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1. Introduction. Let T be a category consisting of the based topological
spaces and based continuous maps. Eckmamm and Hilton [2] defined an operation
7B, F) X m(B,QY)—> w(B,F) for a fibre map P:X —Y with fibre F in T,
where QY denotes the loop space in Y and B any space. Dually they defined a
co-operation p* : w(F, B) x w(2Y, B) —> w(F, B) for a cofibre map : Y — X with
cofibre F' in ¥, where XY denotes the suspension space of Y.

In this paper we try to define the corresponding one in the framework of
the general categories.

Using a non-trivial semi-simplicial standard construction in the sense of
Godement [4], Huber [5] developed a semi-simplicial homotpy theory in the
framework of general categories.

Huber pointed out that the standard construction induces a fibration K(Y):
CY - Y, (See §3 for the definition) and the fibre QY of K(Y) has the properties
approximately corresponding to those of a loop space, and the dual standard
construction induces a cofibration K(X):X — CX and the cofibre 3X of K(X)
has the formal properties of a suspension. Thus, we start from above consider-
ation and try to study our problem.

In §3, by Huber’s semi-simplicial homotopy, we shall define Kan homotopy
groups in the general category, an operation py : T,(X,Y;) X 7, (X, QY,) —
m(X,Y;) for a fibration sequence Y; > Y, — Y, and, in §5, dually a cooperation
p*ima(Xs,Y) X (22X, Y) > m(X;,Y) for a cofibration sequence X, — X, — X,.

Since Kan homotopy groups under the consideration are naturally isomorphic
to Eckmann-Hilton homotopy groups which are higher by one dimension than
the former [5], our operation and co-operation in the special case include the
similar operation in [2] only in the group case. It is known that any map

v: X —Y is factorized in the form X5E,>Y, where u is a homotopy equi-
valence and p a fibre map with fibre F,, and F, may also be interpreted as the
fibre space over X induced by the map wv.

In §4 we shall introduce a notion of the trace of morphisms corresponding
the above F, and obtain the similar results in [2]. From theorems 4.3 and 4.5
in §4, there exists a fibration sequence Y, — F, — Y, for a morphism v;Y,—Y,
and so, in the category ¥, F, may be interpreted as the fibre space over Y,
induced by the map v:Y, — Y,. In the framework of general categries, theorems
4.8 and 4. 11 play the corresponding roles in theorems 3.11 and 5.15 in (2]
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respectively. Last section is devoted to the dual discussions.

2. Preliminaries. A category ! consists of a non-empty class & of objects
X, Y, - - -together with sets Hom (X,Y) of morphisms f: X—>Y (X,Y < &),
and of an associative composition of morphisms o: Hom (X,Y) x Hom (Y, Z)
—Hom(X, Z), (f + 9) — g of, which has both-sided identity 1r ¢ (X, X).

An object 0 € & is called a zero object if, for all X, the sets Hom
(X,0) and Hom(o, X) consists of exactly one element 0. If & has a zero object,
then in each set Hom(X,Y) we have a distinguished morphism 0, called the
zero morphism. A morphism f: X —7Y is called an equivalence if there is a
morphism ¢:Y — X such that gof = 1 and fog = 1. A morphism f is called
an epimorphism if for any Z and any v,: Y—Z, i = 1, 2, the relation v,of =v,of
implies v, = v,. A morphism f is called a monomorphism if for any W and
any w;: W — X, i =1, 2, the relation fow, = fow, implies w, = w,.

Notice that if f is an equivalence then f is both epimorphism and
monomorphism, but the converse is in general false.

Let &, &, M and M’ be arbitrary categories. Let F,G: 8 — & be
covariant functors and #:F — G a functor morphism. Let U: 8" —>M" and
V:M — ! be covariant functors. According to (4), (5), we define UxtxV :
UoFoV — UoGoV by

Ustx V)(X) = UBV(X)) for X € M.

If U(or V) is the identity functor I, then we abbreviate Ux6«V to 6%V (or
Ux¢). Then the following formulas are valid for any covariant functors and any
functor morphisms (cf. [4], [5]);

(1) UoV)x = Ux(V=6)

(2) x(UoV) = (6+U)*V

(3) U»8)xV = U6V = Ux(0%V)
(4) U608 )xV = (Ux6'*V)o(Uxt"'%V)
(5) WHG)e(Urp) = (V)o(rsG)

for any two functor morphisms @: F — G, :U - V.
Rule (5) may be remembered with the following commutative diagram :

UF —U* ., UG

1

F | j e
VoF VoG

Vxp

Throughout this paper we consider the categories with zero objects and
zero morphisms and we assume that the functors preserve zero objects and zero
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morphisms.

Let & be arbitrary category. Let {C, %, p} be a standard construction in &,
ie. C:t—§& is a covariant functor, 2:C— I and p:C — CoC are functor
morphisms and the following two axioms are satisfied. (cf [4], [5])

(sy) (k%C)op = (Cxk)o p = identity,

(s2) ' (pC)op = (Cxp)op.

Each standard construction {C,k, p} generates a semi-simplical functor
Fy = (F,,dy, sh), n=0

ie. a sequence of functors F,:8 — & together with faces and degeneracy
morphisms

dn: Fp— Fo,
s F,—>F,,,, 0=i<n
Fy is dfined as follows: Let C° = I and C**! = CoC". Then we put
F,=C" d, = ClxkrCrt st = Clpx(Cr7?

