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In the following lines the author wants to give an explicit representa-
tion for generalized principal ideal theorems of S.Iyanaga [1] and T.Tannaka
[2] for the case of rational ground field.

Let K be the "Strahlklassenkδrper" over k, with "GeschlechtermoduΓ
g = $(K/k)9 then every ideal α of k which is unramified in K, becomes
principal ideal belonging to the principal class modulo $ (Iyanaga [1]).

Tannaka [2] obtained, suggested by a conjecture of Prof. Deuring, a
more precise form of the principal ideal theorem, he gave namely those
bases θ(ά) of α (unramified ideals in k), for which the units

lie in the ground field. There σ(α) = (K/k, a) means the Artin-automor-
phism of α.

Let now n9m be two natural numbers which are relatively prime to each

other, ξn = exp (^~) and %n the "GeschlechtermoduΓ of Q{ζn)/Q (Q: rational

number field), then we can find a unit E(ni) in Q(ξn) explicitly, for which

m ΞΞΞ E(m) (mod gn)

and

E(m)(E(m))σW

 = χ

E(mm) ~

hold.

1. Calculation of the "GeschlechtermoduΓ'. Let n = ρx

eiρ2

e> ρt

et = n^
• nt be a natural number, where pl9 p2, , pt are different prime numbers
and A = 2, ex = 0 or ex = 2, and %n the "GeschlechtermoduΓ' of Q(ζn)/Q-
We have then
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(l " Urnu =(l- tpp-1, (1)

in Q(ξn%) and Q(ξPi), where pΛt = (1 — fn.) and pPί = (1 - ζPi) are prime ideals
in Q(ξnt) and Q(ζPi) respectively, and φ{ ) means Euler's function. We can
see also easily that pUi is unramified in Q(ξn)/Q(ξnl) for each i.

We now introduce the following notations:
G: Galois group of Q(ξn)/Q.
g: Subgroup of G corresponding to Q(fWt)

in the sense of Galois theory.
Gf. Hubert's ramification groups of order

(Gj)= Nj for a prime ideal p in Q(ζn),
which divides pni, that is Gό consists
of all Galois substitutions with

i) (A in

We put also g3 = GjΠg and denote its order (gj) by n5.

LEMMA, p-component of $n is equal to that of 3 v

PROOF. According to a formula in [4] (See the formula (4. 4) in [4]),
^-exponents of £?„ and ^ are

Σ 1 (number of G3 which are ^1) (2)

and

Σ,(gs) <β/£g) (3)

respectively. But, as p is unramified in Q(ζv)/Q(ζn), go = Gs Π g = {1}, acc-
ordingly (2) and (3) are identical, q.e.d.

From the above lemma, we have

so that we have only to decide $ v
Now we apply the formula (2) to the case n = p\ Then the ^-exponent

of 8v is the maximum number /, for which there exists a Galois
automorphism r (Φ 1) of Q(ζpe)/Q, which satisfies
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Γ = r(modί)!,) (4)

where ξ means ξpe and

p =(i - f).

But ζτ can be expressed as

ξ* ((k,p)=l),

the condition (4) turns out

ζ" = ζ (mod?), (5)

with additional condition

^ 1 (mod pe). (6)

It is well known that if

k == 1 (mod />α),

then

fsf (modi)"1),

hence maximum number of / is p*'1 and

0=^ = r e j = t>, = 3=,,

from which we have the following theorem:

THEOREM. If n = ρfxpt ρt

u = w^a nt, we have

2. Explicit representation for the case of Iyanaga's principal ideal
theorem. We first assume that

n = p* p* pp (A = 2, ex ^ 2) (7)

and set
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n = 4p2p3 ••' p t ,

then we have by §1, %n = 3v, accordingly it is enough to give an explicit
representation for the case {2(ξV)

Let m be a natural number relatively prime to n and put

εt = l + ζΛ + & + + s;-1,

(ί = 1, 2, , ί)

£υ = i + eΛf» + (r*?*)1 + + ce^j""1

( ί ^ y , i,j = 1,2, >-,t)

£„...« = l + r Λ f Λ e,, + (eΛ?Λ ?Pί)
2

+ + (fΛ?» eΛ)""1

(/,_;', , / are k different numbers from 1,2, , t)

E12...t = ι + fftfft . fΛ + ({τΛfft ζPlγ

E2 = Π £ g

Eic = II £ t f λ ...,1
(U I)

((ij, ,Z): all combinations of y& different numbers from 1,2,

T h e n Et, Eij9- , E1%...t9 El9Eu - ;Et are units in Q(ξV)

For fixed ί = 1, 2, , t we define£(2,£(ϊ as follows

= Π Eιs



180 S. TAKAHASHI

α. .o

Since we have

ξPi = 1 (mod 3ft)

it holds

£,<'> = m (mod &>,), (8)

£*«>=££, (modSJ, (9)

(* = 2, 3, , ί)

If t = 2s, we have

A = mEtEi Έΐa — EtEi •Eis-ι

= 0 (modgA)

hence

EιEs E2s-im ~ i ^ ( m o d

In this case we put the right-hand side by E(m), we have namely

m ΞΞ ̂ (m) (mod g) (10).

If t = 25 + 1 an odd number, we have likewise

A 2?2* -" ExEz E2s-ιE2s+\

- E^E^ •£<?_, ££>_,
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Ξ= 0 (mod &,)>

i = 1,2,. , ί,

hence we have (10), by putting

ιE3 Έ2s+ι
E(m)

-E2

Thus we have proved Iyanaga's principal ideal theorem for cyclotomic
field, under the assumption (7).

The case eγ = 0 can be treated similarly.

3. Explicit representation for the case of Deuring-Tannaka's principal
ideal theorem. Let ra, m be two natural numbers relatively prime to τz,and
σ(m) be Artin-symbol corresponding to m in Q(ξn)/Q. Then it holds

E(mm) ~ L

We have in fact

ES?.,= l +ξPχP1 - ξn+(ε,.ς,j u 2 + '+(£,£»•

s '

hence by the definition of E(m) we have (11), which proves Deuring-
Tannaka's form of principal ideal theorem.
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