z=l m=l w=l

By extending linearly, we can define the transforms of non-homogeneous
functions of arbitrary degrees.
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We may select up a complete system of normalized orthogonal functions
from these transformed functions. Let us start with a zero degree function K0.
The normalization

(3. 9) f
"n

K^dct = I

implies K0 = 1 or — 1. By the zero-th species of functions we mean the
constant 1. Let us consider the first degree functions in tf-space:

(3.ιo) Σ
t=0

Then, to be orthogonal to constants C,

f \Σ
J0 ( f =0

= [ {«,%(!, at) + α,χ(2,Λ) + — + ayχ(N,cί) + K0] C dec
Λ

= K0C = 0

implies K0 = 0. Thus we get a homogeneous first degree function of a. Now
we normalize the first degree functions. It is easy to see that

f Γ : K&yxtf, α) da = Γ anχ(n,
JQ Lί=o J JQ L?z=l

f Σα-V(«,«)^£ = Σ«»t

Jo rz=l τz = l

Thus

<3 n> ί=0

Σ *»2 =
7Z = 1

gives a normalized function of first degree which is orthogonal to zero degree
functions. Especially if we take

(3.12) KM - en(t\

then we get the function %(τz, ct). Since {en(f)} (n = l,2, •) are normal and
mutually orthogonal in L2(t), we obtain a system {χ(n9 oί)} (n — 1, 2, •), which
are normal and orthogonal to constants and to each other in U(c£). We call
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them the first species of functions.
Now we consider a second degree function in L?(oί) such that

(3. 13) £ ; K,(tlt ί.Mίi, «)%(*2, «) + Σ î
ί1 = l ίa = l ί = l

3/ Jf JV

= Σ Σ amnX(m, ά)χ(n, rt) + Σ tfn%(τx, Λ) + K0.
m = l τz = l τz=l

We want (3. 13) to be orthogonal to every constant C, so we have

[' [Σ Σ KJfi, ί,)x(ίι, αMί. «) + Σ ^ι(ί)x(ί, «) +
^0 L^l ί2=l < = 1

1 Jf M N

= f Σ Σ ^mn%(^, Λ)χ(/ι, Λ) + Σ Λn%(τz, rt) + X0
«Ό '-m=l n=l n=l J

= [Σ αmm + X.1 C = 0.
L 777 = 1 -I

Thus we have

M

Σ amm + ^o — 0.

(3,14)
m=l

We also want to make (3. 13) orthogonal to any first degree function

(3. 15) £ X? (ί)χ(ί, α) + X0* = Σ «*%(«, α) + ^o*
ί = l 71 = 1

Since, when (3. 14) is satisfied, the second degree function (3. 13) is orthogonal

to any constant K0*, it is enough to consider^ K?(t)χ(t9ct) only. Then by

(2. 5) and the fact that

•I
we have

1 00 00 00 M

Γ Γ -̂  x v V^
I I / j / . ^2\^lj ^2/%\^l> ^/%V^2> Oί) ~T" X.^ -^1\^/%V^> ^/ / _' d
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1- N N N
Λ Ί Γ Ί χ

~ I L'Σ anX(nyoL)\^ ^Σ α*%(^>^)J da — 2^ ana$ = 0.

Since Kf(t) is arbitrary, we must have an = 0 for τι = 1, 2, , ΛΓ, that is,
Kί (t) = 0. Therefore we know the expression which is orthogonal to every
zero degree and first degree function is given by

M M M

(3.16) Σ Σ a^n%(m, <x)χ(n, a) - Σ a^m (amn = anm\

Thus we have obtained a category of second degree functions which are
orthogonal to lower degree functions. We have to normalize them.

