ON THE REALIZABILITY OF WHITEHEAD PRODUCTS

Koichi Iwata

(Received March 15, 1964)

1. Introduction. Let π_{2}, π_{3}, and π_{4} be abelian groups and let $T_{2,2}: \pi_{2} \otimes \pi_{2}$ $\rightarrow \pi_{3}, T_{2,3}: \pi_{2} \otimes \pi_{3} \rightarrow \pi_{4}$ be bilinear homomorphisms. In this paper, we shall give a necessary and sufficient condition under which the given homomorphisms $T_{2,2}$ and $T_{2,3}$ are realizable simultaneously as the Whitehead product operations in spaces of the type $K\left(\pi_{2}, 2 ; \pi_{3}, 3 ; k^{(4)} ; \pi_{4}, 4 ; k^{(5)} ; \cdots\right)$ in the case π_{2} is free. This problem was handled by H. Miyazaki [5], but his solution is not complete as was pointed out by P. J. Hilton in [3].

Our present method depends on the theory of cohomology operations by F. P. Peterson [7], [8]. In §2, we state some properties of the Eilenberg-MacLane complex $K_{N}(\pi, 2)$ and its homology, for later use. In $\S 3$ we show a cohomology relation, giving a connection between Postnikov invariants and Whitehead products in a space. In the last section the realizability theorem is stated and proved.
2. The complex $K_{N}(\pi, 2)$ and its homology. Let π be an abelian group. Following Eilenberg-MacLane [2], we recall some properties of the R-complex $K_{N}(\pi, 2)$ with multiplication Δ.

For each $u \in \pi$ and each integer $t \geqq 0$, there corresponds a $2 t$-cycle $\kappa_{2 t}$ ($u, 2$) of $K_{N}(\pi, 2)$ which satisfies the equations

$$
\begin{aligned}
& \kappa_{0}(u, 2)=1, \\
& \kappa_{2 s}(u, 2) \Delta \kappa_{2 t}(u, 2)=\binom{s+t}{s} \kappa_{2(s+t)}(u, 2)
\end{aligned}
$$

and the following homologies

$$
\begin{aligned}
& \kappa_{2 t}(r u, 2) \sim r^{t} \kappa_{2 t}(u, 2), \\
& \kappa_{2 t}(u+v, 2) \sim \sum_{i+j=t} \kappa_{2 i}(u, 2) \Delta \kappa_{2 j}(v, 2) .
\end{aligned}
$$

By [2], II, Theorem 21.1, under the mapping

$$
\kappa_{2 t}(u, 2) \rightarrow \text { homology class of } \kappa_{2 t}(u, 2)
$$

$H_{2 t}(\pi, 2)$, for $t \leqq 3$, is isomorphic to the commutative graded ring (with multiplication Δ) which is generated by $\kappa_{2 s}(u, 2)$ for each $u \in \pi$ and integer $s \leqq t$, subject to the above equations and homologies.

In low dimensions, the $F D$-structure of $\kappa_{2 t}(u, 2)$ is as follows.

$$
\begin{aligned}
& F_{0} \kappa_{2}(u, 2)= F_{1} \kappa_{2}(u, 2)=F_{2} \kappa_{2}(u, 2)=1_{1} \text { (unit one cell), } \\
& \kappa_{4}(u, 2)=\left(D_{3} D_{2} \kappa_{2}(u, 2)\right)\left(D_{1} D_{0} \kappa_{2}(u, 2)\right)-\left(D_{3} D_{1} \kappa_{2}(u, 2)\right)\left(D_{2} D_{0} \kappa_{2}(u, 2)\right) \\
&+\left(D_{2} D_{1} \kappa_{2}(u, 2)\right)\left(D_{3} D_{0} \kappa_{2}(u, 2)\right), \\
& \kappa_{6}(u, 2)= \sum^{\prime}(-1)^{s(\mu)}\left(D_{v_{4}} D_{v_{3}} D_{v_{3}} D_{v_{1}} \kappa_{2}(u, 2)\right)\left(D_{\mu_{3}} D_{\mu_{1}} \kappa_{4}(u, 2)\right), \\
& \kappa_{2}(u, 2) \Delta \kappa_{4}(v, 2)=\sum(-1)^{\varepsilon(\mu)}\left(D_{v 4} D_{v_{3}} D_{v_{2}} D_{v_{1}} \kappa_{2}(u, 2)\right)\left(D_{\mu_{2}} D_{\mu_{1}} \kappa_{4}(v, 2)\right),
\end{aligned}
$$

where $\varepsilon(\mu)=\sum_{i=1}^{p}\left(\mu_{i}-(i-1)\right)$ and the sums \sum (resp. \sum^{\prime}) being taken over all (2.4) shuffles (μ, ν) (resp. all (2.4) shuffles (μ, ν) such that $\mu_{1}=0$).

