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1. Let {φn(x)}n = 1,2, , be the system of Rademacher functions, i.e.

/ l(x€ [0,1/2))
o(x) =

l l

/ ) )
Φo(x) = Φo(x + l)= Φo(x), φn(x)= Φo(2nx),

l ( [ l / 2 l ) )

and let

ψn(x) = 1 for n = 0, and

where w(l) > w(2) > > ra(r) ^ 0.

The functions thus defined are called the Walsh functions, which form a
complete orthonormal system over the unit interval. We refer the reader
to Paley [5] and Fine [1], for detailed properties of this system.

It was proved by Paley [5], that the Walsh Fourier series (abbrev.WFS)
of a function f{x) belonging to Lp(0,1) (p > 1) converges in Lv norm to f(x\
but the corresponding results for functions in L1 or L1 Iog+Lx have not yet
been established, because the conjugate function, the most powerful tool in
the theory of the trigonometric Fourier series, cannot be used in the theory
of WFS.

The purpose of this note is to give a direct estimate for partial sums of
the WFS of functions in L1, and deduce the mean convergence of WFS in
the so-called "critical" case. Let we write

f(x) - Σ MX), cv = ff(t)yjrv(t)dt
V=0 J

the integral being taken over the unit interval and

sn(x)=sn(x;f)= Σ cvψv(x)= [f(x + t)Dn(t)dt,
v=0 J

where + represents the "dyadic addition and
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ra-l

Dn(t) =
v=0

is the Dirichlet kernel for the Walsh system.

2. THEOREM 1. There exists an absolute constant A > 0 such that for
every f e L1, for every positive integer n and for every positive number y>
we have

m({x;\sn(x;f)\>y})^A\\f\\ι/y.

As the proof indicates, we may take A = 6.
This theorem, combined with BesseΓs inequality and the interpolation

theorem of Marcinkiewicz ([7], vol. II, p. 112) and finally with a standard
conjugacy argument, gives readily the following

THEOREM 2. (i) Iff € Lp(l <ρ<°°\ then

(ii) / / / € LUog+L1, then

\\sn(x;f)\\ι^AJ \f(x)Ilog+ \f(x)

where the constants Ap, A depend neither on f nor on n.

By a standard argument due to Kolmogoroff [4], we can see that Theo-

rem 1 implies also

THEOREM 3. There exists a constant Aβ9 depending only on μ, such that

\sn(χ;f)\ Jχ)ι/" ^Aμ\\fh (0<μ< 1).

3. PROOF OF THEOREM 1. The proof proceeds in several steps.

LEMMA 1. Let g <Ξ U and let y> \\g\\i be a given number. Then we

can decompose g as follows:

( i ) g = v + w, w = Σ wi5

(ii) \v\ tί2y for almost every x

(iϋ) N l i ^ l l p l l i ;
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(iv) Σlltt>«Hi^ 4\\g\\i;

( v ) there exists a countable system of disjoint "dyadic intervals" Iu:

Iij = I = [a, a -f 2"*), where a = ai5 is of the form l/2ι with

0 ^ Z < 2*

Σ, m(Iίj) = ll̂ lli/y? and u — Wij vanishes outside I;

(iv) I udx = I udx — 0 for every pair (i,j).

This Lemma is due to S. Igari and is a slight modification of the "cove-
ring lemma" of L. Hormander. So we omit the proof, referring the reader to
[2] or [3].

LEMMA 2. Let gzL1 and let its WFS be Σ MΦO Write

SoOr g) = K δΛ+1(α: ;g)=Σ. (MΦO; 2* ̂  v < 2fc+1)

Let u = zVij be a "piece" of g in the previous lemma. Then

hk(x-,u)=0 for x^I=Iii.

PROOF. It is known that (cf. [1] and [5])

(x u) = j u(t)φk(x + t)D2k(x + t) dt

and

δk + i(x + a;u)= I u(t + a)φk{x -f t)D2k(x + t) dt
Ju

where U = [0, 2'% by (v) of Lemma 1.

If k<ί, we have φv(t)= 1 for t € U and 0 ^ v ^ k,
thus the Dirichlet kernel in the integrand is constant in the interval over
which u(t + a) has, by (vi) of Lemma 1, the mean value 0.

On the other hand, if k ^ i, x § I implies D2k(x + t) = 0 for t £ U,
since (x -j- a € / being equivalent to x € U) x ^ U, t £ U imply x
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-f- t ^ U and D2k(x +1)= D2k(x) = 0, for, as is well known,

V=0

As a corollary of Lemma 2, we have

LEMMA 3. Sk(x;w)=0 for x$E = \J I.

PROOF. For k = 0, the result follows from (vi) of Lemma 1. For other
£'s, it is sufficient to see that, by Lemma 2,

w ) = £ Sk(x u)= 0 for x € C£ = / ^ \ C7.

We can now complete the proof of Theorem 1. Let / <Ξ L1, a positive

integer n and j> > ||/Ίli be given. Put

g(x) =f(x)ψn(x)

Then, by an identity due to Paley ([5], p. 256)

Decompose g by Lemma 1, obtaining

Snix;/) Ϋ*(x) = Σ δn<*>(* v) + Σ 8»<*>(̂  w) = V + W, say.

T^ vanishes outside E by Lemma 3; thus

{x; \W\ >y} c E

and

by Lemma 1, (v). On the other hand, BesseΓs inequality gives

\2dx^f \v\*dx^2yj \v\dx^2y\\gh= 2y\\f\\1

Consequently
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({x; \V\ >y})^y-2J \V\*dx ^ J - \\f\\v

Thus we obtain, for y > \\f\u

m({x;\sn(x;f)\

i. e.

m({x;\sn(x;f)\>y] ^βWfh/y ίory>2\fiι.

But, for y ^ 2 \\f\\u it is clear that

m([x;\sn(x;f)\ >y}) ^ 1 ^ 2J/|1/y,

the proof is complete with A = 6.

4. Lemma 3 also gives a proof of the following theorem due essentially
to S. Yano [6].

T H E O R E M 4. Put

Σ £A(*;/) fi, = 0,1 or - 1.

where A is an absolute constant.

PROOF. Decompose f itself by Lemma 1. It is clear that

;v)\ + \$*(x;w)\

and the second term on the right vanishes outside E (Lemma 3). ParsevaΓs
equality will give the necessary estimate for |δ*(.r;t;) |, and the rest of the
proof may be left to the reader; a possible value of A is 6.
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