x P - - .,<

/ Σ Σ amnX(m, ά)X(n, O) - Σ ^mm ^
Jo L m=l rz=l m=l J

1 P Jf Jf Jf Jf

= ί ̂  Σ Σ Σ Σ amnaklχ(m, a)χ(n, ά)χ(k, ά)χ(l, a)
Jo *~m=l n=l A;=l Z = l

/ J f \ / J f J f \ /* \ 2 Ί

- 2 Σ *«» Σ Σ «mnχ(m,ά)χ/[n,ά)} + Σ «»«
\m=l / \m=l 1 = 1 / \m=l / J

M M M M M MM

(3- 17) = Σ Σ «»-«« + 2 Σ «-m2 + Σ Σ βmn1 + Σ Σ ^m2

m=l A =l 7/i=l m=l w=l τz=l τn=l

(
M \ 2 / Jf \ 2

Σ«~ + Σ«~
m=l / \m=l /

M Ά

= 2 Σ Σ ^mn2 + Σ tfmm2 = l

Here we notice the following relations which will be easily seen from the
graphs of χ(n, cί).

Γ
χ(m, ά)χ(n, ajχ(k9 ot)χ(l9 a)da = 0,

Jo

χ(m, ά)χ(m, ά)χ(k, ά)χ(l9 ά)da = 0,

(3. 18) I χ(m, ά)χ(m, ά)χ(k, ά)χ(k, ά)da = 1,

r1

\ χ(m, oί)χ(m, ά)χ(m, a)χ(k, d)da = 0,
Jo
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i

%(ra, αO%(ra, a)χ(m, <x)χ(m, d)da = 2,

(we promise hereafter that different letters m,n,kyl mean different integers
respectively).

Putting amn = anm = 1/2 for specific m,n and apQ = 0 for other indices, we
get %(ra, a) χ(n, oί). Also putting amm = 1 for a fixed m and am = 0 for other
indices, we get %2(ra, oί) — 1. We call the family

(3.19) {%(m, ά)χ(n, Λ), %2(m, rt) - 1}
(mΦn\ m — 1, 2, •; n = 1, 2, •)

the second species of functions. It is easily seen that the functions of this
species are mutually orthogonal.

Now we are in position to consider the third degree functions,

M M
v-^

(3. 20) Σ Σ Σ "imnXV, ά)χ(m, tf)χ(w, a) + Σ Σ aw%(ra, <*)χ(n, a)
ί=l m=l w=l m=l

where almn = amnl = anlm = alnm = anml = amln and amn = anm.

Elementary computations show that (3. 20) is orthogonal to any functions
of 0-th, 1st and 2nd degree when the following conditions are satisfied:

(3.21)

(3. 22) 3 Σ ank — akkk + ak = 0 for every &,

m=l

L

1 = 1

(3. 23) amn = 0 for all m,n.

Thus we have a category of third degree functions having the following form :

L L L L i L \

(3. 24) Σ Σ Σ tfimnXCJ, tf)%(X rt)χ(/ι, Λ) - Σ 3 Σ ^lln - αnnn }χ(w, Λ).
Z=l m=ι τz=l w = l V i=l /

Since (3. 24) is orthogonal to every function of first degree, we have

Γ da \ Σ Σ Σ almn%(l, d)%(m, ά)χ(n, )̂ - Σ I 3 Σ aιm ~ "nun )%0*, Λ) 1
J0 L \ / J

= Γ ̂  |~Σ Σ Σ «im»X(^ tf)χ(m, Λ)χ(w, α) - Σ ( 3 Σ Λ"n - annn \χ(n, a)
Λ *- \ /
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X[ΣΣΣ«,
Hence by elementary but somewhat complicated computation, the condition of
normalization is given as

*! Σ Σ Σ * "1™ + 32 Σ Σ Σ * allmamnn

+ 2 x 32 ΣΣ anm + 2 x 3 ΣΣ aιuaimm+ 4

r / L \ L I L \ Ί
Q V^\~^ / Q V^ I i O V^ ί Q V^ I 1

— 0 2_2^ appr 3 2^ a"r — &rrr ] + * Z-s aPΏP ^ Z_, allp ~ appp I = -1?
L p^r \ ί = ι / p-i \ ί = ι 7 J

where Σ Σ Σ * i^^ans the summation without I = m, m — n, n — I.

