REMARKS ON 4 DIMENSIONAL DIFFERENTIABLE MANIFOLDS

HIDEKIYO WAKAKUWA

/Received February 20,1963\ ^Revised January 25,1964 '

Let X_4 be 4-dimensional differentiable manifold and let $B(X_4, Y, G)$ be an arbitrary tensor bundle over X_4 , where Y is a linear space of dimension 4^{p+q} with coordinates $(y_{j_1...j_q}^{i_1...i_p})^{\dagger}$. It is well known ([1]) that the structural group *G* of $B(X_4, Y, G)$ is reducible to the orthogonal group $O(4)$. And if X_4 is orientable, then it is easily seen that G is reducible to $SO(4)$ or one of its subgroups. If especially Y is a 4^2 -dimensional linear space with coordinates *(yj),* then the matrix representation of *SO(4)* or its subgroup operates on *Y* as matrix transformations.

The purpose of this note is first to show the existence of two intrinsic (1-1)-type tensor bundles over X_4 , which are subbundles of $B(X_4,Y,G)$ and to show the existence or non existence of cross sections of the two intrinsic subbundles wholly depends on the group *G* (§2). These are owing to the speciality of $SO(4)$.

Secondly, we classify X_4 following the structural group G and study further on each classes case by case ($\S3 \sim \S7$).

1. Preliminary. The local subgroups of *SO{A)* are treated by Otsuki [2] in the standpoint of holonomy groups of 4-dimensional Riemannian mani folds. And the classification of structural equations of all connected sub groups of $SO(4)$ is done by Ishihara [3] making use of the structural equation of $SO(4)$ indicated by Chern [4]. We will consider it in another point of view and will do the classification of the connected subgroups of $SO(4)$ in a different way.

As is known, $SO(4)$ is locally represented as $SO(4)=SU(2)\otimes SU(2)$. $SU(2)$ leaves invariant an anti-involution of the second kind and *SU(2)®SU(2)* leaves invariant that of the first kind which is the Kronecker product of the anti involutions left invariant by the two $SU(2)$ (Cartan [5]; Berger [6]). $SO(4)$ is the real representation of the group $SU(2) \otimes SU(2)$ restricted on the double element (real dimension 4) of the anti-involutions (see Appendix 1^o). Let $\hat{\mathfrak{s}}_1$ and $\$_2$ be the complexifications of the Lie algebras of the first and the second *SU*(2). \mathfrak{s}_1 and \mathfrak{s}_2 are of complex dimension 3. Then $\mathfrak{s} = \mathfrak{s}_1 + \mathfrak{s}_2$ (direct sum)

¹⁾ Throughout this paper, the indices i_1 , j_1 , $i,j,a,b,$ \cdots run from 1 to 4, unless otherwise stated. This tensor is of type $(p-q)$.

is the complexification of the Lie algebra of $SO(4)$. Let $\pi_1 : \S \to \S_1$ and $\pi_2 : \S$ \rightarrow $\hat{\mathbb{S}}_2$ be the natural projections, so that $\pi_1(\hat{\mathbb{S}}) = \hat{\mathbb{S}}_1, \pi_2(\hat{\mathbb{S}}) = \hat{\mathbb{S}}_2$.

First, we consider a connected subgroup G of *SO(4)* irreducible in real number field. If G is reducible in complex number field, we get *G = U(2)* or *SU(2)* (real rep.) and any other cases can not occur. For, if *G* is a proper subgroup of $SU(2)$, its dimension is ≤ 2 and hence G is integrable. In this case G leaves invariant a real direction or real 2-dimensional plane²), but this is impossible. Consider the case *G* is still irreducible in complex number field (absolutely irreducible). Let g be the Lie algebra of *G* and we denote the complexification of $\mathfrak g$ by $\mathfrak g^*$. As is well known (Cartan [7]), $\mathfrak g^*$ is semisimple or semi-simple mod t^1 , where t^1 is the Lie algebra of the complex homothetic group (complex dimension 1). We consider the case g^* is semi- ${\rm simple.~Then,}~~ \pi_1(g^*)\subseteq \mathbb{S}_1 ~~~{\rm and}~~~{\rm the~~kernel}~~~\mathfrak{g}_1=\pi_1^{-1}(0)~~(\subseteq \mathbb{S}_2)~~{\rm is}~~{\rm an}~~{\rm ideal}~~{\rm in}$ g*. If the dimension of this kernel is equal to 1 or 2, then it is integrable. Since we now consider the case where g^* is semi-simple, we must have g_i $= 0$ or $\hat{\mathbb{S}}_2$ (in the case where dim $\mathfrak{g}_1 = 3$, we have $\mathfrak{g}_1 = \hat{\mathbb{S}}_2$). It is analoguous $\text{for the kernel } \mathfrak{g}_2 = \pi_2^{-1}(0) : \mathfrak{g}_2 = 0 \text{ or } \mathfrak{s}_1$. If $\mathfrak{g}_1 = \mathfrak{s}_2$ and $\mathfrak{g}_2 = \mathfrak{s}_1$, we get \mathfrak{g}^* $= \hat{s}_1 + \hat{s}_2$, hence $G = SO(4)$. If $g_1 = 0$, $g_2 = \hat{s}_1$ (resp. $g_1 = \hat{s}_2$, $g_2 = 0$), we get $* =$ \hat{s}_1 (resp. $\hat{s}^* = \hat{s}_2$), hence $G = SU(2)$ (real rep.), which is the case where G is reducible in complex number field. Consider the case $g_1 = g_2 = 0$. If dim 9^* < 3, then 9^* is integrable, which is impossible. If dim $9^* = 3$, we can verify that G leaves invariant a real direction (see Appendix 2°), whose case is omitted in the present consideration. If g^* is not semi-simple, g^* contains the Lie algebra t^1 . In this case, it is possible only one case: $G =$ $SU(2) \otimes T^1 = U(2)$ (real rep.), where T^1 is the one dimensional torus group. But, this is the case where G is reducible in complex number field, which is already considered.

Summing up, if a connected subgroup of $SO(4)$ is irreducible in real number field, then G is one of the followings:

$$
SO(4), U(2), SU(2).
$$

If G is reducible in real number field, then either it leaves invariant mutually orthogonal 1- and 3-dimensional planes, or two 2-dimensional planes.

