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1. Introduction. Let Z be a category consisting of the based topological
spaces and based continuous maps. Eckmarm and Hilton [2] denned an operation
π(B,F) x ττ(B, ίlY) -> ττ(J3, F) for a fibre map P:X~>Y with fibre F in Z,
where ΩY denotes the loop space in Y and B any space. Dually they defined a
co-operation /o* : π(F, B) x ττ(2Y, B) —> τr(F, B) for a cofibre map i : Y —> X with
cofibre JF1 in 3f, where ΣY denotes the suspension space of Y.

In this paper we try to define the corresponding one in the framework of
the general categories.

Using a non-trivial semi-simplicial standard construction in the sense of
Godement [4], Huber [5] developed a semi-simplicial homotpy theory in the
framework of general categories.

Huber pointed out that the standard construction induces a fibration K(Y) :
CY -> Y, (See §3 for the definition) and the fibre ίlY of K(Y) has the properties
approximately corresponding to those of a loop space, and the dual standard
construction induces a cofibration K(X): X —> CX and the cofibre ΣX of K(X)
has the formal properties of a suspension. Thus, we start from above consider-
ation and try to study our problem.

In §3, by Huber's semi-simplicial homotopy, we shall define Kan homotopy
groups in the general category, an operation p* : τrn(X, Y3) x ττn (X, ilYJ —>
τrn(X, Y3) for a fibration sequence Y3 —> Y2 —> Y1? and, in §5, dually a cooperation
p* : ττn(X3, Y) x τrw(ΣXi, Y) —> ττrι(X3, Y) for a cofibration sequence X1 —> X2 —»X3.

Since Kan homotopy groups under the consideration are naturally isomorphic
to Eckmann-Hilton homotopy groups which are higher by one dimension than
the former [5], our operation and co-operation in the special case include the
similar operation in [2] only in the group case. It is known that any map

77:X-^Y is factorized in the form X-^EB—>Y, where u is a homotopy equi-
valence and p a fibre map with fibre Fυ, and Fv may also be interpreted as the
fibre space over X induced by the map v.

In §4 we shall introduce a notion of the trace of morphisms corresponding
the above Fv and obtain the similar results in [2]. From theorems 4. 3 and 4. 5
in §4, there exists a fibration sequence Y! —> Fυ —> Y2 for a morphism v; Y2 —>YI
and so, in the category £, Fυ may be interpreted as the fibre space over Y2

induced by the map v : Y2 —> Yλ. In the framework of general categries, theorems
4. 8 and 4. 11 play the corresponding roles in theorems 3. 11 and 5. 15 in [2]



16 K. TSUCHIDA

respectively. Last section is devoted to the dual discussions.
2. Preliminaries. A category & consists of a non-empty class fi) of objects

X, Y, • • -together with sets Hom(X,Y) of morphisms /:X->Y(X,Y € it),
and of an associative composition of morphisms o : Horn (X, Y) x Horn (Y, Z)
— >Hom(X,Z), ( / • # ) — >0o/, which has both-sided identity \z £ (X, X).

An object o £ ffi is called a zero object if, for all X, the sets Horn
(X, 0) and Hom(o, X) consists of exactly one element 0. If K) has a zero object,
then in each set Hom(X, Y) we have a distinguished morphism 0, called the
zero morphism. A morphism /: X —> Y is called an equivalence if there is a
morphism g : Y ->X such that ffof = 1 and fog = 1. A morphism / is called
an epimorphism if for any Z and any vt : Y— >Z, / = 1, 2, the relation v1of=vzof
implies vλ = v2. A morphism f is called a monomorphism if for any W and
any TX^ : W — »X, i= 1,2, the relation /QTXΊ =f°w2 implies itΊ = w2.

Notice that if / is an equivalence then / is both epimorphism and
monomorphism, but the converse is in general false.

Let ίfe', ffi", 9K' and 27Γ be arbitrary categories. Let F, G : ίfi' -» S)7/ be
covariant functors and 0 : F — >• G a functor morphism. Let U : E" — > 9DΪ7' and
F : 9JZ' -̂  ft' be covariant functors. According to (4), (5), we define U*Θ*V :
UoFoV -> UoGoV by

(C7*β* y)(X) - U(0(V(X)}) for X € 9Jί'.

If Ϊ7(or V) is the identity functor /, then we abbreviate U*β*V to ^e V (or
[/*#). Then the following formulas are valid for any covariant functors and any
functor morphisms (cf. [4], [5]);

( 2 ) e*(U°v) = (β*u)*v
( 3 )
( 4 )
( 5 )

for any two functor morphisms φ : F — > G, ψ :U — >V.
Rule (5) may be remembered with the following commutative diagram :

U*φ UoG

Throughout this paper we consider the categories with zero objects and
zero morphisms and we assume that the functors preserve zero objects and zero
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morphisms.
Let β be arbitrary category. Let {C, k, p] be a standard construction in β,

i. e. C : R — > β is a covariant functor, & : C — > 7 and ^> : C — > CoC are functor
morphisms and the following two axioms are satisfied, (cf [4], [5])

(sO (k*C)op = (C*K)°p = identity,

(s2) (p*Qop=(C*p)op.