The faces and degeneracy morphisms satisfy the wusual semi-simplicial
commutation rules;

(a) did’ = d’-'d 1 <j

(b) sts? = sitigt i=jJ

(c) dis’ = $7'd! 1<j

(d) dis' = d*'s' = identiy

(e) dis’ = s'di? i>7+ 1.

If we apply the semi-simplicial functor Fy to an object Y € &, we obtain a
semi-simplicial object Fy(Y) = (F.(Y), d{(Y), s(Y)).

Let © be the category of sets. If we now take the functor Hom(X, ):
® — & with a fixed first argument X, we obtain a semi-simplicial complex

Ky(X,Y) = Hom(X, F(Y)) = (Hom(X, F(Y)) &', s").

Then we have the Kan homotopy groups (cf [6]) of KW(X,Y) and we
define 7(X,Y) = m(Ku(X,Y)) (n=0). Here it is assumed that all the
K, (X,Y) satisfy the Kan condition.

Now we define the kernel and the cokernel of a morphism. Let u:X—Y
be a morphism.

A pair (U,j) consisting of an object U and of a monomorphism j:U — X
is called a kernel of u, if
(1) uoj =0
(2) for each object Z and each morphism: v:Z — X with uov = 0, there exists
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one and only one morphism w:Z—U, so that jow = v.

The definition of a cokernel is dually defined.

Throughout this paper, we shall be concerned with a category in which
the kernel and the cokernel of morphisms always exist.

Let Ku(X,Y) be the semi-simplicial complex induced by a standard
construction {C, %, p} in &.

DEFINITION 2.1 ([5]). A morphism u:Y,—Y, is called a fibration if the
induced semi-simplicial map

Uyt K*(X, Yz) — Ku(X, Yl)

is a semi-simplicial fibration (cf [6]) for all X € Q.
If C commutes with kernels (ie. C(Ker «) = Ker C(x)), then the kernel Y,
of u will be called a fibre of ». Then the semi-simplicial fibre of #y may be

identified with K (X, Y,).

PROPOSITION 2.2 (Huber [5]). Let & be a category and let {C,k,p} be a
standard construction in &, such that the complexes Ky (X,Y) are Kan
complexes. Then

1) the morphism k(Y):CY —Y is a fibration,
2) (X, CY)=0 n=0.

If we denote the fibre of A(Y) by QY, then we get the followin.

PROPOSITION 2.3 (Huber [5)).
Ot (R(Y)) im0 (X, Y) — m (X, QY) is isomorphic onto for n > 0.

3. Operations in Kan homotopy groups. Let & be a category and let
K«(X,Y) be the semi-simplicial complex induced by a standard construction
{C,k, p} in 8 We suppose that all the Ky (X,Y) satisfy Kan condition. Let
wY,—Y, be a fibration and (Y, v) its fibre. By proposition 2.2, k(Y,):CY, — 7Y,
is a fibration. We take (a,b) € m,(X,Y;) x m(X, QY,). Let ¢: X —C*"'Y; be
a representative of the homotopy class a € 7,(X,Y;). By proposition 2.3, there
exists only one ¢ € 7,.,(X,Y,) such that 9,,,(A(Y,)c =b. Let 7:X— C"*?Y,
be a representative of c.

Since uy: Ky(X,Y,) > Ku«(X,Y,) is a semi-simplicial fibration, there exists
a (n + 1)-simplex & € Ky(X,Y,) such that C"**(w)é = 7 and d'¢ =0 for i#n
+1. From the definition of the boundary homomorphism 9,,,(«): 7. (X, Y)
— 7 (Y,Y,;) for the fibration u:Y, > Y, 9,,,(#)c is represented by a morphism
x : X — C"'Y, such that C**'(v)x = d"*'E.

Now, if we take 7z + 1 n-simplexes o, =0 (0=:{=n — 2), 0,-;, = @ and
oy =% in Ky(X,Y,), then we have d’~'o; = d'o; for i <j and i, # n. Since
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K«(X,Y,) is a Kan complex, then there exists a (n + 1)-simplex 7 € Ky(X,Y;)
such that d* 'y = @, d"*"' n =x and dinp =0 (0 =7 = n — 2). From the definition
of the product in Kan homotopy group m,(X,Y;) (cf [6]), the homotopy class
of n-simplex d"m € KW(X,Y,) satisfy the relation {d"n} = {@} {x} where { }
denotes the homotopy class.

We now define an operaticn py:7,(X,Y;) X m,(X, QY,) > m,(X,Y;) as

p«(a,b) = {d'n}, a € m(X,Y;), b € m(X,QY)).
Also the definition of py may be written in the following abbreviated form :

pla,b) = a+0,.,(u),
where 9,.,(A(Y,)c = b and - denotes the product in Kan homotopy group m,(X,Y,).
THEOREM 3. 1.
(1) P*(d, 0) =a (d € Wn(X’ YS))
) P«(a, by by) = px(px(a, by), bs) (b € (X, QY,) i=1,2).
PROOF. Since (1) is evident we only prove (2). We have
px(a, by +by) = a+9(c;*¢,) = a+(9c, » Ocy)
px(py(a, b)), by) = pyla -« 3¢y, by) = (a -« 2c,) » Oc,.
Hence (2) follows from the associativity in Kan homotopy group.
4. The trace of morphism. In this section we shall consider a category
® with direct products. Here we recall the defintion of a direct product in [3].
A direct product of the objects 4,, 4, is an object A, X A, and a system
of morphisms p,: 4; x A, — A,, i = 1,2, with the property:
(D). For any object X of & and any system of morphisms f;: X —A4,, i =
1, 2, there exists a unique morphism f: X — A4, x A4, with p,«f = fi.