Hence we get the following lemma.

LEMMA 1.1. *We can sum up all connected Lie subgroups of SO(4) as follows:*

(I) $($ *irreducible in real number field*); $SO(4)$, $U(2)$, $SU(2)$;

²⁾ When G leaves invariant a complex direction z, then *G* also leaves invariant the conju gate direction \bar{z} . Hence the 2-dimensional real plane spanned by z and \bar{z} is left invariant by G.

(II) (reducible in real number field): $1 \times SO(3)$, $SO(2) \times SO(2)$, $1 \times SO(2)$, $SO(2) \times SO(2)$, $SO(2) \times SO(2)$, 1.

The notations are as follows. The Lie algebras of $SO(2) \times SO(2)$, $SO(2)$ \times SO(2), SO(2) \times SO(2) are given by matrices of the form :

$$
SO(2)\times SO(2): \quad \begin{pmatrix} 0 & \lambda & & & & 0 \\ -\lambda & 0 & & & & 0 \\ & & & & & & \end{pmatrix} \quad (\lambda, \mu) \text{ independent}),
$$
\n
$$
SO(2)\times SO(2): \quad \begin{pmatrix} 0 & \lambda & & & & 0 \\ -\lambda & 0 & & & & 0 \\ & & & & & & \end{pmatrix} \quad (k: \text{ const.} \neq 0, \pm 1),
$$
\n
$$
SO(2)\times SO(2): \quad \begin{pmatrix} 0 & \lambda & & & & 0 \\ -\lambda & 0 & & & & 0 \\ & & & & & & \end{pmatrix} \cdot (k: \text{ const.} \neq 0, \pm 1),
$$
\n
$$
SO(2)\times SO(2): \quad \begin{pmatrix} 0 & \lambda & & & & 0 \\ -\lambda & 0 & & & & & \end{pmatrix}.
$$

If $k = -1$ in the case of $SO(2) \times SO(2)$, we consider the frame with opposite orientation, then we get the case of $SO(2) \times SO(2) \times SO(2) \times SO(2)$, $SO(2) \times SO(2)$, $1 \times SO(2)$ are subgroups of $U(2)$, but not of $SU(2)$. $SO(2) \times$ $SO(2)$ is a subgroup of $SU(2)$ (see Appendix 3°). The relations among them are summed up in the following table.

Now, we get the following lemma.

LEMMA 1. 2. *Let* X⁴ *be an orientable A-dimensional dijferentiable manifold and denote an arbitrary tensor bundle over* X⁴ *by B(Xiy Y, G), where Y is a linear space of dimension* 4^{p+q} with coordinates $(y_{j_1...j_p}^{i_1...i_p})$. Then the group *G is reducible to one of the groups indicated in Lemma* 1. 1.

2. Two intrinsic (1-1)-tensor bundles associated X_4 . First, let I_1 , J_1 , K_1 and I_2 , J_2 , K_2 be the matrices such that

We remark that if we put

(2. 3)
$$
\lambda = \begin{pmatrix} 1 & 0 \\ & 1 & \\ & & 1 \\ 0 & & -1 \end{pmatrix},
$$

then we have

(2. 4)
$$
I_2 = \lambda I_1 \lambda^{-1}, \ J_2 = \lambda J_1 \lambda^{-1}, \ K_2 = \lambda K_1 \lambda^{-1}.
$$

These I_1 , J_1 , K_1 and I_2 , J_2 , K_2 satisfy the quaternic relations:

(2. 5)
\n
$$
\begin{cases}\nI_1^2 = J_1^2 = K_1^2 = -1; I_1 J_1 = -J_1 I_1 = K_1, J_1 K_1 = -K_1 J_1 = I_1, \\
K_1 I_1 = -I_1 K_1 = J_1; \\
I_2^2 = J_2^2 = K_2^2 = -1; I_2 J_2 = -J_2 I_2 = K_2, J_2 K_2 = -K_2 J_2 = I_2, \\
K_2 I_2 = -I_2 K_2 = J_2.\n\end{cases}
$$

And we also remark that each I_1 , J_1 , K_1 is commutative with each I_2 , J_2 , K_2 Now, any transformation of *SO(4)* decomposes into

$$
(2. 6)1 \begin{cases} x' = a_0x - a_1y - a_2u - a_3v \\ y' = a_1x + a_0y - a_3u + a_2v \\ u' = a_2x + a_3y + a_0u - a_1v \\ v' = a_3x - a_2y + a_1u + a_0v \end{cases}, (2. 6)2 \begin{cases} x' = b_0x - b_1y - b_2u - b_3v \\ y' = b_1x + b_0y + b_3u - b_2v \\ u' = b_2x - b_3y + b_0u + b_1v, \\ v' = b_3x + b_2y - b_1u + b_0v \\ (b_0^2 + b_1^2 + b_2^2 + b_3^2 = 1) \end{cases}
$$

where (x, y, u, v) is a real vector in the 4-dimensional Euclidean space E^4 with respect to orthogonal bases. These equations are indicated in Chern [4] (see Appendix 1°).

We can see that under the transformation (2.6) ₁, I ₁, J ₁, K ₁ are left invariant and under the transformation $(2.6)_2$, each of them is transformed into a linear combination of I_1, J_1, K_1 . Similarly, I_2, J_2, K_2 are left invariant by $(2.6)_2$ and each of them is transformed into a linear combination of I_2 , J_2 , K_2 by (2.6)₁. That is, by $SO(4)$, the matrices I_1 , J_1 , K_1 (resp. I_2 , J_2 , K_2) are transformed into the matrices I'_{1} , J'_{1} , K'_{1} (resp. I'_{2} , J'_{2} , K'_{2}), such that

158

$$
(2. 7)1 \begin{cases} I'_{1} = \alpha_{1}I_{1} + \beta_{1}J_{1} + \gamma_{1}K_{1} \\ J'_{1} = \alpha_{1}I_{1} + \beta_{1}J_{1} + \gamma_{1}'K_{1} \\ K'_{1} = \alpha_{1}''I_{1} + \beta_{1}''J_{1} + \gamma_{1}''K_{1} \end{cases}
$$

$$
(2. 7)2 \begin{cases} I'_{2} = \alpha_{2}I_{2} + \beta_{2}J_{2} + \gamma_{2}K_{2} \\ J'_{2} = \alpha_{2}'I_{2} + \beta_{2}'J_{2} + \gamma_{2}'K_{2} \\ K'_{2} = \alpha_{2}''I_{2} + \beta_{2}''I_{2} + \gamma_{2}''K_{2} \end{cases}
$$