Each standard construction {C, k, p] generates a semi-simplical functor

i.e. a sequence of functors Fn : S — > β together with faces and degeneracy
morphisms

<^rϊ " -̂  7i ^ -Γ n - 1 >

is dfined as follows: Let C° = / and Cn+l = CoCn. Then we put

Fn = C^1 &

The faces and degeneracy morphisms satisfy the usual semi-simplicial
commutation rules;

(a)

(b)

(c)

(d) ^54 - d*+15« - identiy

(e) dV = s}d1-1

If we apply the semi-simplicial functor F# to an object Y € β, we obtain a
semi-simplicial object F*(Y) - (Fn(Y), dl(Y\ s\Y}\

Let @ be the category of sets. If we now take the functor Hom(X, ) :
ffi — > @ with a fixed first argument X, we obtain a semi-simplicial complex

^(X, Y) - Hom(X, F,f(Y)) - (Hom(X, Fn(

Then we have the Kan homotopy groups (cf [6]) of K#(X, Y} and we
define ττw(X, Y) = πn(K*(X9 Y)) (n ̂  0). Here it is assumed that all the
K# (X, Y) satisfy the Kan condition.

Now we define the kernel and the cokernel of a morphism. Let u : X— >Y
be a morphism.

A pair (ί/j) consisting of an object U and of a monomorphism j : U —> X
is called a kernel of u, if
(1) uoj - 0

(2) for each object Z and each morphism: v : Z — » X with WOT; — 0, there exists
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one and only one morphism w : Z— >£/, so that jow — v.
The definition of a cokernel is dually defined.
Throughout this paper, we shall be concerned with a category in which

the kernel and the cokernel of morphisms always exist.
Let Kχ(X, Y) be the semi-simplicial complex induced by a standard

construction {C, k, p] in ίΐ.

DEFINITION 2. 1 ([5]). A morphism u : Y2 -> Yl is called a fibration if the
induced semi-simplicial map

is a semi-simplicial fibration (cf [6]) for all X £ ff.
If C commutes with kernels (i.e. C(Ker u) — Ker C(#)), then the kernel Y3

of u will be called a fibre of u. Then the semi-simplicial fibre of u# may be
identified with K*(X, Y3).

PROPOSITION 2.2 (Huber [5]). Let & be a category and let {C, k, p} be a
standard construction in ffi, such that the complexes K#(X, Y) are Kan
complexes. Then

1) the morphism k(Y) : CY — > Y is a fibration,

2) ττn(X, CY) - 0 7i ̂  0.

If we denote the fibre of k(Y) by ΩY, then we get the followin.

PROPOSITION 2. 3 (Huber [5]).

3n+1(£(Y)) : ττrί+1(X, Y) — > τrn(X, ΩY) is isomorphic onto for n > 0.

3. Operations in Kan homotopy groups. Let S be a category and let
Kχ(X, Y) be the semi-simplicial complex induced by a standard construction
{C, k, p} in ®. We suppose that all the K#(X, Y) satisfy Kan condition. Let
w:Y2->Y! be a fibration and (Y3, v) its fibre. By proposition 2.2, £(Yj) : CYj -̂  Y1

is a fibration. We take (α, &) € ττn(X, Y3) x *τn(X, ίlYO Let ^:X->C"+ 1Y3 be
a representative of the homotopy class a € πn(X, YS). By proposition 2. 3, there
exists only one c € 7rn+1(X, YO such that a^^YJV = b. Let riX^C^2^
be a representative of c.

Since u* : K#(X, Y2) -> K*(X, Yj) is a semi-simplicial fibration, there exists
a (n + l)-simplex ξ £ K*(X, Y2) such that Cn+\u)ξ = τ and dlξ = 0 for i Φ n
+ 1. From the definition of the boundary homomorphism dn+1(u) : τrn+l(X, Yj)
— >ττrz(Y, Y3) for the fibration u:Y2-*Yly dn+1(u)c is represented by a morphism
% : X->Cn+Ύ3 such that Cn+1(v}χ = dn+ίξ.

Now, if we take n + 1 ^-simplexes σt = 0 (0 ̂  i ̂  w — 2), σn-ι = φ and

σn+1 = <% in K#(X, Y3), then we have έί 7'"1^ = Λr? for x <y and i,j Φ n. Since
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K#(X, Y3) is a Kan complex, then there exists a (n 4- l)-simplex η € K^(X9 Y3)
such that d71"1?; = φ, dn+1 η = % and JS? = 0 (0 ̂  z ̂  w — 2). From the definition
of the product in Kan homotopy group τrn(X, Y3) (cf [6]), the homotopy class
of w-simplex dnη € K#(X9 Y3) satisfy the relation {Λ;} = {<£>} {%} where { }
denotes the homotopy class.

We now define an operation p# : ττn(X9 Y3) x ττn(X9 ίlYO — > ττw(X, Y3) as
p*(α,6) - {J>}, α 6 τrn(X, Y3), 6 € TΓ^flYO.

Also the definition of ρ# may be written in the following abbreviated form :

where dn+1(k(YΊ)c = b and denotes the product in Kan homotopy group τrn(X, Y3).

THEOREM 3. 1.
(1) p*(a,G) = a (a € τrn(X, Y3))

(2) P*(a9 bλ 6.) = p*(p*(α, 60, 6.) (64 € ττw(X, ίlYO ί - 1, 2).

PROOF. Since (1) is evident we only prove (2). We have

P*(a9 bl 62) = α 3(cι c2) = α (3̂ ι 3c2)

p*(p*(a, 60, 62) = (̂α 3̂ , 62) = (α 3 )̂ 9c2.

Hence (2) follows from the associativity in Kan homotopy group.

4. The trace of morphism. In this section we shall consider a category
β with direct products. Here we recall the defintion of a direct product in [3].