The morphisms p; are called the projection of A; X A,, and morphisms f;
are called the component of f; we write f = {f},f3}, so that

plfuf2} =fu
Let (B x B, pi, p,) be a direct product of the object B’s and let morphisms
fi:A4;— B be given, { = 1,2. The morphism
{f1p1, o} : A1 X Ay, —>B x B
will be written f; X f,. Then also we have

21 X f2) = fipy and pi(fi X f2) = fopn

DEFINITION 4. 1. The trace of f; X f,: A, X A, > B X B is a pair (Q,v)
consisting of an object Q and monomorphism ¢(: Q — A, x A, satisfying the
conditions :

(1) P1(f1 X foe = po(fy X foh (or equivalenty f,pu = f.p)
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(i) if D is any object of & and A: D — A, X A, is a morphism with the
property pi(f1 X foh = pi(fi X fo)h (or equivalently f,p.h = fp,h),

12
then 2 admits a unique factorization D —Q — A, x A,.

For example, if & is a category of sets with base points, then the trace of
fixfois Q= {(a,a,) € A, X Ay; fra, = fra,].

Now we return to the notation in §3. Let {C, &, p} be a standard construction
in ® and we assume that functor C is D-functor in the sense of [3;§3], i.e.

C(A, x A,) = C(A)) x C(A,) and C(p,): C(A, x A,) —>C(A), i = 1,2,
are projections.

Moreover we assume that if f :A— B is a monomorphism, then C(f):
C(A)—(C(B) is so.

Let 2Y):CY, > Y, be a morphism in § and v:Y, — Y, any morphism.
Then we denote the trace of 2(Y,) x v by (F,,j). Let ¢,:CY, x Y, > CY, and
q.:CY, x Y,—Y, be projections. Then we have the following commutative
diagram :

Fo—3J___cy,

4 2) |
( 0 | KY)

Y, —— Y,

THEOREM 4. 3. For any morphism v:Y,—Y,, q.j: Fv—Y, is a fibration.

PROOF. Let n(n — 1)-simplexes ay, * *, 04_1, Orsr,r *+, 0 € Ky(X, F,) satisfy
d’~'o; = dlo; for i <j and 7,7 # k and let an n-simplex 7 € Ky (X,Y) satisfy
dit = C(g,j)o; for i # k. If we consider C*(q,j)o;’s (i # k) and C"*'(v)7, then
we have

ad*(CY ,)Cq,j)o; = & Y(CY )C"(q,f)o; for i <j and 4,5 # k&
and C'(k(Y,)C"(g,7) = (Y )C!(v)r.

By Proposition 2.2, k(Y,):CY, — Y, is a fibration and hence there exists
a n-simplex o € Ky (X, CY,) such that d{(CY,)o = C*(q,j)o; for 7=k and
Cr (k(Y)))o = C"*'(v)r. Since C"*}(CY, x Y,) = C**(CY,) x C**'(Y,), there
exists a morphism £: X — C"*(CY, x Y,) such that C"*!(q,)é = o and C"*'(g,)E
= 7. But C**'(k(Y,)C"* (g€ = C"*'(v) C"*'(q,)E. Hence, from the property
(i) in Definition 5.1, & may be factorized in the form:
X 7 Cn+l<J)
——C""(Fv) — C™*'(CY, x Y,).

Now, consider an n-simplex 5 € (X, Fv), we have

CgC()d'n = C(g)C"(j)o
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C(g)C"(j)din = C(g,)C"(j)o: for i # k.

Since C*(g,)(C™(q,)) is the projection CY(Y, x Y,) — CYCY )(C*Y,), by the
property of the direct product, we have

C'(j)dn = C" (o i+ k.

As j is a monomorphism, C%j) is so and hence d'n = o, for i # k. Also
evidently we have C"*'(q,j)n = 7. Q.E.D.

THEOREM 44. If v:Y,—Y, is a fibration, q.j:Fv— CY, is so.

The proof of Theorem 4.4 is the same as that of Theorem 4.3 and we
omit the proof.

In the following we suppose that the kernel of every fibration commutes
with C, i.e. every fibration has a fibre in the sense of the definition of §2.

THEOREM 4.5. The fibre of the fibration q.j: F,— Y, is equivalent with
QY ,, where QY is the fibre of the fibration k(Y,):CY,—Y,.

PROOF. We denote the fibre of the fibration ¢,j by (K, k). Consider the
following diagram :

K Qy,
k| , |
F, qJ - CY,

Qx5 l l k(Y2)
Y, ° .y,

Since k(Y,)q.jk = vq,jk = 0, there exists a morphism m: K — QY, such
that im = q,jk. Let ¢, : CY,— CY, X Y, be a mophism satisfying ¢,¢, = identity and
qst; = 0. (Such a morphism surely exists from the property of the direct product.)