The matrices $\begin{pmatrix} \alpha_{1} & \beta_{1} & \gamma_{1} \\ \alpha_{1}' & \beta_{1}' & \gamma_{1}' \\ \alpha_{1}'' & \beta_{1}'' & \gamma_{1}'' \end{pmatrix}$ and $\begin{pmatrix} \alpha_{2} & \beta_{2} & \gamma_{2} \\ \alpha_{2}' & \beta_{2}' & \gamma_{2}' \\ \alpha_{2}'' & \beta_{2}'' & \gamma_{2}'' \end{pmatrix}$ are

orthogonal matrices, which are easily verified from (2. 5) and from the same r relations among I'_1 , J'_1 , K'_1 (resp. I'_2 , J'_2 , K'_2).

A transformation of $SO(4)$ in a neighborhood of the identity is given by $\exp \alpha$, where

$$
\alpha = \begin{pmatrix}\n0 & a & b & c \\
-a & 0 & d & e \\
-b & -d & 0 & f \\
-c & -e & f & 0\n\end{pmatrix}^{3}
$$

is a matrix in a neighborhood of the 0-matrix. For this α , we can verify that

(2. 8)
\n
$$
\begin{cases}\n\alpha I_1 - I_1 \alpha = (c - d) J_1 - (b + e) K_1 \\
\alpha J_1 - J_1 \alpha = (a - f) K_{1} - (c - d) I_1 \\
\alpha K_1 - K_1 \alpha = (b + e) I_1 - (a - f) J_1, \\
\alpha I_2 - I_2 \alpha = -(c + d) J_2 - (b - e) K_2 \\
\alpha J_2 - J_2 \alpha = (a + f) K_2 + (c + d) I_2 \\
\alpha K_2 - K_2 \alpha = (b - e) I_2 - (a + f) J_2.\n\end{cases}
$$

LEMMA 2.1 . *The necessary and sufficient condition that* α(4 x *4)-matrix A* satisfy $A^2 = -1$ is that $A = \alpha I_1 + \beta J_1 + \gamma K_1$ $(\alpha^2 + \beta^2 + \gamma^2 = 1)$ or $A =$ $\alpha' I_2 + \beta' J_2 + \gamma' K_2 \ (\alpha'^2 + \beta'^2 + \gamma'^2 = 1)$, where I_1 , J_1 , K_1 or I_2 , J_2 , K_2 are given *by* (2.1), (2.2).

³⁾ This matrix decomposes into the form (6) in the Appendix 1°.

PROOF. The sufficiency easily follows from (2.5). Conversely, suppose that A satisfy $A^2 = -1$. By an orthogonal transformation M, we can trans form A into $A' = MAM^{-1}$ which is just the same as I_1 in (2.1). First, sup pose that $\det|M| = 1$. Under the present transformation by M, I_1 , J_1 , K_1 are transformed into I'_1 , J'_1 , K'_1 such that (see $(2.7)_1$)

$$
\begin{cases}\nA' (= I_1) = \alpha_1 I_1' + \alpha_1' J_1' + \alpha_1'' K_1' \\
J_1 = \beta_1 I_1' + \beta_1' J_1' + \beta_1'' K_1' \\
K_1 = \gamma_1 I_1' + \gamma_1' J_1' + \gamma_1'' K_1'\n\end{cases}
$$

If we consider the first equation with respect to the original coordinate system, we see that $A = \alpha_1 I_1 + \alpha'_1 J_1 + \alpha''_1 K_1$ and $\alpha_1^2 + \alpha_1'^2 + \alpha_1'^2 = 1$.

If det $|M| = -1$, we can put $M = \lambda$ M_0 , where λ is given by (2.3) and det $|M_0| = 1$. From $MAM^{-1} = I_1$, we have $M_0AM_0^{-1} = \lambda^{-1}I_1\lambda = I_2$. In this case, $\alpha_2 \mathbf{R}_2 + \alpha_2' \mathbf{I}_2 + \alpha_2' \mathbf{I}_2 + \alpha_2'' \mathbf{K}_2 \ (\alpha_2^2 + \alpha_2'^2 + \alpha_2'^2)$ $Q.E.D.$

Now, let Y be a linear space of dimension 4^2 with coordinates $(y_j)(i, j)$ $= 1, 2, 3, 4$. We denote the subspace of Y which is the set of all matrices $\alpha I_1 + \beta J_1 + \gamma K_1 \; (\alpha^2 + \beta^2 + \gamma^2 = 1)$ by Y_1 . Similarly, we denote the subspace of *Y* which is the set of all matrices $\alpha' I_2 + \beta' J_2 + \gamma' K_2$ $(\alpha'^2 + \beta'^2 + \gamma'^2 = 1)$ by Y_2 . Any matrix A of Y_1 or Y_2 satisfies $A^2 = -1$ by Lemma 2.1 and we can write symbolically $\lambda Y_1 \lambda^{-1} = Y_2$, taking account of (2.4).

By virtue of (2.7), these subspaces Y_1 and Y_2 are invariant under $SO(4)$.

DEFINITION. Let Y , Y_1 , Y_2 be as in the above and let $B(X_4, Y, G)$ be the $(1-1)$ -type tensor bundle over X_4 , where G is $SO(4)$ or one of its con nected subgroups which are indicated in §1. As is well known, with the same base space X_4 and group G, there exist two subbundles of $B(X_4, Y, G)$ with fibre Y_1 and Y_2 . We denote these subbundles by $B_1(X_4, Y_1, G)$ and $B_2(X_4, Y_2, G)$ *G)* respectively.