A direct product of the objects A19 A2 is an object A1 x A2 and a system
of morphisms pt: AI X A2 — > At, i = 1, 2, with the property:

(D). For any object X of β and any system of morphisms ft : X — > Aί? ί =
1, 2, there exists a unique morphism f : X — > Ax x A2 with />t •/ = ft.

The morphisms />έ are called the projection of Al x A2, and morphisms ft

are called the component of/; we write /= ί/ι,/2}, so that

M/.,/il =/.-
Let (B x J5, />ί, /4) be a direct product of the object B's and let morphisms

fi : AI — > B be given, i = 1, 2. The morphism

ί/ιA,/2/>2}:^ι X Λ->£x β

will be written fλ X fz. Then also we have

Pι(fι x/2) =/ιA and /4C/ι x/a) ^/2/>2

DEFINITION 4. 1. The trace of /! x /2 : A! x A2 -> β x jB is a pair (Q, t)
consisting of an object Q and monomorphism i : Q — » A j x A2 satisfying the
conditions :

( i ) Pι(fι x /2)
6 = /4(/ι x /2)

fc (°r equivalenty /^^ =
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(ii) if D is any object of ffi and h:D-^>A1 X A2 is a morphism with the

property p((fl x /2)/ι = ^(Λ x/2)/ι (or equivalently/^/z, =/2MX

then h admits a unique factorization D —> Q —> A± x A2.
For example, if fi) is a category of sets with base points, then the trace of

Now we return to the notation in §3. Let {C, k, p] be a standard construction
in fi) and we assume that functor C is D-functor in the sense of [3; §3], i. e.

C(A1 x A2) - C(Aΐ) x C(A2) and C(/>,): C(Al x A2) ->C(A), £ = 1, 2,

are projections.
Moreover we assume that if f : A —> £> is a monomorphism, then C ( f ) :

C(A)->C(S) is so.
Let £(Y) : CYX —> Yl be a morphism in §2 and v : Y2 —> Y1 any morphism.

Then we denote the trace of £(Yj) x v by (FΏ9j\ Let ^ : CYj x Y2 -+CYl and
<7 2 : CYj X Y2 —>• Y2 be projections. Then we have the following commutative
diagram:

Fv-

(4. 2)

y _»yy

2—^ ^ y ^
THEOREM 4. 3. For any morphism v: Y2-^>Y19 qzj:Fv^>Yz is a fibration.

PROOF. Let n(n — l)-simplexes σ0, 9σk-ι, ^Λ.+ I, , σ"w ^ K#(X9 Fυ) satisfy
dj~lσi — dlσj for ί <,j and z,j Φk and let an n-simplex T € K#(X, Y) satisfy
JV = Cn(q2j)σi for £ ̂  ̂ . If we consider Cn(qlj)σι s (z ^ ̂ ) and Cn+l(v)τ, then
we have

dΐl(CYl)Cn(q]j}σj = dj~l(CYl)Cn(qJ}σi for £ <7 and f,j ^ ̂

and (

By Proposition 2. 2, £(Yι) : CYί —> Yx is a fibration and hence there exists
a n-simplex σ € K#(X, CYJ such that d\CY^) σ — Cn(qJ}σι for ί Φ k and
Cw+1 (^(Y1))σ - Cn+l(v}τ. Since CW+1(CY! x Y2) = C^^CYO x CW+1(Y2), there
exists a morphism f : X-»Cn+1(CYl x Y2) such that Cn+1(qjξ = σ and Cn

- r. But C^^^CYO^+^gOf = Cn+l(v) Cn+1(q2)ξ. Hence, from the property
(ii) in Definition 5. 1, ξ may be factorized in the form:

Cn+ί(j)
X^Ucn+\Fv} CW+1(CY! x Y2).

Now, consider an n-simplex η £ (X,Fv\ we have
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>. for * ̂  k.

Since C'foXC'te,)) is the projection 0(7, x Y2) -»• CB(CY1)(CI>(yι)), by the
property of the direct product, we have

As j is a monomorphism, Cn(j) is so and hence dlη — σt for i Φ k. Also
evidently we have Cn+1(q2j}η = r. Q. E. D.

THEOREM 4.4. // v : Y2 -> Yx is a fibration, qJiFv -> CYλ is so.

The proof of Theorem 4. 4 is the same as that of Theorem 4. 3 and we
omit the proof.

In the following we suppose that the kernel of every fibration commutes
with C, i. e. every fibration has a fibre in the sense of the definition of §2.

THEOREM 4. 5. The fibre of the fibration q?j : Fv —> Y2 is equivalent with
ΩY19 where ΩY^ is the fibre of the fibration k(YJ : CYl-^Y1.

PROOF. We denote the fibre of the fibration qj by (K, k). Consider the
following diagram:

K

CYl

v u
Y* > Yl

Since k(Y^qjk — vq2jk — 0, there exists a morphism m : K —> ίlYj such
that im — q\jk. Let LΛ : CY±—> CY, x Y2 be a mophism satisfying qίι1 = identity and
q2L1 = 0. (Such a morphism surely exists from the property of the direct product.)

Consider a morphism i^i: ΩY1—>CYj x Y2, then we have

Hence, by the property of trace FV9 i^i is factorized in the form :

^ - * CY, x Y2.

= q2iιi = 0 implies the existence of a morphism n : ίlYj — > K such that
^n = w. Then fm/z = gjέn = qjw = q^i — i and mn = identity, for i is a
monomophism. Also we have

qjknm = q^im = gj^
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and

qjknm = 0 — q^jk.