Putting almn = 1/6 or alln = 1/3 we get third degree functions %(/,#)
x %(m, ayχ(n9 oί) and %2(Z, Λ)%(W, Λ) - %(n, a) = {%2(Z, α) - l}χ(n, a). We call the

family of third degree functions

(3. 26)

specices of functions. They are normalized and orthogonal to each
other and to lower degree functions.

We should like to continue this processes for fourth degree functions and
so on. In those cases the computations will become more and more complicated
and so we confine ourselves to state that we get the family

tf)C(m, a)%(n, ά)\

(3. 27) [%2(/, d) - l]χ(m, ά)χ(n, a);

as the fourth species of functions. Conversely we show that the total family of
functions of the n-th species constitute a complete orthonormal system in L2(cί).
That is to say, we get

THEOREM 1. Put

(3. 28) Ψnt0(a) = χ(n, a), φn^(d) = χ\n,ά) - 1

(n = 1, 2, •)

and φGΛ(oL) — 1. Then the set of finite products of these functions

(3. 29) [φiί.(a)φmι. (a)- - •?>„,. (a)} l>m> >n^Q

forms a complete orthonormal system in L\cί). (See Fig. 1).
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PROOF. Let

(3.30) φt

and

(3.31) φp

be any two functions of the system. They are mutually orthogonal. We may
suppose to be I ̂  p. In case of / > p

(Fig. 1)

i

/

ft ,

1
J^f.

\

"Γ
\/2,

1
/!_

I

^π

b

π
L

Ί
U

Ί

Ί

.π .n .π .π

Ί
I

Π
U

u
1

L J
1

, Π .Π.Π .0..

TOI

to

y
TV

<P

fy

(b γ

Φ Co
Tφ\

?
31

09 Co

2ί J|0

ψ φ
Φ'y

3>

(3.32) f φlt. (ά)φm>. (α). •?>„,. (α) ,̂. (Λ)^,. (Λ) -^r,- («) ̂  = 0

^o
because ^>m(. (a\ , ̂ W). (a\ φp>. (a), , φr>. (a) are constant on every interval
/(/ - 1, K) and

(3.33)
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If / = p, we may divide into four cases : 1) φlt. (d) == φlΛ(a\ φp> (d) = φpί(cc)
2) φlt. (a) ΞΞΞ ψιΛ(a\ φpt. (φ) = ^>P)0(^) 3) <plt. (a) ΞΞ ^ίf0(α), <pp>. (rt) = <7Vι<X> 4)
φι,.(a) ΞΞ φl>0(a\ φp,.(aί) = φpι0(oί). In case 1), φlΛ = ^Pfl and we may omit the
terms < .̂ and φpt. in (3.32) since φl,ι(oί) = 1. Then it is enough to compare
the next terms of (3. 30) and (3. 31), and we may proceed the arguments that
we are now discussing. In cases 2) and 3), φl}. ~ φlιl9 φpι. = φp |0 or ^Z). = ̂ ί)0>

φpt. = φptl and (3.32) is also evident since φl>Q(oL) φlΛ(oί) — φl)Q(φ). In case
4), ^^,0= <PP,O and ^?m>. (Λ) ̂  φQ). (a). It is enough to consider the case m Φ q.
We may suppose m > q. Then

(3.34)
, Γ

φUoί)φMι. (a) da = Σ
•Ό A=l Jl(m-\,k

and the other functions of integrand in (3. 32) are constants on every intervals
I(m - 1, &). Thus (3. 32) is proved.

The function (3. 29) is normalized, because φi,ι(oί) = 1 for every k and
/ 1 V

^mf.o φml,o(ά) = 2y at a point set of measure! — ) and = 0 elsewhere.
\ £ /

We show the completeness of this system. For this purpose it is sufficient
to show that any characteristic function on an interval with dyadic rational
end points can be approximated by a sum of the functions of this system. First
we show

/ι(ac) = 1 f or a e [0, 1/4), = 0 elsewhere,

(3.35) g,(ά) = 1 f or a z [3/4, 0), - 0 elsewhere,

kάά) = 1 for a ^ [1/4, 3/4), = 0 elsewhere

are expressed by sums of functions of this system. That is,

Similarly we put

(3.36) 5rn(α) =

<Po,l («) - -
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then we have

fn(θ) = max ~ / - [<Pn,o(oL\ 0]

gn(cί) = max [- 0>n, 0(tf), 0]

and

Then the characteristic function

1 / 2W — 1 2n+1 1
' cί € ί

, , . tΛ' \ orc + l ' on + 2
}ι(ci] — \ A A

0, elsewhere

can be represented as

(3.37) h(d) = k^oήk^oL)* kn(ά)fn+l(ά).