THEOREM 2.1. Let X_4 be an orientable 4-dimensional differentiable *manifold. Then we can associate to* $X₄$ *intrinsically two (1-1)-type tensor bundles* $B_1(X_4, Y_1, G)$ and $B_2(X_4, Y_2, G)$, where G is SO(4) or one of its *connected subgroups.*

And with respect to the cross sections we can state as follows.⁴⁾

1° *Any of the two bundles does not admit cross sections if and only if* $G = SO(4), 1 \times SO(3).$

2° *One of the two bundles and only one admits at least a cross section*

⁴⁾ Hereafter, if we denote $G = U(2)$ for instance, then we mean that the G of $X₄$ is reducible to $U(2)$, but not to any connected proper subgroup of $U(2)$.

if and only if $G = U(2)$ *, SU(2).*

 3° Both of them admit cross sections if and only if $G = SO(2) \times SO(2)$, *SO(2)* \times *SO(2)*, *SO(2)* \times *SO(2)*, 1 \times *SO(2)*, 1.

In the cases 2° *and* 3°, X⁴ *admits at least an almost complex structure.*

PROOF. a) In order that the bundle $B_1(X_4, Y_1, G)$ or $B_2(X_4, Y_2, G)$ admits a cross section, it is necessary and sufficient that $G\!\subseteq\!U\!(2)$ (i.e. X_4 admits an almost complex structure), which follows at once from Lemma 2.1. This proves 1° and a part of 2°.

b) It is remained for us only to prove that if the bundles B_1 and B_2 admit cross sections simultaneously, then $G \neq U(2)$, $SU(2)$. If B_1 and B_2 together admit cross sections, then X_4 admits two almost complex structures *a*(*x*) and *b*(*x*) (*x* \in *X*₄), where *a*² = *b*² = -1. And we see that *a* \neq \pm *b* by virtue of (2.1) and (2.2). Hence the tensor field $c(x) = a(x) b(x)$ over X_4 gives a non-trivial almost product structure: $c^2 = 1$. This means that G can be reducible to a group reducible in real number field, so that *G* is one of the groups indicated in 3° . This proves 2° and 3° . Q. E. D.

In the general tensor bundle $B(X_4, Y, G)$, G is one of the subgroups indicated in $(1, 1)$. In the following, we will consider such X_i 's, the coordi nate neighborhood being given by (x^i) $(i=1,2,3,4)$.

3. X_4 with $G = 1 \times SO(3)$. If $G = 1 \times SO(3)$, G leaves invariant a matrix of the form

$$
Y^* = \begin{pmatrix} -1 &&&0\\ &&1&&\\ &&&1&\\ &&&&1&\\ &&&&&1\end{pmatrix},
$$

with respect to a suitable orthogonal coordinate system. And $B(X_4, Y^*, G)$ is a subbundle of $B(X_4, Y, G)$. This subbundle admits a cross section, which is an *almost product structure*: $a(x) = (a_j^{\dagger}(x))$ over X_4 so that $a^2 = 1$. If we put $p = \frac{1}{2}(1 - a)$, $q = \frac{1}{2}(1 + a)$, that is

$$
p_j^{\,i} = \frac{1}{2} \,(\delta_j^{\,i} - a_j^{\,i}), \; q_j^{\,i} = \frac{1}{2} \,(\delta_j^{\,i} + a_j^{\,i}),
$$

then $p = (p_j^i)$, $q = (q_j^i)$ are projection tensors so that $p^2 = p$, $q^2 = q$, $p + q = 1$

(Walker, [9], [10]). They define two complementary distributions *D, U* over X_4 respectively. The rank of (p_j) and hence the dimension of D is 1. D is always integrable. The rank of (q_i^i) and hence the dimension of D' is 3. On the other hand in order that the distribution D' defined by $p_j^*dx^j = 0$ be completely integrable, it is necessary and sufficient that $\partial_{[a}p_{b]}{}^{i}q_{j}{}^{a}q_{k}{}^{b}=0$ or

(3. 1)
$$
N_{jk}{}^{i} + N_{ja}{}^{i} a_{k}{}^{a} = 0,
$$

where N_{jk} ^{*i*} is the Nijenhuis tensor of a_j *^{<i>i*}:</sub>

$$
N_{jk}^{\ \ i} = \frac{1}{2} \left[a_{1j}^{\ a} \partial_{|a|} a_{k1}^{\ \ i} - a_{1j}^{\ a} \partial_{k1} a_{k1}^{\ \ i} \right].
$$

The condition (3.1) is equivalent to $N_{jk}^i = 0$, since the relation N_{jk}^i N_{ja} ² a_k ^a = 0 corresponding to the integrability condition for q_j ³ $d x^j = 0$ is always satisfied.

Summing up, the X_4 under consideration is as follows:

(i) *There exists an almost product structure.*

(ii) *There exist two complementary distributions D, D' of dimension* 1 *and* 3 *respectively. The distribution D is always integrable.*

Furthermore, in this manifold, there exist a non singular symmetric tensor field a_{ij} with signature $(++-)$ and two symmetric tensor fields of rank 1 and 3.

An example is $R^1 \times S^3$. In this case, $N_{jk}^i \equiv 0$.

4. X_4 with $G = U(2)$ or $SU(2)$. A transformation T of $U(2)$ decomposes into (4) and (7) in the Appendix 1°. In this case, we can easily verify that

> $TI_1T^{-1} = I_1$ $TJ_1T^{-1} =$ $lJ_1 + mK_1$ $(l^2 + m^2 = 1).$ $TK_1T^{-1} = -mJ_1 + lK_1$

Hence I_1 is invariant by $U(2)$ and this gives rise a cross section in $B(X_4, \mathbb{Z})$ *Y*₁, *G*) which is an almost complex structure $\phi(x) = (\phi_j^{\dagger}(x))$ in *X*₄. On the other hand, if we put

$$
A = \alpha J_1 + \beta K_1 \qquad (\alpha^2 + \beta^2 = 1),
$$

then $A^2 = -1$, and we denote the set of all such A 's by Y'. There exists a subbundle $B'_1(X_4, Y'_1, G)$ of $B_1(X_4, Y_1, G)$. If this subbundle admits a cross section, then it gives rise another almost complex structure $\psi(x) = (\psi_j^i(x))$ in X_4 and we can easily see that $\tau(x) = \phi(x) \cdot \psi(x) = -\psi(x) \cdot \phi(x)$ gives the third almost complex structure. In this case, *G* is reducible to *SU(2).*

Consequently, *if the structural group G is U{2) or one of its subgroups, then we can associate a* (1-1)-type tensor bundle $B'_1(X_4, Y'_1, G)$, which is a sub*bundle of* $B_1(X_4, Y_1, G)$ *. If this subbundle admits a cross section, then G is reducible to SU(2) or one of its subgroups and vice versa.*

1) $G = U(2)$. According to the vanishing or non vanishing of the Nijenhuis tensor N_{jk} ⁱ of ϕ_j^i we can classify X_4 into two classes, which is well known.