Consider a morphism ¢,07 : QY,—CY, x Y,, then we have

PR(Y ) X )i = py(k(Y,) X ©)uyi.
Hence, by the property of trace F,, 1,7 is factorized in the form:

oY, — F,—— CY, x Y,.

@jw = gy,i = 0 implies the existence of a morphism 7:QY, — K such that
kn = w. Then imn = q,jkn = q,jw = qu,i = i and mn = identity, for 7 is a
monomophism. Also we have

qjknm = quim = q,jk
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and
q.jknm = 0 = g, jk.

Hence, by the property of the direct product, we have jknm = jk, in which
both 7 and % are monomorphisms. Hence nm = identity. Thus K is equivalent

with QY. Q.E.D.

Henceforth we shall identity K with QY, and we have the following
fibration sequence : )

k ‘hj
QY —F,—Y,.

Next let v:Y,— Y, be a fibration with fibre (Y;,«). Then the following
theorem may be proved analogously as in Theorem 4. 2.

THEOREM 4.6. If a sequence Y;— Y, — Y, is a fibration sequence, then a
sequence Y, — F, — CY, is so.

In virtue of Theorems 4.5 and 4.6, if v:Y,—Y, is a fibration with fibre
(Y, ), then we have the following commutative diagram :

ay, id . qy,

k l l i

4.7 Y, l F, 9 - CY,
id l q:J l l k(Y)

Y, Y ~Y, v Y,

THEOREM 4.8. If v:Y,—Y, is a fibration with fibre (Y;, u). then
l% . Wn(X’ Y3) - 71"n(}fy Fv)
is an isomophism for n = 0.
PROOF. The result follows from the Kan homotopy exact sequence of the
fibration q,j: F, — CY, and proposition 2. 2.

Note that Theorem 4.8 is also obtained from the next theorem 4.9 and
the five lemma.

THEOREM 4.9 If v:Y,—Y, is a fibration with fibre (Y;,u), then the
following diagram is commutative
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o ; ;
I 'n'n-!-l(X’ Yl) E—)’ 'n—n(X: Y3) 'ZL_*_’ Wn(X; Yz) ﬁ’ 7rn(X, Yl) -

ARY ) L | 2 | | 2

- Wn(X, QY) — Wn(X’ F‘u) X Ta X, Y) =~ 7. Thx X,QY )"_')'
Y (@in ) By TN

Here the upper sequence is Kan homotopy exact sequence of the fibration v :
Y,—Y, (cf [5] [6]) and the lower is that of the fibration q,j: F,—Y,.

LEMMA. Let Y, ~—Zi>Y2 i»Yl be a fibration sequence, then the boundary
homomorphism (v):m, (X, Y) > m(X,Y,;) may be defined as follows: let
a € m,(X,Y,) be represented by a morphism v:X — C"*Y,) such that d‘r
=00=i=n+1), then o(v)a is represented by a morphism a:X—C*(Y,)
determined by the relation: C"**(v)E = 7, dé = 0 for i # n and d"é = C"*" (u)a,
where £: X — C"*¥(Y,) exists since v:Y,— Y, is a fibration,

PROOF. According to the usual definition of the boundary homomorphism,
9(v)a is represented by a morphisms B:X — C**(Y,) (cf [6]) determined by
the relation; C***(v)p =17, dp=0 for i #n + 1 and d""'p = C"*'(w)B, where
n:X — C*(Y,) exists since v:Y, —»Y, is a fibration.

In order to prove the lemma we have only to prove the existence of a
morphism o :X — C"*(Y,) satisfying C"**(v)o =0, d"e = d"*'y, d""'e = d"E
and d'e = 0 ¢ <n. Take n + 2 n + 1-simplexes in Ky(X,Y) 0, =0, 0=i=n
— 1, o, = s"td" 1y, op = s"HdE, then dio; = dP'oy for i <j, 4, #n+ 2
and C***v)o;, =0 for ¢ <n+ 2. Since v:Y,—Y,; is a fibration, then there
exists ¢: X —C"3¥(Y,) such that C* ()¢ =0 d¢ = s""'d "y d"*'¢ = s"*drg
and d't = 0 for { <n. If we consider d"*'¢ : X — C"**(Y,), we have

C**(v)d"*¢ = 0,

drdr+2t = dreidrg = dristidely = drty,
driidrey = drridriy = driisnridng = dng,
didre = drdie = 0 (i < n).

Hence d"**: X — C4Y,) is a required morphism.

THE PROOF OF THEOREM 4. 9.

i) Commutativity of [1]. Let 7: X — C"*?( Y,) be a representative of a ¢
Tn+1 (X, Yl)-

Since k(Y,):CY,—Y, is a fibration, there exists a morphism 7:X — C**?
(CY)) such that C***k(Y,))p =7 and d'p=0 for i =n Then we have a
morphism V¥ : X — C**(QY,) satisfying C*"'()¥r = d"*'p.

Since ¢,j: F, — CY, is a fibration and C"*'(q,7)C"*' (k1 = C*" (il = d"*'9,



24 K. TSUCHIDA

there exists a morphism a:X — C***F,) such that C"**(q,))a =19, da=0
for i <mn, and d""'a = C*"*'(k)}y». Then we have C"**(v)C"**(g,j)a = C***(k(Y,))
C¥ (g )a = C"*(k(Y )y = 7 and d'C"**(gyf)a = 0 for 7 +# n.