Consequently
00

(3.38) Σ £ι(αO*2(rt> kn(d)fn+l(ά)

Σ (Λ
nn + 1 V ~~ ^1,1

»-, 2

X

r i 2 \
represents a characteristic function of — , — \. Thus we have succeded in

expressing the characteristic functions of 0, — r- j, —τ- , ~-j- j, — j- , -j- j and

-y- , 1 by the desired forms.

This method tells us that if we change the combination of terms of (3. 38)
we can obtain the characteristic function of an arbitrary interval with dyadic
rational end points. For example, if we replace k^oί) by fι(oi) in (3. 38) we get

Γ 1 2 V
the characteristic function of — — , —^ ).

L 16 16 /

4. Fundamental inequality. At first we rearrange the complete ortho-
normal system by the number of partitions of Λ-space, not by the degree of
functions. In Theorem 1, we put

Φm,o(oL) = %(m, a)
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φm>i(d) = χ2(m, a) - 1 (m = 1, 2, 3, •)•

Here we expand each positive integer n triadically :

(4. 1) n = 3w'2m> + 3V + + 3n«> 2m»

where «j > n2 > > nv §r 0, ra^ m2, , w = 0 or 1. Then we put

(4. 2)

That is,

(4. 3)

etc. As is easily seen, the system {^m(^)} is nothing but the rearrangement of
the complete ortho -normal system obtained in Theorem 1. By this numbering,
the functions ^m(ct) (0 rg m ±g 3n — 1) are all constant on the common intervals

I(n,v}(v= l,2, ,3").

We show this value by tym(I(n, v)\ We know that the intervals on which yfrm

(oί) takes constants ψm(I(n, v)) become narrower as m increases. We shall give
here an alternative proof of Theorem 1, that is, the completess of {
Suppose that f(ά) $ L\ά) and

Γ
(4. 4) / f(d)^m(a) da = 0 for 0 ̂  m ̂  3n - 1.

t/O

Then we have

(4. 5) = Σ Γ f /(«) ̂  f »(̂ «. Ό)l = 0
y = l L^/(rz,ι;) -J

Let us consider the determinant of 3w-th degree

(4. 6) I ψ m(/(Λ, v)) I (0 ̂  m ̂  3W - 1, 1 ̂  y ̂  3W).

This determinant (4. 6) does not vanish, because by the orthogonality condition

Γ tym(a)γn(oί) da = 8mn,
Jo
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we know that

\Ϋ~(Kn,vW

is non-zero. Thus 3" vectors in 3"-dimensional space

(^m(I(n, 1)), *m(I(n, 2)), , γm(I(n, 3"))) 0 =g m =S 3" - 1

are linearly independent and we have by (4. 5)

Γ f(d)da = 0
JI(n,v)

(v = 1, 2, ,3»).

The set of terminating points of all the intervals I(n, v) (n = 1, 2, •) forms a
dense set of points in oί-space. Now let us suppose (4. 4) holds for every n, then
the continuous function defined by

= f f ( t )
J0

dt

must be a constant. It follows that f(a) is equivalent to zero. This proves the
completeness of the system.