In the following sections, we often use the symbol $\kappa_{2 t}(u, 2)$ to denote the homology class of $\kappa_{2 t}(u, 2)$, if no confusion is expected.
3. A cohomology relation. Let π_{2}, π_{3} be abelian groups and $k^{(4)} \in H^{4}\left(\pi_{2}\right.$, $\left.2 ; \pi_{3}\right)$. Then there exists a space E of the type $K\left(\pi_{2}, 2 ; \pi_{3}, 3 ; k^{(4)}\right) . E$ is considered as the total space of a principal fibre space in the sense of [6], whose base space B is of the type $K\left(\pi_{2}, 2\right)$ and fibre F is of the type $K\left(\pi_{3}, 3\right)$. We identify

$$
\pi_{2}=\pi_{2}(E)=p_{\#}^{-1} \pi_{2}(B), \quad \pi_{3}=\pi_{3}(E)=i_{\# \#} \pi_{3}(F),
$$

where $p: E \rightarrow B$ is the projection and $i: F \rightarrow E$ is the inclusion.
Under the identification $H^{4}\left(\pi_{2}, 2 ; \pi_{3}\right)=\operatorname{Hom}\left(H_{4}\left(\pi_{2}, 2\right) ; \pi_{3}\right)$, we define a map $\eta: \pi_{2} \rightarrow \pi_{3}$ by

$$
\eta(u)=k^{(4)} \kappa_{4}(u, 2), \quad u \in \pi_{2} .
$$

Then for any $u, v \in \pi_{2}(E)$, the Whitehead product $[u, v] \in \pi_{3}(E)$ is

$$
[u, v]=\eta(u+v)-\eta(u)-\eta(v) .
$$

Let π_{4} be an abelian group and assume that a bilinear homomorphism $T_{2,3}: \pi_{2} \otimes \pi_{3} \rightarrow \pi_{4}$ and a homomorphism $E \eta: \pi_{3} / 2 \pi_{3} \rightarrow \pi_{4}$ are given. By [2], III, Theorem 17.4, $E \eta$ determines the class $\theta \in H^{6}\left(\pi_{3}, 4 ; \pi_{4}\right)$. Moreover, let
$\psi \in H^{2}\left(\pi_{2}, 2 ; \pi_{2}\right)$ be the fundamental class. Then we have
Proposition. In case Ext $\left(H_{5}\left(\pi_{2}, 2\right) ; \pi_{4}\right)=0$, the relation

$$
\theta\left(k^{(4)}\right)+\psi \cup k^{(4)}=0,
$$

where the cup product \cup is taken relative to $T_{2,3}$, holds in $H^{6}\left(\pi_{2}, 2 ; \pi_{4}\right)$ if and only if there exist the following relations:

$$
\begin{aligned}
& T_{2,3}(u \otimes \eta(u))=0 \\
& T_{2,3}(u \otimes \eta(v))+T_{2,3}(v \otimes[u, v])=E_{\eta}[u, v]
\end{aligned}
$$

for all $u, v \in \pi_{2}$.
Proof. By the hypotheses, we can identify $H^{6}\left(\pi_{2}, 2 ; \pi_{4}\right)=\operatorname{Hom}\left(H_{6}\left(\pi_{2}, 2\right)\right.$; $\left.\pi_{4}\right)$. By the definition of U-product, we have

$$
\begin{aligned}
& \psi \cup k^{(4)} \kappa_{6}(u, 2)=T_{2,3}\left(\psi\left(F_{3} F_{4} F_{5} F_{6} \kappa_{6}(u, 2)\right) \otimes k^{(4)}\left(F_{0} F_{1} \kappa_{6}(u, 2)\right)\right) \\
&=T_{2,3}\left(\psi \kappa_{2}(u, 2) \otimes k^{(4)} \kappa_{4}(u, 2)\right) \\
&=T_{2,3}(u \otimes \eta(u)), \\
& \psi \cup k^{(4)}\left(\kappa_{2}(u, 2) \Delta \kappa_{4}(v, 2)\right)=T_{2,3}(u \otimes \eta(v))+T_{2,3}(v \otimes[u, v]) .
\end{aligned}
$$