Since C**(v)C"*(g,j)"da = 0 and v:Y, — Y, is a fibration, by the lemma,
the morphism ¢ : X—>C"*'(Y,) determined by C"*(g,7)d"a = C**'(w){ may be

considered as a representative of 2(v)a.

Since Cn+1(q2j)Cn+1(l)§ — Cn+1(u)§ — Cn“(qf;j)d"d,
CHgu)C™'(DE =0 and
Ciquy)d'a = d'y = 0,

by the property of the direct product, we have C**'())C"*'())¢ = C™*!(j)d"a. But
7 is a monomophism and hence d"a = C**}([)¢.
Accordingly a: X — C™*(F,) satisfies the following relations:

dia = 0 for i <n, d"a = C™()¢ and d"*'a = C**'(E)y.

As C™Y(1)¢ and C"**(k)r are the representatives of [,O(v)a and ky,o(k(Y,))a
respectively, it follows that /,0(v)a = k2(k(Y)))a.

Thus the commutativity of is established.

ii) Commutativity of immediately follows from ¢,jl = u in (4.7).

iii) Commutativity of [3]. Let 7: X — C*(Y,) be a representative of a €
m(X,Y;). Then by the defmition O(g,j)a is represented by a morphism
x:X — C"(QY,) determined by the following relations :

C*Y gyj) =7, dE=0 i <n and C'(k) = d"E,

where £: X — C"*'(F,) exists since g¢,j is a fibration.

On the other hand 9(k(Y,)) vya is represented by a morphism +: X — C"
(QY,) determined by Cr()r = d"C"*'(q,j)E, since C"*'(k(Y)C"*Y(q,5)E = C**!
(v)C"*Yq,7)€ = C*(v)r and d'C"*'(q,7)€ = 0 for i < mn.

It is easily verified that C"(e)y»=C"(i)x. As ¢ is a monomorphism, we have
4Yr = v . This proves the commutativity of [3].

Now we shall define an operation p,, : 7,(X, F,) X m(X, QY )) —» m(X, F,)
for any morphism v:Y,—Y,.

Take (a,b) € m,(X, F,) X m(X,QY,) and let ¢: X > C"*(F,) and v:X —
C"*(QY,) be the representatives of a and b respectively. Then from the Kan
condition there exists a morphism p:X — C***(F,) such that d"7'p = o, d**'p
= C"(k)r.

Then we define p,(a,b) by {d"p}, that is to say, p.(a,b) = a- ky(b).

REMARK. Let v:Y,—Y, be a fibration. Consider the diagram
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(X, Y,) X (X, QY) T mi(X,Y)

Iy X 1 l Ly
(X, F,) x m,(X,QY,) L% m (X, F)).

According to Theorem 4.8, I, is an isomorphism for n =0, and for a €
X, Y0, b € 1K, QOF), Lupula, b) = Ly(a-B(0)0 (Y )b) = Lya-Lyd(0)8 (kY )
b; according to Theorem 4.9, [,0(v)o ' (k(Y,)) = ky. Hence lypy(a,b) = lya-ky
(0) = pu(lya-b) = py-(ly X 1)(a,b). Thus the above diagram is commutative.
Therefore we may conclude that if v:Y,— Y, is a fibration, p,, is equivalent
to py defined in §2.

THEOREM 4. 10.

(i) For by, b, € mi(X, QY)), po(ksby, b)) = ky(by+b,).
(11) If a;, a, € '7Tn(X, F,,), then a, = Pv»(aZs b) fO?’ some b € W"(X’ QYI) Zf
and only if (q:))x a; = (g27)xa.

PROOF. (i) and the necessity of (ii) are obvious. We only prove the
sufficiency of (ii). Let o;: X — C"*(F,) be a representative of a; € m,(X, F,)
(= 1,2). From (g,j)xa; = (g:j)xa, there exists a morphism &:X — C"*(Y,)
such that

dE=0 (@ <n), d&=C"q))o, d""'& = C""(gzj)o

Also since ¢,7:F, —Y, is a fibration, there exists a morphism o : X — C*"**(F,)
such that

dic =0 i<n-—-1), do =0, d*e¢' =0, and C"*¥q,j)o = E.

Then d"*'e represents a, — a, € m(X, F,) and C**'(q,j)d"'c = d*~'¢ = 0. Hence
there exists a morphism 7:X — C**'(QY,) satisfying C"*'(k)r = d""'o. Since
C*'(B)d'r = d'd"! o=d" ?die =0 for i<n—1 and kisa morphism, d'r
=0 for : <n — 1. Similary we may deduce that d"' + = 0 and d"r = 0.
Now let & be the homotopy class of 7. Then the relations dic =0
G<n-—1), d o= C"(k)r, d'oc = o, d""'¢ = o, imply a, = pw(a,, b).
Next we consider a monomorphism %:Y;—Y, in the fibration sequence

Y, 2oy, 2.y,

Denote the trace of Y, X #:CY, xY,—Y,x Y, by (F,,h). Let r,: CY,
XY;—>CY,and r,:CY, x Y,—>Y, be projections, and let s,:Y, xY,—7Y,
(i =1,2) be projection on the i-th factor. Then we have the following
commutative diagram.
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id Q(v)

