A REMARK ON TRANSFORMATIONS OF A K-CONTACT MANIFOLD

SHÛKICHI TANNO

(Received February 1, 1964)

1. K-contact manifold is a differentiable manifold with a contact metric structure (ϕ, ξ, η, g) such that ξ is a Killing vector field. Especially a normal contact manifold is a K-contact manifold. In this report, the completeness of g is assumed. Keeping the notations and terminologies as in [1] and [2], we prove theorems A, B and C. Of course, as usual, manifolds are supposed to be connected.

THEOREM A. If a complete K-contact manifold M is not an R-product bundle over an almost Kähler manifold $B = M/\xi$. The identity component Φ^0 of the Lie group Φ composed of all transformations leaving ϕ invariant coincides with the identity component \mathbf{A}^0 of the automorphism group \mathbf{A} .

To prove this it suffices to prove the following

LEMMA. If a complete K-contact manifold M is not homeomorphic to Euclidean space of the same dimension $2n + 1 \ (\geq 3)$ as M. Then there does not exist any infinitesimal transformation X which leaves ϕ invariant and satisfies $\mathcal{L}(X)\eta = \eta$.

In fact, considering the contraposition of the Theorem, if Φ^0 does not coincide with \mathbf{A}^0 , we have an infinitesimal transformation X such that $\mathcal{L}(X)$ $\phi = 0$ and $\mathcal{L}(X)\eta = \eta$. Here by virtue of the Lemma M is homeomorphic to Euclidean space, particularly M is simply connected. Therefore M is an R-product bundle over an almost Kähler manifold M/ξ [2].

Now we demonstrate the Lemma in its contraposition. As M is complete X generates a global 1-parameter group of transformations $\gamma_t = \exp tX (-\infty < t < \infty)$ such that $\gamma_t^* \eta = e^t \eta$ [1-II]. We see that γ_t has at least one fixed point. Moreover $\gamma_t(t \neq 0)$ cannot have two fixed points, as is seen from the fact that for a curve l of finite length its image $\gamma_t(l)$ has longer or shorter length than that of l according to positive or negative sign of t. Since the fixed point of γ_t does not depend on t, we have the following

(i). There exists a point p in M which is a unique fixed point of γ_t for all t. Thus X = 0 at p and $X \neq 0$ in M - p.

S. TANNO

(ii). For any point $x \neq p$ in M, the part $(\gamma_t(x): 0 \leq t < \infty)$ of the trajectory is infinite, while that of $(\gamma_t(x): -\infty < t \leq 0)$ is finite.

For this we have only to recall the identity (4.2) of [1-II].

(iii). M is homeomorphic to E^{2n+1} .

One may define various homeomorphisms by which p corresponds to origin 0 in E^{2n+1} . A simple one is as follows. For any trajectory there is a point y such that the length of $(\gamma_t(y): -\infty < t \leq 0)$ is equal to 1. As the set of all such y is seen to be homeomorphic to the unit sphere in E^{2n+1} , we choose one homeomorphism. Then any trajectory in M is mapped to an open half line starting at origin 0 in E^{2n+1} by the arc-length. Q.E.D.

2. In this section we assume that a K-contact manifold M is a product $R \times B$ of real line and an almost Kähler manifold $B = M/\xi$ such that a contact form is a connection form. Suppose $\gamma \in \Phi - \mathbf{A}$, then $\gamma^* \eta = \alpha \eta$ and $\gamma \xi = \alpha \xi$ for some constant α . So γ maps a leaf of ξ into another leaf, hence γ induces a transformation $\widetilde{\gamma}$ of B such that $\widetilde{\gamma \pi} = \pi \gamma$.

(i). γ is a homothety.

Proof. An almost Kähler structure $(\widetilde{\phi}, \widetilde{g})$ in B is defined by

$$\widetilde{\phi}\widetilde{X} = \pi\phi\widetilde{X}^*,$$

 $\widetilde{g}(\widetilde{X},\widetilde{Y}) = g(\widetilde{X}^*,\widetilde{Y}^*)$

for $\widetilde{X}, \widetilde{Y}$ in $\mathfrak{X}(B)$, [2]. And the relation

$$\gamma \widetilde{X}^* = (\widetilde{\gamma} \widetilde{X})^*$$

follows from the uniqueness of the horizontal lift and $\tilde{\gamma}\pi = \pi\gamma$. Then, from $\gamma^*g = \alpha g + \alpha(\alpha - 1)\eta \cdot \eta$, we can deduce

$$(\widetilde{\gamma} * \widetilde{g})(\widetilde{X}, \widetilde{Y}) = \alpha \widetilde{g}(\widetilde{X}, \widetilde{Y}).$$

(ii). $\widetilde{\gamma}$ is almost analytic.

First, utilyzing $\gamma \phi = \phi \gamma$, we can show

$$\widetilde{\gamma} \, \widetilde{\phi} \widetilde{X} = \pi \phi \gamma \widetilde{X}^*,$$

from which we have $\widetilde{\gamma}\widetilde{\phi} = \widetilde{\phi}\widetilde{\gamma}$. Summarizing the results we get

THEOREM B. Suppose that a K-contact manifold M is an R-product bundle over an almost Kähler manifold $B = M/\xi$. If B does not admit any (non-isometric) homothety which is almost analytic, we have $\Phi = \mathbf{A}$.

It is known that every homothety of a complete Riemannian manifold which is not locally flat is necessarily an isometry [3]. And as the completeness of M/ξ follows from that of M, we can state

THEOREM C. If a complete K-contact manifold M is an R-product bundle over an almost Kähler manifold M/ξ which is not locally flat, then $\Phi = \mathbf{A}$.

References

- S. TANNO, Some transformations on manifolds with almost contact and contact metric structures, I, II, Tôhoku Math. Journ., 15(1963), 140-147, 322-331.
- [2] ____, On fiberings of some non-compact contact manifolds, Tôhoku Math. Journ., 15(1963), 289-297.
- [3] S. KOBAYASHI, A theorem on the affine transformation group of a Riemannian manifold, Nagoya Math. Journ., 9(1955), 39-41.

TÔHOKU UNIVERSITY.