Furthermore, since there exist Riemannian metrics such that *g^a bΦί^a φf* $= g_{ij}$, we put $\phi_{ij} = g_{ja}\phi_i^a$ and $\phi_{ijk} = \partial_{ik}\phi_{ij}$. With respect to such a metric g_{ij} , X_4 is classified according to the vanishing or non vanishing of ϕ_{ijk} .

An example is the two dimensional complex projective space (in its real representation). In this case, $N_{jk}^i = \phi_{ijk} = 0$, the Riemannian metric g_{ij} being kählerian to the complex structure ϕ_i^i .

2) $G = SU(2)$. In this case, as has been shown, there are three almost complex structures $\phi = (\phi_j^i)$, $\psi = (\psi_j^i)$, $\tau = (\tau_j^i)$ such that $\phi \psi = -\psi \phi = \tau$, $\psi \tau$ $=-\tau \psi = \phi$, $\tau \phi = -\phi \tau = \psi$. The set of ϕ, ψ, τ is the so-called almost quater nion structure. Let $N_{jk}^i(\phi)$, $N_{jk}^i(\psi)$, $N_{jk}^i(\tau)$ be the Nijenhuis tensor of ϕ, ψ, τ respectively, then the following theorem is known ([11], Cor. 2 to Thm. 10. 4):

THEOREM. $N_{jk}^i(\phi)$, $N_{jk}^i(\psi)$, $N_{jk}^i(\tau)$ vanish identically if any two of them vanish identically.

Hence, X_4 is classified into one of the followings:

- (1) Any one of $N_{jk}(\phi)$, $N_{jk}(\psi)$, $N_{jk}(\tau)$ does not vanish.
- 2) *One and only one of the above three Nijenhuis tensors vanish.*
- 3) *All of them vanish.*

Now, since it is known that there exist Riemannian metrics hermitian with respect to all ϕ, ψ, τ ([11]), we put $\psi_{ij} = g_{ja} \psi_i^a$, $\tau_{ij} = g_{ja} \tau_i^a$, and $\psi_{ijk} =$ $\partial_{\mu} \psi_{ijl}$, $\tau_{ijk} = \partial_{\mu} \tau_{ijl}$. The following theorem is known.

THEOREM. $N_{jk}^{i}(\phi)$, ψ_{ijk} , τ_{ijk} vanish identically if any two of them vanish identically ([12], Thm. 5. 3).

Hence, with respect to such a Riemannian metric g_{ij} , X_4 is classified into one of the following types.

- (i) Any one of $N_{jk}^{\{i\}}(\phi)$, ψ_{ijk} , τ_{ijk} does not vanish.
- (ii) *One and only one of the above three tensors vanish.*
- (iii) *All of them vanish.*

An example is the manifold of the tangent bundle of a 2-dimensional diffe rentiable manifold (cf. the last part of §8).

5. X_4 with $G = SO(2) \times SO(2)$. As mentioned in §1, the Lie algebra of *G* is given by the matrices of the form

with respect to a suitable orthogonal coordinate system. And *G* leaves inva riant the matrices I_1 and I_2 in (2.1) and (2.2). I_1 and I_2 are commutative: $I_1I_2 = I_2I_1$, and these I_1,I_2 give rise cross sections in $B_1(X_4, Y_1, G), B_2(X_4, Y_2, G)$, which are almost complex structures $\phi = (\phi_i^i)$, $\phi' = (\phi_i^i)$ in X_i . And we see that $\phi \phi' = \phi' \phi$. If we put $\pi = -\phi \phi'$, that is, $\pi_j^i = -\phi_j^a \phi_a'^i$, then we see that π is an almost product structure in X_4 . The normal form of π is such that

$$
\pi = \begin{pmatrix} 1 & & & & 0 \\ & 1 & & & \\ & & -1 & & \\ & & & -1 & \\ 0 & & & & -1 \end{pmatrix}.
$$

There are relations as follows:

(5. 1) $a^2 = \phi^2 = -1, \ \pi^2 = 1; \ \phi\phi' = \phi'\phi = -\pi, \ \phi'\pi = \phi, \ \pi\phi = \phi'.$

This system (ϕ, ϕ', π) is the so-called *almost complex product structure* (of the second kind) ([13], p. 394).

We can sum up the general properties of X_4 as in the followings, where b), c) are easily verified as in the case $G = 1 \times SO(3)$.

a) *There exists a so-called almost complex product structure of the 2nd hind.*

b) *There exist two complementary distributions D, Ό' of dimension* 2.

In this manifold there exist a non singular symmetric tensor field with signature $(+ + -)$ and two symmetric tensor fields of rank 2.

Next, we will classify the X_4 . Let $N_{jk}^i(\phi)$, $N_{jk}^i(\phi')$, $N_{jk}^i(\pi)$ be the Nijenhuis tensor of *φ,φ',τr* respectively. Then we know that the vanishing of any two of N_{jk} ^{*i*}(φ), N_{jk} ^{*i*}(φ'), N_{jk} ^{*i*}(π) implies the vanishing of the remaining one $([14])$.

The integrability conditions of the distributions *D* and *D'* are given by the followings respectively:

$$
n_{jk}{}^{i}(D) \equiv N_{jk}{}^{i}(\pi) - N_{ja}{}^{i}(\pi) \pi_{k}{}^{a} = 0, \ n_{jk}{}^{i}(D') \equiv N_{jk}{}^{i}(\pi) + N_{ja}{}^{i}(\pi) \pi_{k}{}^{a} = 0.
$$

The X_4 is one of the following types.

(5.2)

- $($ i $)$ *Any of the tensors* $N_{jk}^{i}(\phi)$, $N_{jk}^{i}(\phi')$, $N_{jk}^{i}(\pi)$, $n_{jk}^{i}(D)$, $n_{jk}^{i}(D')$ does not *vanish.*
- (ii) $n_{jk}(D) = 0$; the others do not vanish. In this case, the distribution *D* is integrable.