On the other hand, by [2], III, Theorm 17.4,

$$
\theta\left(k^{(4)}\right)=k^{(4)} \cup_{2} k^{(4)},
$$

where the U_{2}-product is taken relative to the pairing $\phi: \pi_{3} \otimes \pi_{3} \rightarrow \pi_{4}$ such that

$$
\begin{aligned}
& \phi(\alpha, \alpha)=E_{\eta}(a) \\
& \phi(\alpha, \beta)+\phi(\beta, \alpha)=0, \\
& 2 \phi(\alpha, \beta)=0
\end{aligned}
$$

for any $\alpha, \beta \in \pi_{3}$. By the definition of U_{2}-product ([9]), we get

$$
\begin{gathered}
k^{(4)} \cup_{2} k^{(4)}\left(\kappa_{6}(u, 2)\right)=\phi\left(k^{(4)}\left(F_{5} F_{6} \kappa_{6}(u, 2)\right), k^{(4)}\left(F_{2} F_{3} \kappa_{6}(u, 2)\right)\right) \\
+\phi\left(k^{(4)}\left(F_{5} F_{6} \kappa_{6}(u, 2)\right), k^{(4)}\left(F_{0} F_{3} \kappa_{6}(u, 2)\right)\right)+\phi\left(k^{(4)}\left(F_{5} F_{6} \kappa_{6}(v, 2)\right), k^{(4)}\left(F_{0} F_{1} \kappa_{6}(u, 2)\right)\right) \\
+\phi\left(k^{(4)}\left(F_{1} F_{6} \kappa_{6}(u, 2)\right), k^{(4)}\left(F_{3} F_{4} \kappa_{6}(u, 2)\right)\right)+\phi\left(k^{(4)}\left(F_{2} F_{6} \kappa_{6}(u, 2)\right), k^{(4)}\left(F_{0} F_{4} \kappa_{6}(u, 2)\right)\right) \\
+\phi\left(k^{(4)}\left(F_{3} F_{6} \kappa_{6}(u, 2)\right), k^{(4)}\left(F_{0} F_{1} \kappa_{6}(u, 2)\right)\right)+\phi\left(k^{(4)}\left(F_{1} F_{2} \kappa_{6}(u, 2)\right), k^{(4)}\left(F_{4} F_{5} \kappa_{6}(u, 2)\right)\right) \\
+\phi\left(k^{(4)}\left(F_{2} F_{3} \kappa_{6}(u, 2)\right), k^{(4)}\left(F_{0} F_{5} \kappa_{6}(u, 2)\right)\right)+\phi\left(k^{(4)}\left(F_{3} F_{4} \kappa_{6}(u, 2)\right), k^{(4)}\left(F_{0} F_{1} \kappa_{6}(u, 2)\right)\right) \\
=\phi([u, u],[u, u])=E_{\eta}(2 \eta(u))=0,
\end{gathered}
$$

and similarly

$$
k^{(4)} \cup_{2} k^{(4)}\left(\kappa_{2}(u, 2) \Delta \kappa_{4}(v, 2)\right)=\phi([u, v],[u, v])=E_{\eta}[u, v] .
$$

The conclusion follows immediately.
4. The main theorem. Let $\eta \in \pi_{3}\left(S^{2}\right)$ be the Hopf class and $E \eta \in \pi_{4}\left(S^{3}\right)$ be its suspension. In any space X, it is well known that the following relations hold:

$$
\begin{aligned}
& {[u, v]=(u+v) \circ \eta-u \circ \eta-v \circ \eta,} \\
& (-u) \circ \eta=u \circ \eta, \\
& {[u, u \circ \eta]=0,} \\
& {[u, v \circ \eta]+[v,[u, v]]=[u, v] \circ E \eta,}
\end{aligned}
$$

for $u, v \in \pi_{2}(X)$. Using the result of the previous section, we shall prove the following realizability theorem.