Let/(of) £ L(ά) and write

00

(4. 7) f(a) ~ Σ, Cn^n(a\

where cn is given by

(4. 8)

The 7z-th partial sum of (4. 7) is

(4. 9) Sn(<
k=0

The 3Mh partial sum SF(OL) is then given as

3"-l p 1

(4.10) S^a) = Σ [ f

Γ

where
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Since tym(c£) is defined as a finite product of φn,<>(ά) or φn,ι(a), we know
immediately

(4.11) D3 (Λ, /β) = Π [1 + φr,o(ά)φr,
r=l

Thus we have

1

(4.12)
for a £ I(n, K) and β £ /(w,

0 elsewhere,

where | I(?ι, k) \ shows the length of the interval I(n, K). (See Fig. 2).

β

(Fig. 2)

By (4.10) and (4. 12) we get

THEOREM 2. (Kaczmarz) S3n(ά)-*f(ά) a.e. as n->oo.

PROOF. By (4. 10) and (4. 12), we have

(413) «α)=
whenever tf 6 I(n,k). Since |/(τz,£)|->0 as n -> oo, we have the theorem.

Ξ L2(^), we define the coefficient cm by

-/t/o
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then by the completeness of {ψmfaO} we obtain ParsevaΓs equality

(4.14)

Here we assume ca = 0, then

f \f(a)Vda = Σ, cm* = Σ'Σ ̂  = έ f Δ»(«W« = f 1 έ ΔS(«:
t/O m = l 7Z =0 m=3n τz=0 V 0 *̂ 0 \ τ z = 0

where

3n+i-l

(4.15) Δn(Λ) - Σ ^m^m(^).

m=3n

We generalize this equality for f(ά) € L\ά) (1 < k < oo). This result was
originally obtained for the Walsh functions by Paley [5].

THEOREM 3. (Paley). Let f(d) have the {^m(a}}-expansion

Δn(α) denote the partial sum :

3n+1-l

Δ»(α) = Σ *„*.(«) (» = 0, 1,2, •).
m=3n

For simplicity let c0 — 0. Then, for 1 < £ < oo?

1 ( ~ N Λ / 2 1 1 f oo N A r / 2

(4.16) Bk \ Σ ΔΪ(Λ) <fa ̂  f l/(^) 1 fc da ̂  Bk f Σ Δ"(Λ) ^*)

•Ό 1 72=0 J Λ) Λ (w=o J

whenever either member exists.

We divide the proof into several steps.

LEMMA 1. Let n(ci) be an integer which varies arbitrarily with a. Then

|/(α) I *da (k > 1);

(4.18) f I S^aί (ά)\da^B I \f(ά) \ log+ \f(a) \ da + B;
Λ Jn

*) We denote B^ with an index k a constant which depends only on k and need not be
the same in different contexts.
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\S^(ά)\ rgess. sup. |/(α)|,

provided that the right hand side exists.

PROOF. These are results deduced from Hardy-Littlewood's maximal theorem
[8; vol. I, p. 29.] and (4. 13).

LEMMA 2. Let m^ > max(ra2, ra3, ,mq\ then
1

(4.19) f Δm,(ct)Δmι(α) Δm (Λ) da = 0.
•Jo

PROOF. We expand each of ΔOTs(α), ΔW3(αf), , Δm<z(#) into a series of

by (4. 15). By (4.2) each tym(oί) is a finite product of φn,Q(oL) or φnΛ(a\
but since

mi

none of terms ^rm(pί) in these series contains φl>0(oί) or φltl(ct) (l^m^). Hence
each of ΔOTt(α), , ΔOT (α) is constant on the interval /(raj — 1, Λ). On the other

hand, by(3. 33)

Γ φnι9. (a) da = 0.
JI(mι-l,k)

Thus we have the lemma.

LEMMA 3. For q ̂  2,

/ °° Λ 1 \1/Q I r1 VQ

(4.20) Σ f |Δn(α)|^rt)Uββ f |/(α)l^α .
\n = o Λ / \»/0 /

PROOF. In virtue of ParsevaΓs equality we have (4.20) for q = 2. It holds
for q — oo also, because

-1

ΔnO*) = / /(/
Λ

n

X Π [1 + φr,o(a)φr,Q(β) + φrΛ(d)φrΛ(β)~\ dβ

= f /(/S) Π - Π
Jo l r = l r=ι j

and (4. 12) shows

(4.21) sup |Δn(α)| ^ ess. sup 2\f(ά)\.