Hence, by the property of the direct product, we have jknm = jk, in which
both j and k are monomorphisms. Hence nm = identity. Thus K is equivalent
with ΩY,. Q. E. D.

Henceforth we shall identity K with ΩY, and we have the following
fibration sequence :

_j& qj
ΩY, ~* Fυ * Y2.

Next let v : Y2 —> YI be a fibration with fibre (Y3, u). Then the following
theorem may be proved analogously as in Theorem 4. 2.

THEOREM 4.6. If a sequence Y3 —> Y2 —> YI is a fibration sequence, then a
sequence Y3 —> Fv —> CYj z's 50.

In virtue of Theorems 4. 5 and 4.6, if v : Y2 —> YI is a fibration with fibre
(Y3, u\ then we have the following commutative diagram:

ΩY, ^ -> ΩY,

k I I z

(4. 7) y3 / _^Fv qj _, CYι

Λl <r»

I* v u v"
3 -̂  X 2 " J: i

THEOREM 4. 8. If v : Yz -> Yj zs α fibration with fibre (Y8, w).

z*5 an isomophism for n^O.

PROOF. The result follows from the Kan homotopy exact sequence of the
fibration qj : Fυ — » CYλ and proposition 2. 2.

Note that Theorem 4.8 is also obtained from the next theorem 4. 9 and
the five lemma.

THEOREM 4. 9 If v \ Y2 -» Y j z's a fibration -with fibre (Y3, u\ then the
following diagram is commutative
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id
- 7Γn(X,Y)

Here the upper sequence is Kan homotopy exact sequence of the βbration v :
Y2 — > YI (cf [5] [6]) and the lower is that of the βbration qj : Fυ—*Y2.

u v
LEMMA. Let Y3 -- ^Y2 - ̂ Y\ be a fibration sequence, then the boundary

homomorphism 3(t;) :τrn+1(X, Yj) — > 7rn(X, Y3) may be defined as follows: let
a £ τrn+1(X, YJ &£ represented by a morphism r :X—*Cn+2(Y1) such that dlτ
— 0 (0 ̂  z rg n -t- 1), ί/iβn 3(t/)α zs represented by a morphism a :X-^Cn+1(Y3)
determined by the relation'. Cn+\v)ξ = r, dξ = 0 /or z ̂  n and dnξ = Cn+l(u)ay
cwhere ξ : X — > Cn+2(Y2) exists since v : Y2 ~

> YI ^ <^ fibration,

PROOF. According to the usual definition of the boundary homomorphism,
d(v)a is represented by a morphisms /9 :X->Cn+1(Y3) (cf [6]) determined by
the relation; Cn+\v)η = r, <pη = 0 f or ί Φ n + 1 and Jn+177 = Cn+\u)β, where
?; : X — •> Cn+2(Y2) exists since v : Y2 — > Yj is a fibration.

In order to prove the lemma we have only to prove the existence of a
morphism ω : X->CW+2(Y2) satisfying Cn+\v)ω = 0, dnω = dn+1η, dn+1ω = dnξ
and dlω = 0 i <n. Take n + 2 n + 1-simplexes in K#(X, Y) σέ = 0, 0 ̂  z ̂  TZ
- 1, σn = 5W+1 dn+1η, σn+l = 5n+1Jn|, then d*σ, = J^1^ for ί <j, ij Φ n + 2
and Cn+2(77)σi = 0 for z < 72 + 2. Since 77 : Y2 — > YI is a fibration, then there
exists £:X-^O+3(Y2) such that Cn+\v}ζ = 0 dnξ = sn+ldn+1η dn+ίξ = sn+ldnξ
and ^*f - 0 for i<n. If we consider dn+1ξ :X->Cn+2(Y2), we have

Cw+2(^)Jw+2f - 0,

ΛZ"+2f = JW+1J^ - dn+lSn+1dn+lη = dn+lη,

dn+1dn+2ζ = dn+ldn+1ξ = dn+lsn+1dnξ = dnξ,

dldn+^ = dn+ldlζ = 0 (i < Λ).

Hence (in+2f :X->Cn+2(Y2) is a required morphism.

THE PROOF OF THEOREM 4. 9.
i) Commutativity of [T]. Let τ : X — >Cn+2( Y^ be a representative of a €

Since ^(Yj) : CYX -> Yj is a fibration, there exists a morphism η : X -> Cn+z

(CYJ such that C7ϊ+2(^(Y1))τ7 = r and dlη = 0 for i ̂  w. Then we have a
morphism ψ : X -> C^^ίlYO satisfying Cw+1(/)t - dn+lη.

Since ςj : Fv -> CYi is a fibration and CΛ+1(gJ)Cll+1(A)ψ - Cw+1(z)t = dn+lη,



24 K. TSUCHIDA

there exists a morphism ct : X -* Cn+2(Fυ) such that Cn+2(qJ)a = η, dla = 0

for £ < w, and dn+la = Cn+l(K)ψ. Then we have Cn+\v}Cn+\q,j}a = Cw+2(£(Yι))
Cn+\qJ)a = Cn+2(*(Y1))ί7 - T and dlCM(q,j}a - 0 for z ̂  72.

Since Cn+l(v)Cn+l(q^jYda = 0 and τ;:Y2 -> Y x is a fibration, by the lemma,
the morphism £ : X-^Cn+1(Y3) determined by Cn+l(q,j}dna = Cn+ί(u}ξ may be
considered as a representative of d(v)a.