Qy, > oY, ———qy,
(4.11) kz}lvu rh Clyz: _C) g‘Yi:
| l Y | &)
Y, - Y, — Y,

where the left column corresponds to the middle column in the diageam (4.7),
and Q(v): QY, > QY, exists since k(Y ,)C(v)i, = vk(Y,)i, =0 and (Q(Y)),17,)
is the kernel of 2(Y)).

h C
Now we consider a sequence F, — CY, x Y, (Qﬁ “ CY, xY,.
Since kY 1)q(C(v) X wh = k(Y )C(v)rih = vk(Y )rih = vursh =0

vgy(C(v) X w)h = vur,h = 0,

and F, is the trace of k(Y,) Xwv, there exists a morphism f: F, — F, satisfying
Jf = (C(v) x u)h. Then we have

q.Jfk: = ¢:(C(v) X whky = C(v)rihk, = C(v)i,,
@25k = q(C(v) X whk, = uryhk, = 0,

q.7k:Q(v) = 1, Q(v) = C(v)i,, where k,:QY, > F,,
q.7kQ(v) = 0.

Therefore by the property of the direct product, jk,Q(v) = jfk, and hence
kQ(v) = fk,.

Thus we have the following commutative diagram ;

Qy, () - QY,
Y B
(4.12) F. f LR
.h i l qsJ
Y, u Y

As k(Y ))C(v)rih = vurih = 0 in (4.11), there also exists a morphism ¢: F,
— QY satisfying 7, = C(v)rh. Since q,jf = q,(C(v) X wh = C(v)rih = i\t, i,tk,
= qjfks = ¢ 7k V) = 1,Q(v) and so Q(v) = tk,.

PROPOSITION 4. 13. The following diagram is commutative.
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77'n+1(X, Yz) Vs - '7Tn+1(X7 Y1)
5 | l 2
(X, QY ) @0 (X, QY,)

PROOF. Let 7: X — C"**(Y,) be a representative of a € m,,(X,Y,;). Then
O,a is represented by a morphism @ : X — C"*'(QY,) determined by the relation
C**k(Yy))o =7, do=0 (0=7{=n), C"*'(i)p = d"*'o where ¢ : X — C"**CY,)
exists since k(Y ,) is a fibration.

One has C"**(v)r = C***(v)C"**(k(Y ,))o = C**2(k(Y))C"***(C(v))o and d'C™*?
(v)r=0 for i #n+ 1. Hence 9,vya is represented by +:X — C"(QY))
determined by C"*'(i)¢ = d""'C***(C(v))e. But C"*'(i, = C**{(C(v))d"*'a
= C"*"(C(v))C"* (i) = C"'(@,)C"* ' (Q(v))@p. Therefore = C™'(Q(v))p, for

C*'(7,) is a monomorphism. Thus the commutativity in (5.13) is proved.

THEOREM 4.14. If v:Y,—Y, is a fibration, we have the following
commutative diagram :

kox (r2h)x o(r;h)
- (X, QY;) T m((X F) T m(X,Y,) T (X, QY ) —
ot Iy l Ly (8] l ot n>0
> Tas (X’ Y ) N ’7T,n(X, QY ) 7 T X’ Fv P Ty X, Y) —
' * (@) ' iy ¢ ) (q20)% ( )

where the upper sequence is the Kan homotopy exact sequence for the fibra-
tion ryh: F,—Y, and the lower is those for the fibration q,j:F,—Y,.

PROOF. (i) Commutativity of [1]. From the commutativity of [8] in Theorem
4.9, 9,4 = 9(q.j) and by Proposition (4.13) 0,v4 = (Qv)y30, so that 9(g.f)
= (Qv)x0,. But Q(v) = tk,. Hence 2(g,7) 97'= tyk,y.

(ii) Commutativity of [2]. It is sufficient to prove that (7,h)y = (V)07 .

(X, F,) (rah)x (X, Y5)
(X, QY)) o > (X, Y)

Let a € m,(X, F,) be represented by a morphism 7:X — C"*'(F,) such that d'r
=0 (0=i=n). Since 0, : 7 (X,Y,)—m(X, QY,) is an isomorphism for n > 0,
there exists only one ¢ € m,.(X,Y,) such that 9,c =tya. Let ¢ € m,,
(X,Y,) be represented by a morphism o: X — C"*'(Y,) such that d'e =0 (0 =1
=n + 1) Then by the definition of O, there exists a morphism 7:X — C"*?
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(CY)) such that C***k(Y )p =0, dp=0 (0 =i = n), d*"'y = C**'(i, t)r.

Therefore O(v)or'ty a is represented by a morphism &:X — C"*(Y,)
determined by the relation C"**(v)y = o, dix =0 (0 =i = n), d*"'x = C** (n)§,
where x:X —C"**(Y,) exists since v:Y,—Y, is a fibration. On the other
hand (r,h)xa is represented by C**'(rh)r: X —Y,.

Now consider C**!(rh)r : X — C**(CY,). It follows from 7, = C(v)rh that
C1{(C(v))C** Y (rh)r = C** (@ t)r = d"*'y. If we regard C**'\(rih)r asa (n + 1)
-simplex of Ky(X,Y,), ie. C"*'(rh)r: X — C"**(Y,), we have C"**(v)C"*(rh)r
= d"*'5 where 7 is regarded as a (n + 2)-simplex of K (X,Y)).