TheOrem. Let π_{2}, π_{3} and π_{4} be abelian groups such that Ext $\left(H_{5}\left(\pi_{2}, 2\right)\right.$; $\left.\pi_{4}\right)=0$. For given bilinear homomorphisms $T_{2,2}: \pi_{2} \otimes \pi_{2} \rightarrow \pi_{3}$ and $T_{2,3}: \pi_{2} \otimes \pi_{3}$ $\rightarrow \pi_{4}$, there exists a space of the type $K\left(\pi_{2}, 2 ; \pi_{3}, 3 ; k^{(4)} ; \pi_{4}, 4 ; k^{(5)} ; \cdots\right)$ in which $T_{2,2}, T_{2,3}$ are realized simultaneously as the Whitehead product operations if and only if the following conditions hold:
(i) There exists a map $\eta: \pi_{2} \rightarrow \pi_{3}$ such that,

$$
\begin{aligned}
& T_{2,2}(u \otimes v)=\eta(u+v)-\eta(u)-\eta(v), \\
& \eta(-u)=\eta(u),
\end{aligned}
$$

for $u, v \in \pi_{2}$.
(ii) There exists a homomorphism $E_{\eta}: \pi_{3} / 2 \pi_{3} \rightarrow \pi_{4}$, such that

$$
T_{2,3}(u \otimes \eta(u))=0,
$$

$$
T_{2,3}(u \otimes \eta(v))+T_{2,3}\left(v \otimes T_{2,2}(u \otimes v)\right)=E_{\eta}\left(T_{2,2}(u \otimes v)\right),
$$

for $u, v_{-} \in \pi_{2}$.
Remark. By [2], II, Theorem 22.1, there exists the epimorphism

$$
\text { Tor }\left(\pi_{2}, \pi_{2}\right)+\Gamma_{4}\left(\Omega_{2} \pi_{2}\right) \rightarrow H_{5}\left(\pi_{2}, 2\right)
$$

Therefore, when π_{2} has no element of finite order or is cyclic of finite order prime to $2, H_{5}\left(\pi_{2}, 2\right)$ vanishes and the condition $\operatorname{Ext}\left(H_{5}\left(\pi_{2}, 2\right) ; \pi_{4}\right)=0$ is satisfied.

Proof. The necessity is stated above. Therefore, to prove the theorem, it is sufficient to show the existence of a space realizing $T_{2,2}, T_{2,3}$. If the condition (i) holds, then by [4] Theorem 1, there exists a space E of the type $K\left(\pi_{2}, 2 ; \pi_{3}, 3 ; k^{(4)}\right)$ in which $T_{2,2}$ is realized. Now, suppose that the
condition (ii) holds. As in $\S 3$, consider the principal fibre space (E, p, B) with fibre F. By the proposition of $\S 3$, for $\theta \in H^{8}\left(\pi_{3}, 3 ; \pi_{4}\right)$ associated with $E \eta$, the relation $(\theta+\psi \cup) k^{(4)}=0$ holds. Since $p^{*} k^{(4)}=0$, we can define ([7] p. 297)

$$
(\theta+\psi \cup)_{p} k^{(4)} \in H^{5}\left(E, \pi_{4}\right) / p^{*} H^{5}\left(B, \pi_{4}\right)+\left({ }^{1} \theta+p^{*} \psi \cup\right) H^{3}\left(E, \pi_{3}\right),
$$

where ${ }^{1} \theta$ denotes the suspension of θ. Let k_{1} be a representative of $\theta+\psi$ ()$_{p} k^{(4)}$ and let $\mu: F \times E \rightarrow E$ be the operation of F n E. Then, by [8] Theorem 1,

$$
\mu^{*} k_{1}=1 \otimes k_{1}+i^{*} k_{1} \otimes 1+x^{\prime} \otimes p^{*} \psi,
$$