Since Cn+1(qJ)C»+1(ΐ)ξ - O+1(z/)f - Cn+\q,j}dna,

Ca+l(qJ)Ca+1(l)ξ = 0 and

Cn+l(qιj}dna = dn

η = 0,

by the property of the direct product, we have Cn+l(f)Cn+ί(ΐ)ξ = Cn+l(f)dna. But
j is a monomophism and hence dna — Cn+1(l)ξ.

Accordingly a : X — > Cn+2(Fv) satisfies the following relations:

dla - 0 for / < n, dna = Cn+1(l)ξ and dn+1a = Cn

As Cn+l(ΐ)ξ and Cn+ϊ(k)ψ are the representatives of l*d(v)α and
respectively, it follows that l#d(v)α = k^d(k(Y1J)α.

Thus the commutativity of [T| is established.

ii) Commutativity of [2] immediately follows from q2jl = u in (4. 7).

iii) Commutativity of f3]. Let r : X — >Cn+1(Y2) be a representative of α ^

τrw(X, Y2). Then by the definition 3(g2/)tf ^s represented by a morphism
% : X — » Cw(ίlY1) determined by the following relations :

Cn+1(qJ~) = τ, dlξ = 0 i < n and Cn(k)ty = dnξ,

where ξ : X — > Cn+1(Fv) exists since qj is a fibration.
On the other hand d(k(Y1J) v$.α is represented by a morphism ^ : X — > Cn

(ίlYJ determined by Cw(z)^ = dnCn+1(qJ)ξ, since Cw+1(^(Y1))C7ϊ+1(^1»f = Cn+l

(v)Cn+ί(qJ)ξ = Cn+\v)τ and <?Cn+1(qJ)ξ = 0 for i < n.

It is easily verified that Cn(i)γ = Cn(i)χ. As z" is a monomorphism, we have
-ψ1 — % . This proves the commutativity of [3].

Now we shall define an operation /o^ : ττw(X, FJ x 7rw(X, ίlYJ — > τrw(X, F,,)
for any morphism 77 : Y2— >Y l β

Take (α,6) € 7rn(X,Fβ) X ^(X^YO and let σ:X->CΛ+1(FJ and r:X-^
Cn+ί(ΩYί) be the representatives of α and & respectively. Then from the Kan

condition there exists a morphism p : X— > Cn + 2(Fv) such that <^~]p = σ, ύ?n+1p
- Cn+\k)τ.

Then we define p^(α, b) by {ίίn/>}> Λat is to say, pv*(α, b) = α k#(b).

REMARK. Let v : Y2 — •> Y x be a fibration. Consider the diagram
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^ /v v ^ v «,. f v ov \ ' "'̂  «^ ^v v λTΓ^^^ΛL, J. 3y X 7Γn{j\, \LI i) >• 7Γn\j\9 2 3)

/» x 1 J J /*

According to Theorem 4.8, Z^ is an isomorphism for n 2:0, and for <z e

έ; according to Theorem 4.9, l^d(v)d'1(k(Y1)) — k*. Hence Iχp#(a9b) = l*a k#

(b) — pυSl*a b} — pυ. (l* * l)(<z, V). Thus the above diagram is commutative.
Therefore we may conclude that if v : Y2 —> YΊ is a fibration, p^ is equivalent
to px defined in §2.

THEOREM 4.10.

( i ) For bl9 b, € 7rw(X, ΩYX), /^OM>ι, W = **(&ι W

(ii) // #!, <22 ^ 7Γτϊ(X, Fv), ί/i^^z ΛI = /o^(α2, b) for some b £ ττw(X, OYj) /jΓ

αn<ί oτz/3/ if (g2J\ ΛI = (q*j)*ai.

PROOF, (i) and the necessity of (ii) are obvious. We only prove the
sufficiency of (ii). Let σ4 :X—>Cn+1(Ft,) be a representative of αt € ττn(X,Fv}
(i — 1,2). From (q^j)^al = (qj)χa2, there exists a morphism £ : X—> Cn+2(y2)
such that

<ff = 0 (/ < n), dnξ = Cn+l(qJ)ffl, d^ξ = C"+\qJ)σ,.

Also since q2J Fυ—*Y2 is a fibration, there exists a morphism cr: X-+Cn+z(Fv}

such that

d'σ = 0 (ί<n- 1), dV = σ1? JnVT = σ2 and Cn+\q2j)σ = ξ.

Then Jn+1σ represents αx - a, € τrw(X, FB) and Cn+1(qJ)dn-lσ = dn~lξ = 0. Hence
there exists a morphism r: X-> Cn+1(ΩY1) satisfying Cn+l(K)τ = dn~lσ. Since
Cn+1 (*) JV = JW7*-1 σ = dn~*dlσ = 0 for ί < n - 1 and * is a morphism, JV
= 0 for i <, n — 1. Similary we may deduce that dn~l r = 0 and Jwτ = 0.