On the other hand o = C"**(k(Y,))n = d"**5 and d'y = 0 (0 =i = n). Hence
Cr2(0)C**'(rih)T ~ o (C***(v)C™*!(r,h)7 is semi-simplicial homotopic to o). But
AP 1C Y (rh)r = CY k(Y ,)C Y k)T = C** Y w)C™ Y (ryh)r and  d'C™(rh)r = 0
(0 =<i{=n). Hence by the definition of 2(v): 7, (X,Y,) —» 7(X,Y;), we may
regard C"*!(r,h)r as a representative of O(v)c. Thus (k) = (V)0 ty.

(iti) Commutativity of [8]. Let a € 7,(X,Y;) be represented by a morphism
7: X —C"(Y,) such that d'r =0 (0=i <n). By Theorem 4.3, nh:F,—Y,
is also a fibration and 9(r,h) a is represented by a morphism y: X — C*(QY,)
determined by the relation C"*'(rh)e =7, do=0 0=i=n), C'(k)x = d"o,
where o : X — C"*}(F,) exists since 7,k is a fibration.

Since C**Y(u)r = C**(w)C"*!(ryh)o = C**'(k(Y,))C**! (rh)e and d'C**'(rh)c
=0(0 =7 =n), it follows from the definition of 9, :7,(X,Y,) — m,_(X,QY,)that
a morphism : X — C"(QY,) determined by d"C"*'(r,h)e = C"(i,)yr represents
an element of m,_(X,QY,). Then C"(i)Yr = d"C**'(rh)oc = C'(rh) d"ec =
C"(r,h)Cr(ky)x = C"(i,)x, where (rh)k, = i, follows from (4. 11). As C%(z,) is
monomorphic this implies Y = ¥ and Q,uy = 9(r,h) follows.

On the other hand g¢,j! = » and hence 9,(qy7)xlyx = O(rsh).

From Theorems 4.8 and 4.14 and the five lemma we obtain the following
theorem:

THEOREM 4. 15. If Y, v, Y, v Y, is a fibration sequence, then
ty: m(X, F)—m (X, QYY)

is an isomorphism for n > 1.

Here we note that Theorem 4.15 corresponds to Proposition 4.7 in [2].

5. The dual statements. Finally we shall consider the dual statement.
A dual standard construction in & is atriple {C, %, p} consisting of a covariant
functor C: & — &, and of functor morphisms %.:/—C and p:CC—C, such
that the axioms
(SC 1) po(kxC) = p»(Cxk) = identity,
(SC 2) po(p*C) = po(Cxp)

are satisfied.
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The functor F* = (F", d', S*) belonging to a dual standard construction has
a dual semi-simplicial structure, i.e. the faces and degeneracy morphisms

dy: Fr —— P
Si .Fn+l Fn,
n . e

go into the opposite direction and satisfy the relation dual to (a)-(e) in §2. Let
K«(X,Y) be the semi-simplicial complex induced by a dual standard construction

{Ckpl, e

K(X,Y) = Hom(F*(X),Y) = (Hom(F(X),Y), d, s*).
Then we have the Kan homotopy groups m,(X,Y) = m,(K(X,Y). Here we
shall assume that all the K (X,Y) satisfy the Kan condition.
DEFINITION 2. 1°([5]). A morphism % : X, — X, is called a cofibration if the
induced semi-simplicial map

w*: Ky(X5,Y) > Ku(X,,Y)

is a semi-simplicial fibration (cf.[6]).
If C commutes with cokernels (i. e. C(Coker u) = Coker C(u), then the
cokernel X, of « will be called cofibre of .

PROPSITION. 2.2" (Huber [5]).
1) The morphism k(X): X — CX is a cofibration.

2) (CX,Y)=0 for n=0.
If we denote 3X the cokernel of £(X) and C commutes 2X, then
PROPOSITION. 2. 3" (Huber [5])
(X)) : mii(X,Y) > m,(EX,Y) is an isomorphism for n > 0.
In the following we shall assume the existences of cofibres.
Let #: X, —> X, be a cofibration in & and let (X,,v) its cofibre. By

Proposition 2.2, k(X,;): X, —» CX, is a cofibration. Then as dual in §3 we may
define a co-operation

p¥ (X, Y) X (32X, Y) — mo(Xy, Y).

THEOREM 3.71.

1) p*(a,0) = a, where a € m(X;,Y)and 0 € m,(2X,,Y) denotes the unit
element.

2) p*(a, by+by) = p*(p*(a, b,), b,), where a € m,(X,;, Y), b, € m,(2X,,Y)
(i=1,2).

Let & be the category of topological spaces with base points, Hom(X,Y)
being the set of base points preserving continuous maps X — Y, with the natural
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rule of composition. Then a dual standard construction {C,%, p} in & was de-
fined in [5] as the cone construction:
CX=XxI/Xx {0} U {¥} x I,

I denoting the real interval 0 < ¢ < 1, with the base point O.

Again let & be a general category and suppose that # has inverse products.
Here we recall the definition of an inverse product in [3].

An inverse product of the object 4,, A, is an object A4, and a system
of morphisms ¢q;: A; — A %A, (j = 1, 2) with the property

(I) For any object X of § and any system of morphisms f;:A; — A*A,
(7 =1,2), there exists a unique morphism f: A*4, > X with fg,=f; G =1,2.)