(5.3) (iii) $N_{jk}^{\{k\}}(\pi) = 0$, $n_{jk}^{\{k\}}(D) = 0$, $n_{jk}^{\{k\}}(D') = 0$; the others do not vanish.

- In this case, the distributions *D* and *D'* are both integrable.
- (iv) $N_{jk}(\phi) = 0$; the others do not vanish. The almost complex structure *φ* is integrable.
- (v) N_{jk} ^{$(i\phi)$} $=$ 0, n_{jk} ^{(iD)} $=$ 0; the others do not vanish.
- (vi) *All tensors in* (i) *vanish.*

An example is $S^2 \times S^2$. This is the case (vi).

6. X_4 with $G = 1 \times SO(2)$. The Lie algebra of G is given by the matrix ices of the form:

$$
\begin{pmatrix}\n0 & 0 \\
\hline\n0 & 0 & \lambda \\
\hline\n-\lambda & 0\n\end{pmatrix}.
$$

Since this is a subgroup of $SO(2) \times SO(2)$, there exists in $X₄$ the almost complex product structure of the 2nd kind (5. 1). Although the properties (5.2) for $G = SO(2) \times SO(2)$ hold good, we can futhermore decompose the almost product structure $\boldsymbol{\pi} = (\boldsymbol{\pi}_j^i)$ as follows.

Evidently, *G* leaves invariant the matrices

$$
(6. 1) \qquad \left(\begin{array}{cc} 1 & 0 \\ & 0 \\ & & 0 \\ & & 0 \end{array}\right), \quad \left(\begin{array}{cc} 0 & 0 \\ & 1 \\ & 0 \\ & & 0 \end{array}\right), \quad \left(\begin{array}{cc} 0 & 0 \\ & 0 \\ & 1 \\ & & 1 \end{array}\right),
$$

and *B(X^A , Y, G)* admits cross sections corresponding to (6.1), which are tensor fields $p = (p_j^i)$, $q = (q_j^i)$, $r = (r_j^i)$ over X_4 . We see that

$$
(6. 2) \t p2 = p, q2 = q, r2 = r; pq = qr = rp = 0, p + q + r = 1,
$$

and furthermore $p + q - r = \pi$. The tensor fields p, q, r define complementary distributions *D, D', D''* of dimension 1, 1, 2 respectively. These distributions are defined by $(q_j^i + r_j^i)dx^j = 0$, $(p_j^i + r_j^i) dx^j = 0$, $(p_j^i + q_j^i) dx^j = 0$ respect ively. The 1-dimensional distributions *D, U* are always integrable. The integrability condition of the distribution D'' is $n_{jk}(D'') \equiv (\partial_{[a} p_{b]}^i + \partial_{[a} q_{b]}^i)$ $r_j^a r_k^b = 0$, which is equivalent to N_{jk} ^{*i*}(π) = 0.

The general properties of X_4 are summed up as follows. They are special cases of (5. 2).

- a) *All properties of* (5. 2) *hold good.*
- b) Especially the last property c) of (5.2) is stated more precisely as *follows: There exist three complementary distributions D,D\ D" defined by projection tensors p, q, r in* (6.2), where $p + q - r = \pi$. The *1-dimensional distributions D and D' are always integrable.*

And X_4 is classified into one of the following types:

- $/(i)$ *Any of N_{jk}*^{*i*}(ϕ), N_{jk}^{*i*}(ϕ'), N_{jk}^{*i*}(π) *do not vanish.*
- (ii) $N_{jk}(\pi)=0$; the others do not vanish. The distribution D' is integrable.
- (iii) *Njk(φ)=* 0; *the others do not vanish. The almost complex structure φ is integrable.*
- (iv) $N_{jk}(\phi) = N_{jk}(\phi') = N_{jk}(\phi) = 0.$

An example of such an X_4 is $R^2 \times S^2$. This is the case (iv).

REMARK. In the present X_4 , if we put $\pi_1 = p - q + r$, $\pi_2 = p - q - r$, then we can easily see that

$$
\pi^2=\pi_1^2=\pi_2^2=1,\; \pi\pi_1=\pi_1\pi=\pi_2,\; \pi_1\pi_2=\pi_2\pi_1=\pi,\; \pi_2\pi=\pi\pi_2=\pi_1.
$$

7. X_4 with $G = SO(2) \times SO(2)$. This is the case $\mu = k\lambda$ ($k \neq 0, \pm 1$) in §5. Hence, for the X_4 the general properties and the classification in §5 are *valid in the present case.*

The X_4 can not be a global product manifold $X_2 \times X_2'$, where X_2 and X'_2 are 2-dimensional differentiable manifolds. For, if $X_4 = X_2 \times X'_2$ (in the global sense), then the minimal connected subgroup containing the structural group is $SO(2) \times SO(2)$, $1 \times SO(2)$ or 1. But these are impossible (cf. footnote 4)).

8. X_4 with $G = SO(2) \leq SO(2)$. The Lie algebra of *G* is given by the matrices of the form

This is a special case of $G = SU(2)$ and $G = SO(2) \times SO(2)$, hence we can find in X_4 an almost quaternion structure (ϕ, ψ, τ) (see §4) and an almost complex product structure *(φ,φ\π)* (see §5). Furthermore, since *φ'* is commu tative with all ϕ, ψ, τ (see §5 and §2), we put

$$
\psi\phi'=\phi'\psi=-\pi_1,\ \tau\phi'=\phi'\tau=-\pi_2.
$$

Then (ψ, ϕ', π_1) , (τ, ϕ', π_2) are also almost complex product structures. The normal forms of π, π_1, π_2 are as follows:

$$
\pi = \left(\begin{array}{cc|cc} 1 & 0 & & & \\ 0 & 1 & & 0 & \\ & & & & \\ \hline & & & & \\ 0 & & & -1 & 0 \\ & & & & & \\ 0 & & & -1 \end{array}\right), \qquad \pi_1 = \left(\begin{array}{cc|cc} 0 & 0 & -1 & & \\ 0 & & 1 & 0 & \\ & & & & \\ \hline & & & & \\ 0 & 1 & & 0 & \\ & & -1 & 0 & \end{array}\right),
$$

An example of such an X_4 is the manifold of the tangent bundle of a 2-dimensional differentiable manifold (the details will be appear in another paper).

