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Let X4 be 4-dimensional differentiable manifold and let B(Xi9 Y, G) be
an arbitrary tensor bundle over Xi9 where Y is a linear space of dimension
4P+Q with coordinates (yfc.'.'ij)0. It is well known ([1]) that the structural group
G of β(X4, Y, G) is reducible to the orthogonal group O(4). And if X4 is
orientable, then it is easily seen that G is reducible to *SΌ(4) or one of its
subgroups. If especially 7 is a 42-dimensional linear space with coordinates
(yj), then the matrix representation of SO(4) or its subgroup operates on Y
as matrix transformations.

The purpose of this note is first to show the existence of two intrinsic
(l-l)-type tensor bundles over X4, which are subbundles of 2J(X4, Y, G) and to
show the existence or non existence of cross sections of the two intrinsic
subbundles wholly depends on the group G (§2). These are owing to the
speciality of 5O(4).

Secondly, we classify X4 following the structural group G and study
further on each classes case by case (§3 — §7).

1. Preliminary. The local subgroups of SO{A) are treated by Otsuki [2]
in the standpoint of holonomy groups of 4-dimensional Riemannian mani-
folds. And the classification of structural equations of all connected sub-
groups of 50(4) is done by Ishihara [3] making use of the structural
equation of 5O(4) indicated by Chern [4]. We will consider it in another point
of view and will do the classification of the connected subgroups of 50(4)
in a different way.

As is known, 5O(4) is locally represented as 5O(4) = 5C7(2)®5C7(2). SU(2)
leaves invariant an anti-involution of the second kind and SU(2)®SU(2) leaves
invariant that of the first kind which is the Kronecker product of the anti-
involutions left invariant by the two 577(2) (Cartan [5] Berger [6]). 5O(4)
is the real representation of the group SU(2)(g)SU(2) restricted on the double
element (real dimension 4) of the anti-involutions (see Appendix 1°). Let 5X

and §2 be the complexifications of the Lie algebras of the first and the second
SU(2). §! and §2 are of complex dimension 3. Then § = %x + §2 (direct sum)

1) Throughout this paper, the indices ilf j l f i,j,a,b, ~ run from 1 to 4, unless otherwise
stated. This tensor is of type (p-q).
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is the complexification of the Lie algebra of *SΌ(4). Let TΓJ : § —> §x and τr2: §

—> §2 be the natural projections, so that TI^S) = §i,7r2(ξ>) = §2.

First, we consider a connected subgroup G of SO(4) irreducible in real

number field. If G is reducible in complex number field, we get G = U(2) or SU(2)

(real rep.) and any other cases can not occur. For, if G is a proper subgroup

of SU(2), its dimension is fg 2 and hence G is integrable. In this case G

leaves invariant a real direction or real 2-dimensional plane2), but this is

impossible. Consider the case G is still irreducible in complex number field

(absolutely irreducible). Let g be the Lie algebra of G and we denote the

complexification of 9 by g*. As is well known (Cartan [7]), g* is semi-

simple or semi-simple mod t1, where t1 is the Lie algebra of the complex

homothetic group (complex dimension 1). We consider the case g* is semi-

simple. Then, TΓ ĝ*) ^Ξ §j and the kernel gx = TΓΓ^O) (ξΞ §2) is an ideal in

g*. If the dimension of this kernel is equal to 1 or 2, then it is integrable.

Since we now consider the case where g* is semi-simple, we must have Qt

= 0 or §2 (in the case where dim gx = 3, we have Q1 = §2). It is analoguous

for the kernel g2 = ^ ( O ) : g2 = 0 or %λ. If q1 = % and g2 — §i> we get g*

= §! + §2, hence G = SO(4). If gx = 0, g2 = §x (resp. g! = §2, 92 = 0), we get

δ^ = § i (resp. g* = δ2), hence G = SU(2) (real rep.), which is the case where

G is reducible in complex number field. Consider the case gx = g2 = 0. If

dim g* < 3, then 9* is integrable, which is impossible. If dim 9* = 3, we

can verify that G leaves invariant a real direction (see Appendix 2°), whose

case is omitted in the present consideration. If g* is not semi-simple, S*

contains the Lie algebra t1. In this case, it is possible only one case: G =

SU(2)®Tλ = U(2) (real rep.), where T 1 is the one dimensional torus group.

But, this is the case where G is reducible in complex number field, which

is already considered.

Summing up, if a connected subgroup of 50(4) is irreducible in real

number field, then G is one of the followings:

5O(4), C7(2), SU(2).

If G is reducible in real number field, then either it leaves invariant

mutually orthogonal 1- and 3-dimensional planes, or two 2-dimensional planes.

Hence we get the following lemma.