To prove (4. 20) for general q ̂  2, we have only to use the well known
convexity theorem of M. Riesz [8, vol. II. p. 95].
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LEMMA 4. The conclusion of Theorem 3 is true when k = 2v is an even
ίntger.

PROOF. Put

Then we have

1

f {δί+ι(αO — %n(ά)}da

= fl\kΔn(dft-l(ά) + %~^
Jo ( ^

-jf
by Lemma 2. By Holder's inequality and an inequality

xy-'^x+y GC^O, y^O, l>ί>0) f

we have, for 3 rg μ. ̂  ̂  — 1,

'[[^(a)dt

r1 r1

Ξ£ I ΔJ (oc)8S \ct) da. + I ΔS(αc)
Jo Λ

Hence

^ B J f
-•'o

da + f Δ*(Λ) Jα}
Λ J

Summing up from n = 0 to n = N, by the first inequality of Lemma 1 and
Holder's inequality we have

da ̂  Bk

^D Γ f v- ̂  Λ j fTf^β*LJ ^Δ"(α) JαJ UL^O U=0 J J L»/0

+ Bk I y~] Δn(cί)doί
Jo n = 0
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2/*
Ί -

Σ Δ^) <fo f sk+ι(rt)<fa + & /
-o j

 J L
Λ
 J

 Jo
Σ

o U=o

Therefore we may deduce that

1 - I / - γ/2

I VN+l(a}da ^Bk\ Σ Δl(a) da.
•'O Λ lrz=0 j

The same argument will show that, if N < Λf,

da ̂  Bk Σ Δi(Λ).^ Bk Σ Δi
Jo (jv^-i

and thus &N(ά) tends strongly to f(pί) as N—*ooy because the limit has the same
coefficients [cn] defined by (4. 8) with f(a).
Thus we have

1 i co

d)da^Bk \
•'o Irz-

jfc/2

The proof of the opposite inequality is quite the same as that of Paley's.
We shall show it for the sake of completeness. Consider the integral

(4.22) Γ ΔU
Jo

where i; = k/2 and N — 1 ̂  nγ > n2 >

= ΓΣ Δ-(^) = Γ s»(«) + Σ Δ^
Lm=0 -1 L m-n

2 £
m=n

Hence by Lemma 2,

0 ̂  (4. 22) = Γ ΔiCΛ^CΛ). Δ*
Jo
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+ Σ f ΔUΛ)ΔUα> -^1^(0)^(0) da.
m=n Jo

It follows that

JV-l 1

, f ΔI^Δ^ Δ^cO=n Jo

1

:g f Δ^Δ^rt). -.^(0)^(0) da.
Jo

Summing over all possible combinations of the numbers nl9 n2, , nv-ι for which
max (nί9 n2, , nv-ι) rg N — 1, we get, the sum being taken over the combina-
tions (nί9 nz, , nv-ι, ni) for which max (nίy n2, , nv-\, m) 5^ N — 1,

Σ Σ Σ f ' Δl,(«) .Δ^^C^ΔWα) Jα
Πx τιp-1 m ^0

(4.23) ^ Σ Σ Σ f W(«> -ΔL-X^ΔL^) <ta
«/0

By Lemma 3,

ΛΓ-1 / 1

UBk r
~" Jo

N-l

Σ
72=0 \Jθ ) Jθ

Put S the summation on the left-hand side of (4. 23), then a little consideration
shows that

1 N-l _fc/2 _ N-l 1 _

f Γ^~^ \1 Γ v^ r Ί
»/Q i— 72 βQ τz=o JQ

^ βj f 8>(α) fr Δ^(α)} da+ f &N(ά)da\
L /o i rz=0 J Λ -J

> A r / v , Ί2/A: Γ rM ΐ^1

 A 2 / x ) f c / 2 , Ί(A:~2)N(a}da\ u0lS
ΔI(α:)( J c ίJ+

1 |--ίV —Λ -.Λ-/Z 1 1

Γ Σ, ΔJ(α) ώt ̂  Bt f 8 (̂α) da^Bk \ fk(a) da,
Jo 71 = 0 J Jθ

and thus
nfc/2
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from which the desired result follows.