APPENDIX

1° (see §1). In $SO(4) = SU(2) \otimes SU(2)$, the transformations of the first and the second $SU(2)$ in a complex 2-dimensional linear space C^2 are given by

$$
(1)_1 \begin{cases} z_1' = az_1 + bz_2 \\ z_2' = -\overline{b}z_1 + \overline{a}z_2 \\ (a\overline{a} + b\overline{b} = 1), \end{cases} \qquad (1)_2 \begin{cases} w_1' = \alpha w_1 + \beta w_2 \\ w_2' = -\overline{\beta}w_1 + \overline{\alpha}w_2 \\ (\alpha\overline{\alpha} + \beta\overline{\beta}) = 1) \\ , \end{cases}
$$

where $(z_1, z_2) \in C^2$ and $(w_1, w_2) \in C^2$. (1), and (1)₂ leave invariant anti-invol utions of the second kind: $Z_1 = \overline{z}_2$, $Z_2 = -\overline{z}_1$ and $W_1 = \overline{w}_2$, $W_2 = -\overline{w}_1$ res pectively. If we put

$$
z_{ij}=z_i\otimes z_j \qquad (i,j=1,2),
$$

then a transformation of $SU(2) \otimes SU(2)$ is given by

(2)

$$
\begin{cases}\nz'_{11} = a\alpha z_{11} + a\beta z_{12} + b\alpha z_{21} + b\beta z_{22} \\
z'_{12} = -a\overline{\beta}z_{11} + a\overline{\alpha}z_{12} - b\overline{\beta}z_{21} + b\overline{\alpha}z_{22} \\
z'_{21} = -\overline{b}\alpha z_{11} - \overline{b}\beta z_{12} + \overline{a}\alpha z_{21} + \overline{a}\beta z_{22} \\
z'_{22} = \overline{b}\overline{\beta}z_{11} - \overline{b}\alpha z_{12} - \overline{a}\overline{\beta}z_{21} + \overline{a}\overline{\alpha}z_{22} \n\end{cases}
$$

This transformation leaves invariant an anti-involution of the first kind:

$$
Z_{11}=\overline{z}_{22},\ Z_{12}=-\overline{z}_{21},\ Z_{21}=-\overline{z}_{12},\ Z_{22}=\overline{z}_{11}.
$$

which is the Kronecker product of the preceding two anti-involutions. The

double element of this anti-involution (real dimension 4) is defined by z_1 $=\overline{z}_{22}, z_{12}=-\overline{z}_{21}$. $SO(4)$ is the restriction of (2) on this double element. If $(1)_2$ is the identity, then (2) reduces to

(3)

$$
\begin{cases}\nz'_{11} = az_{11} + bz_{21} \\
z'_{12} = az_{12} + bz_{22} \\
z'_{21} = -bz_{11} + \overline{az}_{21} \\
z'_{22} = -\overline{bz}_{12} + \overline{az}_{22} + \overline{az}_{22}\n\end{cases}
$$

If we put

 $z_{11} = z_{22} = x + \sqrt{-1} y$, $z_{12} = -z_{21} =$ $= a_2 + \sqrt{-1} a_3$, then (3) becomes

(4)
\n
$$
\begin{cases}\nx' = a_0x - a_1y - a_2u - a_3v \\
y' = a_1x + a_0y - a_3u + a_2v \\
u' = a_2x + a_3y + a_0u - a_1v \\
v' = a_3x - a_2y + a_1u + a_0v\n\end{cases}
$$
\n
$$
(a_0^2 + a_1^2 + a_2^2 + a_3^2 = 1).
$$

If $(1)_1$ is the identity and if we put $\alpha = b_0 + \sqrt{-1} b_1$, $\beta = -b_2$ then we get similarly

(5)

$$
\begin{cases}\nx' = b_0x - b_1y - b_2u - b_3v \\
y' = b_1x + b_0y + b_3u - b_2v \\
u' = b_2x - b_3y + b_0u + b_1v \\
v' = b_3x + b_2y - b_1u + b_0v\n\end{cases}
$$
\n
$$
(b_0^2 + b_1^2 + b_2^2 + b_3^2 = 1).
$$

Any transformation of $SO(4)$ decomposes into (4) and (5) with respect to a fixed oriented orthogonal frame. (cf. $[4]$). The Lie algebra of $SO(4)$ is given by the matrices of the form:

(6)
$$
\begin{pmatrix} 0 & -(\lambda_1 + \lambda_1') & -(\mu_1 + \mu_1') & -(\nu_1 + \nu_1') \\ (\lambda_1 + \lambda_1') & 0 & -(\nu_1 - \nu_1') & (\mu_1 - \mu_1') \\ (\mu_1 + \mu_1') & (\nu_1 - \nu_1') & 0 & -(\lambda_1 - \lambda_2') \\ (\nu_1 + \nu_1') & -(\mu_1 - \mu_1') & (\lambda_1 - \lambda_1') & 0 \end{pmatrix}.
$$

If we put $\alpha \overline{\alpha} = 1$, $\beta = 0$ in $(1)_2$, then we obtain a transformation of $U(2)$. In this case, (5) turns into

(7)
$$
\begin{cases} x' = b_0 x - b_1 y \\ y' = b_1 x + b_0 y \\ u' = b_0 u + b_1 v \\ v' = b_0 u + b_0 v \end{cases}
$$
 $(b_0^2 + b_1^2 = 1).$

That is, a transformation of $U(2)$ decomposes into (4) and (7) with respect to a fixed oriented orthogonal frame.