LEMMA 1.1. We can sum up all connected Lie subgroups of SO(4) as

follows:

(I) {irreducible in real number field); 5O(4), C7(2), SU(β);

2) When G leaves invariant a complex direction z, then G also leaves invariant the conju-
gate direction z. Hence the 2-dimensional real plane spanned by z and z is left invariant
by G.
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(II) (reducible in real number field): 1 X 5O(3), 5O(2) x 50(2), 1 x 5O(2),
5O(2) x 50(2), 5O(2) :< 50(2), 1.

The notations are as follows. The Lie algebras of 5O(2) x 5O(2), 5O(2)
2< 50(2), 5 0 ( 2 ) ^ 50(2) are given by matrices of the form :

5O(2)x5O(2):

5O(2) X 50(2):

50(2)2150(2):

/

V.

/

V

\

0

- x

0

-X

0

- λ

0

0

0

λ

0

λ

0

λ

0

0

0

- f1

0

0

— kx

0

0

- λ

μ

0

0

λ

0

\

λ

)

(λ,/i*. independent),

(k: const. Φ 0, ± 1),

If k = — 1 in the case of 50(2) <̂_ S0(2), we consider the frame with
opposite orientation, then we get the case of 5 0 ( 2 ) ^ 5 0 ( 2 ) . 5O(2) x 5O(2),
50(2) x_ 5O(2), 1 x 5O(2) are subgroups of C7(2), but not of SU(2). 5O(2)^
50(2) is a subgroup of SU(2) (see Appendix 3°). The relations among them
are summed up in the following table.

(1. 1)

50(4)

Ϊ7(2)

5*7(2)

50(2) x 5O(2)

5O(2) 2< 5O(2)

—* 50(2) x_SO{2)

1 x 5O(3) 1 x 50(2)
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Now, we get the following lemma.
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LEMMA 1. 2. Let X4 be an orientable A-dimensional dijferentiable mani-
fold and denote an arbitrary tensor bundle over X4 by B(Xiy Y, G), where Y
is a linear space of dimension 4p+α with coordinates (yj|.". j?) Then the group
G is reducible to one of the groups indicated in Lemma 1. 1.

2. Two intrinsic (l-l)-tensor bundles associated X4. First, let Il9 Jl9 Kx

and 72, J2, K2 be the matrices such that

(2. 1) /, =

0

- 1

0

1

0

0

1

0

— 1

0

V

/

/

\

0

- 1

0 -

0

1

0

0

0

1
\

/

\

0

0

- 1

1

0

0

- 1

0

1

0

\

/

(2. 2) 72 =

/

V

0

- 1

0

1

0 0

0

- 1

1

0

\

/

J —

/

\

0

- 1

0

0

1

0

0

0

1

\

/

κ,=

0 - 1

0

V i

1

0

- 1

We remark that if we put
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(2. 3)

then we have

(2. 4) 72 =

λ =

H. WAKAKUWA

1 0

1

1

\ 0 - 1 /

Λ"1, J 2 = λΛλ"1, K2 =

These Il9 Jl9 Kι and 72, J2, K2 satisfy the quaternic relations:

11 = JJ = X? = - l; IJ^-J^ = iC1? J,XX =-KιJι =

(2. 5)
*2 = = «A r = - ^ 2 = = —

— •* 2 -^^ 2 — 2

And we also remark that each Il9 Jl9 Kλ is commutative with each I2, J2, K2

Now, any transformation of SO(4) decomposes into

(2.

x = aox — axy — a2u —

y = aλx + α 0 ^ — α3w + a2v

u = a2x + a3y + αow — aλv

t;' = a3x — a2y H-

(α0

2 + a\ + α2

2

(2. 6)'2 1

' x = box — &^ — b2u — b3v

y = bxx + boy + bzu — b2v

u = b2x — b3y + έow + biV9

v = b3x + b2y — bxu + bov

(bl + « + b\ + « = 1)

where (x,y, u, v) is a real vector in the 4-dimensional Euclidean space E4

with respect to orthogonal bases. These equations are indicated in Chern [4]
(see Appendix 1°).

We can see that under the transformation (2.6)1? Il9 Ju Kx are left
invariant and under the transformation (2. 6)2, each of them is transformed
into a linear combination of Il9 Ju Kλ. Similarly, 72, J2, K2 are left invariant
by (2. 6)2 and each of them is transformed into a linear combination of J2,
J 2, K2 by (2. 6)i. That is, by SO(4), the matrices Iί9 Jl9 Kλ (resp. 72, J2, K2)
are transformed into the matrices I{9 J[9 K[ (resp. 72, J2, K2), such that
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£ = ajx + AΛ + Ύ.K,

(2. 7)2
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J[ = a[Ix + β'ίJί + 7; Kx

K[ = a[Ίx + βxJx + ΊXKX ί = a'2Ί2

The matrices

CLX βx yx

a[ β[ Ί[

Oiϊ βl' Vϊ J

and

\ β2 Ί2

are

orthogonal matrices, which are easily verified from (2. 5) and from the same
relations among I[, J'u K[ (resp. Γ2, J2, K2).