where ${ }^{1} \theta\left(x^{\prime}\right)={ }^{1} \theta(\iota)=i^{*} k_{1}$ (ι denotes of the fundametal class of $H^{3}\left(F, \pi_{3}\right)$).
As ${ }^{1} \theta$ is additive, we have ${ }^{1} \theta\left(\iota-x^{\prime}\right)=0$. Hence $\iota-x^{\prime}=2 x^{\prime \prime}$ for some $x^{\prime \prime} \in H^{3}\left(F, \pi_{3}\right)$. In the spectral sequence associated with $(E, p, B), \psi \otimes\left(\iota-x^{\prime}\right)$ defines a class of $E_{2}^{2,3} \approx E_{4}^{2,3}$, and $d_{4}\left\{\psi \otimes\left(\iota-x^{\prime}\right)\right\}=\left\{\psi \cup 2 \bar{x}^{\prime \prime} k^{(4)}\right\}=\left\{2 \overline{x^{\prime}}\left(\psi \cup k^{(4)}\right)\right\}$ $=\left\{\bar{x}^{\prime \prime} 2 \theta\left(k^{(4)}\right)\right\}=\{0\} \in E_{4}^{6_{1}, 0}$, where $\bar{x}^{\prime \prime}, \bar{x}^{\prime \prime}$ are endomorphisms of $H^{4}\left(B, \pi_{3}\right)$, $\psi \cup H^{4}\left(B, \pi_{3}\right)$ induced by $x^{\prime \prime}$ respectively. Thus $\psi \otimes\left(\iota-x^{\prime}\right)$ defines a class of $E_{\infty}^{2,3}$ which is represented by some element $k_{0} \in H^{5}\left(E, \pi_{4}\right)$, and (see e.g. [1])

$$
\begin{aligned}
& \mu^{*} k_{0}=\left(\iota-x^{\prime}\right) \otimes p^{*} \psi+1 \otimes k_{0}, \\
& i^{*} k_{0}=0 .
\end{aligned}
$$

Let $k^{(5)}=k_{0}+k_{1}$. Then we have

$$
\begin{aligned}
& \mu^{*} k^{(5)}=\mu^{*} k_{0}+\mu^{*} k_{1}=1 \otimes k^{(5)}+i^{*} k^{(5)} \otimes 1+\iota \otimes p^{*} \psi, \\
& i^{*} k^{(5)}={ }^{1} \theta(\iota) .
\end{aligned}
$$

Let $f: E \rightarrow K\left(\pi_{4}, 5\right)$ be a map representing the homotopy class determined by $k^{(5)} . f$ induces a principal fibre space (X, q, E) with fibre Y of the type $K\left(\pi_{4}, 4\right)$. We identify $\pi_{2}(X)=q_{\#}^{-1} \pi_{2}(E), \pi_{3}(X)=q_{\#}^{-1} \pi_{3}(E)$ and $\pi_{4}(X)=j_{\#} \pi_{4}(Y)=$ π_{4}, where $j: Y \rightarrow X$ is the inclusion. Then by [8] Theorem 2, for $u \in \pi_{2}(X)=$ $\pi_{2}, \alpha \in \pi_{3}(X)=\pi_{3}$,

$$
[u, \alpha]=T_{2,3}(u \otimes \alpha)
$$

thus $T_{2,3}$ is realized in X. As it is supposed that $T_{2,2}$ is realized in E, under the above identification, $T_{2,3}$ is realized in X. The theorem is proved.

Bibliography

[1] Bott, R. and Samelson, H., On the Pontrjagin product in spaces of paths, Comment. Math. Helv., 27(1953), 320-337.
[2] Eilenberg, S. and MacLane, S., On the groups H($\boldsymbol{\pi}, n$) I. Ann. of Math., 58(1953), 55-106, II, Ann. of Math., 60(1954), 49-139, III, Ann. of Math., 60(1954),513-557.
[3] Hilton, P. J., Math. Rev., 22(1961), \#5971.
[4] Iwata, K. and Miyazaki, H., Remarks on the realizabilty of Whitehead products, Tôhoku Math. Journ., 12(1960), 130-138.
[5] Miyazaki, H., On realizations of some Whitehead products, Tôhoku Math. Journ., 12 (1960), 1-30.
[6] Peterson, F. P. and Thomas, E., A note on non stable cohomology operations, Bol. Soc. Mat. in Mexicana, 3(1958), 13-18.
[7] Peterson, F.P. and Stein, N., Two formulas concerning secondary cohomology operations, Amer. Journ. of Math., 81(1959), 281-305.
[8] Peterson, F. P., Whitehead product and the cohomology structure of principal fibre spaces, Amer. Journ. of Math., 82(1960), 649-652.
[9] Steenrod, N. E., Product of cocycles and extensions of mappings, Ann. of Math., 48(1947), 290-320.

TôHOKU UnIVERSITY.