 2° (see §1). If $\mathfrak{g}_1 = \mathfrak{g}_2 = 0$ and dim $\mathfrak{g}^* = 3$, then $\pi_1(\mathfrak{g}^*) = \frac{\mathfrak{g}}{2}$ and $\pi_2(\mathfrak{g}^*)$ $=$ $\mathbf{\hat{s}}_{2}$. In this case, we can consider that the bases of the real Lie algebra $\mathbf{\hat{s}}$ are given by

$$
X_1 - (lY_1 + mY_2 + nY_3), X_2 - (l'Y_1 + m'Y_2 + n'Y_3),
$$

\n
$$
X_3 - (l''Y_1 + m''Y_2 + n''Y_3),
$$

where X_1 , X_2 , X_3 and Y_1 , Y_2 , Y_3 are bases of the Lie algebras of (4) and (5) respectively. Furthermore, we can consider that the X 's and Y 's are so chosen that

$$
[X_1X_2] = X_3, [X_2X_3] = X_1, [X_3X_1] = X_2; [Y_1Y_2] = -Y_3, [Y_2Y_3] = -Y_1, [Y_3Y_1] = -Y_2.
$$

Hence we know that the matrix

(8) $\begin{array}{ccc} \langle & l & & m & & n \end{array}$ *m n I" m" n"*

is an orthogonal matrix and the determinant is equal to $+1$. In this case, among the constants of (6) there are relations such that

$$
\begin{cases}\n-\lambda_1' = l\lambda_1 + l'\mu_1 + l''\nu_1 \\
-\mu_1' = m\lambda_1 + m'\mu_1 + m''\nu_1 \\
-\nu_1' = n\lambda_1 + n'\mu_1 + n''\nu_1 \ .\n\end{cases}
$$

Since one of the characteristic roots of (8) is equal to $+1$, there exists a real vector (x_0, y_0, z_0) such that

$$
\begin{cases}\n(l-1)x_0 + my_0 + nz_0 = 0 \\
l'x_0 + (m'-1)y_0 + n'z_0 = 0 \\
l''x_0 + m''y_0 + (n''-1)z_0 = 0.\n\end{cases}
$$

Consequently, in the 4-dimensional Euclidean space $E⁴$, the real vector $(0, x_0, y_0, z_0)$ is invariant under G , taking account of (6) .

 3° . a) $1 \times SO(3)$ *is not a subgroup of U(2).* With respect to a suitable orthogonal coordinate system, a transformation of $G = 1 \times SO(3)$ in a neighborhood of the identity is given by exp σ, where *σ* is of the form

$$
\sigma = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & d & e \\ 0 & -d & 0 & f \\ 0 & -e & -f & 0 \end{pmatrix}
$$

If G is a subgroup of $U(2)$, then it leaves invariant a matrix A such that $A^2 = -1$. According to Lemma 2.1, we have $A = \alpha I_1 + \beta J_1 + \gamma K_1$ or $A = \alpha' I_2 + \beta' J_2 + \gamma' K_2$, for example, $A = \alpha I_1 + \beta J_1 + \gamma K_1 (\alpha^2 + \beta^2 + \gamma^2 = 1)$. From $\sigma A - A\sigma = 0$ and making use of (2.8), we see that G is of dimension 1 or 0, which is impossible.

b) $U(2) \supset SO(2) \times SO(2)$, but $SU(2) \not\supset SO(2) \times SO(2)$. We remark that if $G\subseteq SU(2)$, then G leaves invariant all I_1 , J_1 , K_1 or all I_2 , J_2 , K_2 . Then, with respect to a suitable orthogonal coordinate system, a transformation of G $= SO(2) \times SO(2)$ in a neighborhood of the identity is given by exp σ , where is given in § 5. We know that $\sigma I_1 - I_1 \sigma = 0$ and $\sigma I_2 - I_2 \sigma = 0$, hence $G \subset U(2)$. However since

$$
\sigma J_1 - J_1 \sigma = \begin{pmatrix} 0 & (\lambda - \mu) \\ 0 & -(\lambda - \nu) & 0 \\ 0 & (\lambda - \mu) & 0 \\ 0 & (\lambda - \mu) & 0 \\ -(\lambda - \mu) & 0 & 0 \end{pmatrix},
$$

$$
\sigma J_2 - J_2 \sigma = \begin{pmatrix} 0 & -(\lambda + \mu) \\ 0 & -(\lambda + \mu) & 0 \\ \hline 0 & (\lambda + \mu) & 0 \\ 0 & (\lambda + \mu) & 0 \end{pmatrix}
$$

we know that $G \not\subset SU(2)$. Moreover, if we consider the case $\mu = \lambda$, $\mu = k\lambda$ $(k\neq \pm 1)$, $\mu = 0$, respectively, then we see that $SU(2) \supset SO(2) \leq SO(2)$, $SU(2)$ $\sharp SO(2) \times SO(2)$, and $SU(2)\sharp 1 \times SO(2)$.

REFERENCES

- [1] N. STEENROD, The topology of fibre bundles, Princeton (1951).
- [2] T. OTSUKI, On the types and canonical forms of holonomy groups of 4-dimensional Riemannian spaces, Study of Holonomy Groups (in Japanese), 2(1947).
- [3] S. ISHIHARA, Homogeneous Riemannian spaces of four dimensions, Journ. Math. Soc. Japan, 7(1955), 345-370.
- [4] S. S. CHERN, On Riemannian manifolds of four dimensions, Bull. Amer. Math. Soc, 51(1945), 964-971.
- [5] E. CARTAN, Les groupes projectifs continue reels qui ne laissent invariante aucune multiplite plane, Bull. Soc. Math. France, 41(1913), 53-96.
- [6] M. BERGER, Sur les groupes d'holonomie des varietέs riemanniennes non symetriques, C.R.Acad. Sci. Paris, 237(1953), 1306-1308.
- [7 J E. CARTAN, Les groupes de transformations continus, infinis, simples, Ann. Ec. Norm., 26(1909), 93-161.
- [8] A. NIJENHUIS, On the holonomy group of linear connections, I_B, Proc. Kon. Ned. Ak. Wetens. Amsterdam, A. 56(3), 241(1953), 241-249.
- [9] A. G. WALKER, Connexions for parallel distributions in the large, Quart. Journ. Math. Oxford (2),6(1955), 301-308.
- [10] , Connexions for parallel distributions in the large (II), Quart. Journ. Math. Oxford (2), 9(1958), 221-231.
- [II] M. OBATA, Affine connections on manifolds with almost complex, quaternion or hermitian structure, Japanese Journ. Math., 26(1956), 43-77.
- [12] H. WAKAKUWA, On almost complex symplectic manifolds and affine connections with restricted homogeneous holonomy group $Sp(n, C)$, Tôhoku Math. Journ. , 12(1960), 175-202.
- [13] \longrightarrow , On linearly independent almost complex structures in a differentiable manifold,Tόhoku Math. Journ. ,13(1961), 393-422.
- [14] C. J. Hsu, On some structures which are similar to the quaternion structure, Tohoku Math. Journ., 12 (1960), 403-428.

FUKUSHIMA UNIVERSITY.