A transformation of *SO(4) in a neighborhood of the identity is given
by exp<#, where

a =

/

\

0

— a

-b

— c

a

0

- d

— e

b

d

0

f

c \

e

f

0 /

3 )

is a matrix in a neighborhood of the 0-matrix. For this a, we can verify
that

(2.8)

άLx - Ixa ={c - d)Jx -φ + e)Kx

aJλ - Jxa =(a -f)KX{ -{c- d)Ix

aKx - Kxa =(b + e)Ix -{a -f)Jx ,

(2. 9)

al2 — I2a = —(c + d)J2 —(b — e)K2

aJ2 - J2a ={a +f)K2 +(c 4- d)I2

aK2 - K2a =(b — e)I2 -{a + f)J2.

LEMMA 2 . 1 . The necessary and sufficient condition that α ( 4 x 4)-matrix

A satisfy A2 = - I is that A = alx + βJx + ΊKX {a2 + β2 + Ί2 = 1) or A =

tf'J2 + #'J 2 + Ύ'K2 (α'2 + #'2 + Ύ'2 = 1), where Ix, Jx, Kx or I2, J2, K2 are given
by (2.1), (2.2).

3) This matrix decomposes into the form (6) in the Appendix 1°.
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PROOF. The sufficiency easily follows from (2.5). Conversely, suppose
that A satisfy A2 = — 1. By an orthogonal transformation M, we can trans-
form A into A' — MAM'1 which is just the same as Ix in (2.1). First, sup-
pose that d e t | M | = 1. Under the present transformation by M, Il9 Ju Kx

are transformed into Γu J'u K[ such that (see (2. 7)0

A\= Iλ)= aj[ + a[J[

If we consider the first equation with respect to the original coordinate
system, we see that A = ajι + a[Jx + aϊKx and a\ + a2 + aΊ'2 = 1.

If det \M\ = — 1, we can put M = λ Mo, where λ is given by (2. 3) and
det |M 0 | = 1. From MAM'1 = Il9 we have MQAMQ1 = λ" 1/^ = 72. In this case,
we get A = Λ2/2 + tfo\/2 + Λί'2C2 (Λ| + a2

2 + Λ;/2 = 1). ' Q.E.D.

Now, let Y be a linear space of dimension 42 with coordinates (^J) (i,j
= 1, 2, 3, 4). We denote the subspace of Y which is the set of all matrices
alλ + βJλ + ΊKX (a2 + β2 + Ύ2 = 1) by YΊ. Similarly, we denote the subspace
of Y which is the set of all matrices a'I2 + β'J2 + Ί'K2 (d2+β'2 + Ί'2 = 1) by
Y2. Any matrix A of Yλ or Y2 satisfies A2 = — 1 by Lemma 2.1 and we can
write symbolically λYxλ"1 = Y2, taking account of (2. 4).

By virtue of (2. 7), these subspaces Yx and Y2 are invariant under *SO(4).

DEFINITION. Let Y, Yl9 Y2 be as in the above and let B(X±, Y, G) be
the (l-l)-type tensor bundle over X4, where G is SO(4) or one of its con-
nected subgroups which are indicated in §1. As is well known, with the same
base space XA and group G, there exist two subbundles of B(Xi9 Y, G) with
fibre Yλ and Y2. We denote these subbundles by BX(X^ Yu G) and B2{X^ Y2,
G) respectively.

THEOREM 2.1. Let XA be an orientable ^-dimensional differentiάble
manifold. Then we can associate to X^ intrinsically two (l-l)-type tensor
bundles Bλ(X^ Yl9 G) and B2(Xi9 Y2, G), where G is SO(A) or one of its
connected subgroups.

And with respect to the cross sections we can state as follows.**
1° Any of the two bundles does not admit cross sections if and only if

G = SO(4), 1 x 5O(3).
2° One of the two bundles and only one admits at least a cross section

4) Hereafter, if we denote G — U(2) for instance, then we mean that the G of X^ is
reducible to C/(2), but not to any connected proper subgroup of £7(2).
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if and only if G = Γ/(2), SU(2).
3° Both of them admit cross sections if and only ifG = 50(2) x SO(2),

SO(2)x_SO(2), SO(2)xjSO(2)9 1 x 5O(2), 1.

In the cases 2° and 3°, X4 admits at least an almost complex structure.