The morphisms ¢; are called the injections into A*A,; and the morphisms
f; are called the component of f; we write f =<f,,f: >, so that

<fufe> q;=f
Let f;: B— A, i = 1,2, be morphisms, then the morphism < q,f}, ¢.f> > :
BxB — A %A, will be written fi%f,. Then we have (fi%fy)qi = q.f:, (¢ = 1, 2),
where g;: B— BB, j = 1,2, are injections.
DEFINITION 4.1. The trace of fixf,:B*B— A*A, is a pair (Q,p)
consisting of an object and an epimorphism satisfy the conditions

(i) p(fi#f)qr = p(f1%f2)q: (or equivalently pq, f, = pg, f)
(ii) if D is any object of & and A: A*A, > D is a morphism with the
property A(f%f2)gi = h(f1*f1)g: (or equivalently hg, f\ = hq,f.), then h admits

a unique factorization A;*A, —&Q—>D.

We assume that the functor C in consideration is I-functor in the sense
of [3], i.e. C(Ax4,) = C(A)*C(A,) and C(q,):C(A) —> C(AxA,), i =1, 2, are
injections. Moreover we assume that if g:B—A is an epimorphism, then
Clg): C(B) —C(A) is so.

Let £(X,): X, —CX, be a morphism in Proposition 2.2" and v:X,—X,
any morphism. Then we denote the trace of 2(X,)*v by (F%, p). Let ¢,:CX,
—CX %X, and g¢,:X, > CX %X, be injections, then we have the following
commutative diagram;

Xl v -> X2
(4.2) 0:8) i l pas
CX, - F?
?q;

The proofs of the following theorems are quite dual to that of the
preceeding ones and we shall omit.
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THEOREM 4. 3. pq, : X, — F° is a cofibration.
THEOREM 4.4". If v: X, — X, is a cofibration, pq,:CX,— F® is so.

THEOREM 4.5". The cofibre of cofibration pq,: X, — F* is equivalent with
3X., the cofibre of k(X):X, —>CX,.

THEOREM 4.6 If a sequence X, — X, — X; is a cofibration sequence, then
a sequence CX, — F°* — X, is so.

If v:X,—> X, is a cofibration with cofibre X;, then the following diagram
is commutative.

X1 L - X, v Xs
. KX | | 24, |
(4. 7) pa, v l
CX[ '—>F _— X3
7, il l k,
e

THEOREM 4.8". If a morphism v:X,— X, is a cofibration with cofibre
X, then ly:m,(X5,Y) > m,(F*,Y) is an isomorphism for n = 0.

THEOREM 4.9". If v:X, > X, is a cofibration with cofibre X,, then the
following diagram is commutative :

s X V) X (X, Y) Y (X Y) L (X, Y)
kX)) | | 1| | 2Gx.)
- Wn(zle Y) -f’ Wn(FU, Y) - Wn(Xb Y) - Wn—l(EleY)
k* (?9>) o(pg-)
where the upper sequence is the Kan homotopy exact sequence of a cofibration
v: X, — X, and the lower is that of a cofibration pq,:X, — F".
For any morphism v:X, — X, co-operation py:m(F°,Y) x m(2X,,Y)—
m(F’,Y) is defined by
p¥(a, b) = a - k*(b), a € m(F,Y), b € m(CX,Y).
If v:X,— X, is a cofibration, we may show that p} is equivalent with p*.

THEOREM 4. 10".
(i) For by, by € mi(2X,,Y), pX(k*(b)), by) = k*(b, - b,)
(ii) If a,, a, € m(F",Y), then a = pf(a,, b) for some b € m,(2X,,Y) if and
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any lf (PQZ)*CH = (P(h)%ar
v u .
Let X, — X, — X, be a cofibration sequence. We denote the trace of

(X )ru: XX, — CX,xX; by (F*, h). Let r, r,:CX,, X, — CX,%»X, be
injections. Then (4.11) and (4.12) may be dualized as follows.

X, v X, u X,
(4.11) KX l o) ko) l l hr
CX V) L X,
T -
sX, ) sx, —1d | sx,
X, u - X,
(4.12) pas l P l hrs
o L
y L
sX, 2(v) X,

Then there exists a morphism #:3X,— F* such that i, = hr, - C(v). Also
S(v) = kyt.

PROPOSITION 4. 13. The following diagram is commutative.

7Tn+1(X27 Y) *—) '77'n+1(X1, Y)
3, l l 3,
(53X, Y) 2(v)* S (X, Y)

THEOREM 4.14. If v:X, — X, is a cofibration with cofibre X,, then we
have the following commutative diagram.

ky* hry)* o(hr,
e meX ) P ey L ) P e,y

o5t 1 t* l I i l o5t
T Ty 1(X27 Y) - Wn(EXl, Y) —V’ Wn(Fv9 Y) —‘: 7T7L(X27 Y)
o(pgs) k* (pa.)*
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where the upper sequence is the Kan homotopy exact sequence of a cofibration
hry: X; — F* and the lower is that of a cofibration pg,:X, — F°.

THEOREM 4. 15, If X, 2, X, il X, is a cofibration sequence then
t%: Wn(Fu, Y) - Wn(EXb Y)

is an isomorphism for n > 1.
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