Now let b be the homotopy class of r. Then the relations diσ — 0

(i<n- 1), d"-^ = Crt+1(£)τ, ^V - σ1? dn+lσ = σ2 imply αx = p**(az, b\
Next we consider a monomorphism w:Y3—>Y2 in the fibration sequence

y M , y v> vi 3 -*• j; 2 *" -L i

Denote the trace of £(Y2)
 x « : CY2 x Y3 -> Y2 x Y2 by (FU9 K). Let r,: CY2

x Y3 -> CY2 and r2 : CY2 x Y3 -> Y3 be projections, and let $ t: Y2 x Y2 -> Y2

(z = 1,2) be projection on the ΐ-th factor. Then we have the following
commutative diagram.
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id
ΩY2

1 * 2 I *1

<4 n) *_ ~* 1 o). j

y
. v ίι__. γ

3 J 2 * 1 1

where the left column corresponds to the middle column in the diageam (4. 7),
and Ω(v) : ΩY2 -> ίlYχ exists since î)^)^ = vk(Y2)iz = 0 and (Ω (Y,\ z\)
is the kernel of £(Yι)

Now we consider a sequence ί"M *• CΎ2 x y3 *- CY1 x ya

Since ^(yjg^C^u) X u}h = k(Y^)C(v)rJi ~ vk^ί^rji = vurjn = 0

vq2(C(v) x w)/ι = vurzh = 0,

and F,, is the trace of £(Yi) x v, there exists a morphism /: Fu -> Fw satisfying

if — (Q )̂ x w)^ Then we have

qz(C(v) X w)/ι&2 = urzhk2 = 0,

= zΊΩ(z ) = C(v)i2, where ^ : ΩYj —> FB,

= 0.

Therefore by the property of the direct product, jkιΩ(v) = jfk2 and hence
kiΩ(v) = fk2.

Thus we have the following commutative diagram;

ΩY2 QM ΩY,

t *'
(4.12) pu f pv

u

As k(Y^)C(v)rJι = vurji = 0 in (4. 11), there also exists a morphism t : Fu

ΩY t satisfying iλt — C(p)rji. Since qjf — qι(C(v) X w)/ι = C(v)rjι = zΊί, zΊ^2

= ijΩ(τ ) and so Ω(t ) = ί^2.

PROPOSITION 4.13. The following diagram is commutative.
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7Γn+1(X, Y2) - * - _* 7Γn + 1(X, Yj)

j a,

PROOF. Let τ:X-+Cn + 2(Y2) be a representative of a <Ξ 7rn+1(X, Y2). Then
92α is represented by a morphism <p :X— >Cn+1(OY2) determined by the relation
0+2(£(Y2)> - T, dlσ = 0 (0 ̂  i ̂  n), C"+1(;2V - ̂ +1σ where σ : X -> C"+2(CY2)
exists since &(Y2) is a fibration.

One has Cn+\v)r = Cn+2(v)Cn+2(k(Y2)}σ = Cn+\k(Y ̂ €^(€(0)^ and dlCn+2

(v)τ = 0 for ί = £ w + 1. Hence S^α is represented by ψ :X -+Cn+1(ΩY1)
determined by C^ijψ = dn+lCn+\C(v)}σ. But Cn+\ί^ = Cn+1(C(v^dn+lσ
= Cn+\C(v)}Cn+\i,}φ = C»+XΛ)C*+1(Ω(t;)V. Therefore ψ - Cw+1(ίl(t;))^ for
C?ϊ+1(ί1) is a monomorphism. Thus the commutativity in (5. 13) is proved.

THEOREM 4. 14. If v : Y2 -> Yλ is a fibration, we have the following
commutative diagram :

7Γn(X,Y) — ̂

where the upper sequence is the Kan homotopy exact sequence for the fibra-
tίon r2h : FU-+Y3 and the lower is those for the fibration q2j : Fυ — > Y2.

PROOF, (i) Commutativity of |T|. From the commutativity of [3] in Theorem
4. 9, Θ!̂  = d(qj) and by Proposition (4. 13) 3 *̂ = (Ωv)#32 so that 3(g J)
= (il77)^32. But Ω(v) = i^2. Hence 3(q2j)^}= t*k^.

(ii) Commutativity of [2]. It is sufficient to prove that (rji)# = d(v)d~lt#.

ττw(X,FM) - fc^ - -> τrn(X,Y3)

Λ > 0.

7ΓW+1(X,Y)

Let a € TΓ^X.Fu) be represented by a morphism r :X->O+1(FM) such that dV
= 0 (0 ̂  i ±g n). Since 3X : τrn+1(X, Y1)->ττ7ϊ(X, ΩYJ is an isomorphism for n > 0,
there exists only one c £ ττn+1(X, YJ such that 3^ = £##. Let c ^ ττw+1

(X, YO be represented by a morphism σ : X -> CW+1(YO such that dlσ = 0 (0 ̂  i
^ n + 1.) Then by the definition of 3X there exists a morphism η:X— >Cn + 2
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(CYO such that Cn+\k(Y^η = σ, <Pη = 0 (0 ̂  ί ̂  w), Jw+1τ; - O+'fo ί)τ.
Therefore 3(ϋ)3r1ί^ α is represented by a morphism £ : X — > Cn+1(Y3)

determined by the relation Cn+2(τ;)χ = σ, <f*χ = 0 (0 ̂  z ̂  n), dw+1% = Cn+1(tt){:,
where χ : X—>Cn + 2(Y2) exists since t; : Y2 -̂  Y x is a fibration. On the other
hand (rzh)#a is represented by Cn+1(rzfi)τ : X— > Y3.

Now consider C^^r^r : X-> CW+1(CΓ2). It follows from x,i = C^r^ that

C*+1(C(t;))Cw+1(rι^> - O+1(^)τ - ̂ +V If we regard Cw+1(r^)r as a (n + 1)
-simplex of j:*(X, Y2), i.e. O^r^r : X^ O+2(Y2), we have (^(tOC^Cr^r
= dn+lη where η is regarded as a (n + 2)-simplex of K*(X,Yΐ).