PROOF OF THE THEOREM. The assertion (4. 16) is equivalent to following
statement which is convenient for interpolation let £0, 6Ί, be a set of arbitrary
unit factors. Let

(4.24) Δ*(Λ) = Σ e-Δ»(α).
n=0

Then

(4.25) Bk ί \Δ*(ά)\kda^ f \f(ά)\kda^Bk [ \Δ*(ct)\*da
*o Jo JQ

(1< k < oo )

whenever either side exists.
That (4. 25) follows from (4. 16) is immediate because of £* = 1 for n = 0,

1, 2, . For the opposite result is a consequence of Kintchine's inequality
[3 p. 131].

Now let

Then, if k is an even integer, we have

Γ Λ 1 Ί1/fc Γ Γ1 ΊVA: Γ Γ1 Ί1/λ:

(4.26) [J |8JKα)|*£toJ^β*[J \*x(*)\kd*\ ^ Bk U \f(cϊ)\*da\ .

We may use the Riesz's convexity theorem to interpolate between two consequ-
tive even integer. Hence we have (4. 26) for all k^2. Thus δj£(α) tends
strongly, with index k, to a limit function Δ")f(α), whose {^m(oί)} -Fourier series

is obtained by expanding Σ £nΔn(oί), and

^Bk f \f(d)\*da.
Jo

Since f(ά) is obtained from Δ^(Λ) in the same way as Δ*(α) is obtained from
), we have also

f \f(cί)\kda^Bk f
Λ •'O

Thus we proved the Theorem for k^2.
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The case 1 < p fg 2 is reduced to the case p^2 by the conjugacy
argument. Let k' be the conjugate exponent of k, i.e.

Then for f(ά) € Lk(ά) and g(ά) 6 L*'(α), by Holder's inequality and (4. 26)

= f tf?(a)f(ά)da
JQ

' Γ Λ
.[JΓ

1//fc'

.Λ/k

(4.27)

where Δ^^(Λ) is a function formed from ^(α) in the same way as Δ*(ά) is
obtained from f(oί). (4. 27) is satisfied for every g £ Lk'. Thus we have

Γ \Δ$(a)\kda^Bk f \f(d)\kda
JQ •'o

and then arguing as before we have

Γ \Δ*(ά)\kda^Bk Γ \f(d)\kda (1< k ̂  2).
Jo *^o

5. A modification. In the preceding sections our discussions are founded

on a time series having the values \/ 2, 0 and — \/ 2. In this section we shall
consider more general time series having three different values.

Let χ(t,aί) be a time series having the values. /^— , 0 and — */o— with

probabilities c (c is a fixed number such that 0 < c fg 1/2), 1 — 2c and c respectively.
Repeating the same argument as in paragraphs 2 and 3 we have

(5.

(5. 2)

0 , rt € [c, 1 - <:)

- 1]
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and

(5. 3)

and

(5. 4)

and so on.
Put

and

»,.,(-τα) αe[0,c)
C

<Z>ι,o C, 1 - C)

<Pι,o (-̂ Γ (Λ - 1 + C)) Λ € [1 - c, 1)

corresponding to the triadic expansion of the positive integer n,

where

Wi > W2 > > Ww ̂  0

,, = 0 or 1.

Then the systems {ψ'n(^)} are shown to be a complete orthonormal system. The
proof is quite similar to the before.

Putting c— —^r we have the Rademacher system {9Vo(pO} and Walsh system
Zj

{ψ'nC^)}- The system {φn,\(&)} degenerates to zero in this case. Our discussions

in the preceding sections are just the case c — — . In this case every function

ψn(oL) have at most three values but in the other cases ψn(<x) generally takes

more than three values. The case taking c = — may be especially noteworthy
o

because every interval I(n9v) for each v has the equal length 3~n regularly.
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