On the other hand σ = Cn+\k(Y^η = dn+2η and dϊη = 0 (0 ̂  i ̂  n). Hence
Cn+2(τ;)Cn+1(r1Λ)τ — σ (C^^^C^Xn^r is semi-simplicial homotopic to σ). But
d^C^\rJί)τ = O+X^Y^O+^r^T - Cw+1(w)Cw+1(r2/i)T and d>C*^(rJifr = 0
(0 ̂  i ̂  n). Hence by the definition of d(v) : τrn+1(X, Y x) -> τrn(X, Y3), we may

regard Cn+ί(r2h)τ as a representative of 3(t;)c. Thus (rjτ)* — o^d^t^.
(iiΐ) Commutativity of \Q\. Let a € ττw(X, Y3) be represented by a morphism

r : X -> CW+1(Y3) such that JV = 0 (0 ̂  i ̂  n). By Theorem 4. 3, r2h : Fw -* Y3

is also a fibration and 3(r2/ι) α is represented by a morphism % : X — -> Crz(ίlY2)
determined by the relation Cn+ί(r2tι)σ = r, JV = 0 (0 <Ξ / ̂  n), Cn(^2)% = JV,
where σ:X-^Cn+1(Fw) exists since r2/ι is a fibration.

Since Cn+ί(tt)τ = Cn+\u)Cn+l(rJι)σ - Cra+1(^(Y2))Cw+1 (r,h)σ and dlCn+\r,h}σ

= 0 (0 ̂  ί ̂  n), it follows from the definition of 32 : τrn(X, Y2) -» ττw_1(X,θY2)that
a morphism ψ : X -+ C^ΩYJ determined by dnCn+1(r1fi)σ = Cn(i^ represents
an element of ιrn^(X9 ΩY2). Then C\ί^ = dnC^\r^ = Cn(rjι) dnσ =

Ca(rlh)Cn(kux = Cw(/2)%, where (r,h)k2 = ί2 follows from (4. 11). As Cw(/2) is
monomorphic this implies ψ = % and 32w^ = 3(r2A) follows.

On the other hand gJZ = w and hence 32(φ>/)A — 3(r2Λ).

From Theorems 4. 8 and 4. 14 and the five lemma we obtain the following

theorem:

t£ 77
THEOREM 4. 15. If Y3 - *- Y2 - *- Y x £5 a fibration sequence, then

ί*: ^(^FJ-^nC^ΩYO

Z5 an isomorphism for n > 1.

Here we note that Theorem 4. 15 corresponds to Proposition 4. 7 in [2],

5. The dual statements. Finally we shall consider the dual statement.
A dual standard construction in $ is a triple (C, k, p} consisting of a covariant
functor C : ίΐ — > β, and of functor morphisms k:I —+C and ^> : CC — > C, such

that the axioms

(SC I'} po(feC) = p*(C*K) = identity,

(SC 2')

are satisfied.
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The functor F* = (Fn, d\ 5*) belonging to a dual standard construction has
a dual semi-simplicial structure, i. e. the faces and degeneracy morphisms

dl

n : F
n~l - - Fn

sΐ, : Fn+ί _ >• Fn

go into the opposite direction and satisfy the relation dual to (a)-(e) in §2. Let
K#(X, Y) be the semi-simplicial complex induced by a dual standard construction

{C9k,p}, i.e.

K*(X, Y) = Hom(F*(X), Y) = (Hom(F»(X), Y), d\ 5*)-
Then we have the Kan homotopy groups τrn(X, Y) = ττn(Kχ(X, Y). Here we
shall assume that all the K#(X, Y) satisfy the Kan condition.

DEFINITION 2. Γ([5]). A morphism u:Xl-> X2 is called a coήbration if the
induced semi-simplicial map

is a semi-simplicial fib ration (cf. [6]).

If C commutes with cokernels (i. e. C(Coker u) — Coker C(u\ then the

cokernel X3 of u will be called coήbre of u.

PROPSITION. 2.2' (Huber [5]).

1) The morphism k(X) : X — > CX is a cofibration.

2) ir,,(CX, Y) = 0 for n^ 0.

If we denote ΣX the cokernel of £(X) and C commutes 2X, then

PROPOSITION. 2. 3' (Huber [5])

3(£(X)) : πn+1(X, Y) ̂  7rn(ΣX, Y) i5 an isomorphism for n > 0.

In the following we shall assume the existences of cofibres.
Let u\Xl—^ X2 be a coήbration in ffi and let (X3, v) its cofibre. By

Proposition 2. 2', ^(Xi) : Xi — > CXi is a cofibration. Then as dual in §3 we may
define a co-operation

p* : 77^X3, Y) x ^(ΣX,, Y) - 7^X3, Y).

THEOREM 3. Γ.

1) /°*(#> 0) = Λ, where a £ ττw(X3, Y) αnJ 0 e ττn(ΣXι, Y) denotes the unit
element.

2) p*(α,&, 62) = p^fabάbj, where a e Tn(X,, Y), 6, € ^OSXi.Y)

Let β be the category of topological spaces with base points, Hom(X, Y)

being the set of base points preserving continuous maps X — > Y, with the natural
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rule of composition. Then a dual standard construction {C, k, p] in S) was de-
fined in [5] as the cone construction:

CX = X x I/X x {0} u {*} x /,

/ denoting the real interval 0 rg t ̂  1, with the base point 0.
Again let β be a general category and suppose that ft- has inverse products.

Here we recall the definition of an inverse product in [3].
An inverse product of the object Al9 A2 is an object Aλ*A2 and a system

of morphisms qά: At —> A^A2 (j — 1, 2) with the property
(I) For any object X of ft and any system of morphisms f}: A3 —> A^A2

(y = 1,2), there exists a unique morphism /: Aj*A2 —> X with /<?., = /^ (j = 1, 2.)
The morphisms g; are called the injections into Aί*A2; and the morphisms

fj are called the component of/; we write/* =<^fι,fz > > so that

</ι>/2 > #; = /*•

Let fi'.B —> Ai9 ί = 1, 2, be morphisms, then the morphism < <7ι/\, g2/2 > *
B*B —> A^A2 will be written /Vx/2 Then we have (fι*fz)qi = ^i/i (/ = 1, 2),
where q'j'.B—* B*B, j — 1, 2, are injections.

DEFINITION 4. Γ. The trace of />/2: B*B -> A^A2 is a pair (Q, /o)
consisting of an object and an epimorphism satisfy the conditions

( i) p(fi*fz)U = K/ι*/2)^ί (or equivalently pgj/i = pg2/2)

(ii) if D is any object of ffi and A : A^Ag —> D is a morphism with the
property Λ(/ι^/2)^ί — ̂ (/i^)^ (or equivalently Λ#ι/ι — hq2f2\ then A admits

a unique factorization A ̂ A^ —>Q—>Z).

We assume that the functor C in consideration is /-functor in the sense
of [3], i. e. C(A^(-A2) - C(A>C(A2) and C(g,): C(At) -> C(A^A2), ί = 1, 2, are
injections. Moreover we assume that if g: B —> A is an epimorphism, then
C(^) : C(B) —> C(A) is so.

Let &(Xj) : Xi —> CXl be a morphism in Proposition 2. 2' and -̂  : Xx—>X2

any morphism. Then we denote the trace of k(X^)*v by (Fϋ, />). Let ^̂  : CXX

—> CX1*X2 and g 2 : X2 —> CXj xXa be injections, then we have the following
commutative diagram;

\r V γ
j\. j —> ^Λ.2

(4.2') ^(Xi) ! I ^2

r v 17̂

CX] ^ F
The proofs of the following theorems are quite dual to that of the

preceeding ones and we shall omit.
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THEOREM 4. 3'. pq2 :X2-^FV is a coβbration.

THEOREM 4. 4'. If v : Xx -> X2 « α cofibration, pql : CX1 -> Fu z's 50.

THEOREM 4. 5'. TΛe cofibre of cofibratίon pq2 : X2 — » Fv is equivalent with
ΣX1? the cofibre of k(X) : X,

THEOREM 4. 6'. Tjf α sequence Xλ — » X2 —» Xs ^ α coβbration sequence, then
a sequence CXl — > Fϋ — > X3 z's 50.

If 77:X 1-+X 2 is a cofibration with cofibre X3, then the following diagram
is commutative.

(4. 7')

X, « -* X2 5 -> X;

j I Pq*

*.
id *~l

THEOREM 4. 8'. If a morphism v : X: —> X2 zs α cofibration with cofibre
X3, ί/ien /# : 7rw(X3, y) —> 7rn(Fv, Y} is an isomorphism for n^O.

THEOREM 4. 9'. If v : X1 — > X2 £5 α cofibration with cofibre X3, ί/i^w the
following diagram is commutative :

/*
i

where the upper sequence is the Kan homotopy exact sequence of a cofibration
v : Xl —+ X2 and the lower is that of a cofibration pqz : X2 —* Fv .

For any morphism v : Xλ — > X2 co-operation p* : πn(Fυ, Y} x ττw(ΣXι, y) — *
7rn(Fv, y) is defined by

p α , = α - , a € τrn , € τ

If t iX i-^Xa is a cofibration, we may show that pΐ is equivalent with p*.

THEOREM 4. 10'.
( i ) For bl9 b2 € TΓ^ΣX!, y), p*(**(60, 6S) - k*(b, &a)
(ii) //* al9 a2 £ ττn(Fv

yY\ then a — ρϊ(a2,fr) for some b z τrw(ΣXι, y) ^/
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any if (pq^a, =

V U
Let X j >• X2 *• X3 be a cofibration sequence. We denote the trace of

:2)*w : X2*X2 - CX2*XS by (F\ K). Let r1? r 2 : CX2, X3 - CX2*X3 be
injections. Then (4.11) and (4. 12) may be dualized as follows.

X v v u v
1 > -Λ-2 > -^* 3

(4.11')
CX, ^̂  * CX2

2_χ ^k'^7/1 . ^v id

X

(4.12') P^

^

Then there exists a morphism £ : 2XX -> FM such that til = hrλ C(t;). Also

Σ(τ ) = *2ί

PROPOSITION 4. 13'. The following diagram is commutative.

TΓn+^Xz, Y) - -- > 7Γn+1(XlyY)

THEOREM 4. 14.' /f v:Xί-+X2 is a cofibration with cofibre X3,

/ie following commutative diagram.

32-'

7Γri+1(X2, Y)

k*
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where the upper sequence is the Kan homotopy exact sequence of a cofibration
hr2 : X3 — * Fu and the lower is that of a cofibration pq2 : X2 — * Fυ .

v u
THEOREM 4. 15'. If X1 - *- X2 - *• X3 is a cofibration sequence then

is an isomorphism for n > 1.
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