PROOF, a) In order that the bundle BX{X^9 Yl9G) or B2(XA, Y2, G) admits
a cross section, it is necessary and sufficient that G £Ξ £7(2) (i. e. X4 admits
an almost complex structure), which follows at once from Lemma 2.1. This
proves 1° and a part of 2°.

b) It is remained for us only to prove that if the bundles Bλ and B2

admit cross sections simultaneously, then G Φ £7(2), SU(2). If Bx and B2

together admit cross sections, then X4 admits two almost complex structures
a(x) and b(x) (x € XA), where a2 = b2 = — 1. And we see that a Φ±b by
virtue of (2.1) and (2.2). Hence the tensor field c(x)= a(x) b(x) over I 4

gives a non-trivial almost product structure: c2 = 1. This means that G can
be reducible to a group reducible in real number field, so that G is one of
the groups indicated in 3°. This proves 2° and 3°. Q. E. D.

In the general tensor bundle B(X4, Y, G), G is one of the subgroups
indicated in (1.1). In the following, we will consider such X4's, the coordi-
nate neighborhood being given by (xl) (i= 1,2,3,4).

3. XA with G = 1 x SO(β). If G = 1 x 5O(3), G leaves invariant a matrix
of the form

/ - 1 0 \

\ 0 1 j

with respect to a suitable orthogonal coordinate system. And JB(X4, Y*, G) is
a subbundle of B(X±, Y, G). This subbundle admits a cross section, which is
an almost product structure: a(x) = (a}(x)) over XA so that a2 = 1. If we

put p = 4 " 0- - α)> ? = -7Γ C1 + α ) ' t h a t is>

Pi = \ (V " */), 9/ = IT (V + "Λ

then >̂ =(pjl), q =(qji) are projection tensors so that p2 = p, q2 = q, p + q = 1



162 H. WAKAKUWA

(Walker, [9], [10]). They define two complementary distributions D, U over

X4 respectively. The rank of (/>/) and hence the dimension of D is 1. D is

always integrable. The rank of (g/) and hence the dimension of D' is 3. On

the other hand in order that the distribution D defined by p/dxj = 0 be

completely integrable, it is necessary and sufficient that 'd[apbfqjaqk

b = 0 or

(3. 1) NJk* + N^af = 0,

where N.jk

ι is the Nijenhuis tensor of a}'.

The condition (3.1) is equivalent to Njk = 0, since the relation N^1 —

Nja

lak

a = 0 corresponding to the integrability condition for q/dxj = 0 is

always satisfied.

Summing up, the X4 under consideration is as follows:

( i ) There exists an almost product structure.

(ii) There exist two complementary distributions D, D' of dimension 1

and 3 respectively. The distribution D is always integrable.

(iii) Njk

ι = 0;

the distribution D' is also

integrable.

NJ Ψ 0;
the distribution Ό' is not

integrable.

Furthermore, in this manifold, there exist a non singular symmetric

tensor field ai} with signature (+ + H—) and two symmetric tensor fields of

rank 1 and 3.

An example is R1 x *S3. In this case, Njk* = 0.

4. X4 with G = U(2) or 5ϊ/(2). A transformation T of U(2) decomposes

into (4) and (7) in the Appendix 1°. In this case, we can easily verify that

τixτ-1 = /i

TΛT"1 = Uγ + mKx φ + m2 - 1).

TKλT~ι = -mJ1+ IK,

Hence Iλ is invariant by U(2) and this gives rise a cross section in B(X4,

Yl9 G) which is an almost complex structure φ(x) = (</>/(#)) in X4. On the

other hand, if we put

(a2 + β2 = 1),
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then A2 = — 1, and we denote the set of all such A's by Y'. There exists a

subbundle B[(Xiy Y'u G) of Bλ{X^ ,YU G). If this subbundle admits a cross

section, then it gives rise another almost complex structure ψ(x) = (ψjl(po))

in Xi and we can easily see that τ(x) = φ(x)'ψ(x) = — ψ(x) φ(x) gives the

third almost complex structure. In this case, G is reducible to SU(2).

Consequently, if the structural group G is U{2) or one of its subgroups,

then we can associate a (l-l)-type tensor bundle B[(Xi9 Y[, G), which is a sub-

bundle of Bι(XA9Yl9G). If this subbundle admits a cross section, then G is

reducible to SU(2) or one of its subgroups and vice versa.

1) G = 17(2). According to the vanishing or non vanishing of the Nijen-

huis tensor Njk of φ/ we can classify X4 into two classes, which is well

known.

Furthermore, since there exist Riemannian metrics such that gabΦίaφf

— gij9 we put φij = gjaφia and φίjk = d[kφu]. With respect to such a metric gυ,
X4 is classified according to the vanishing or non vanishing of φm.

An example is the two dimensional complex projective space (in its real

representation). In this case, Njk

ι = φίjk = 0, the Riemannian metric giό being

kahlerian to the complex structure φ/.

2) G — SU(2). In this case, as has been shown, there are three almost

complex structures φ = (φ/), ψ = (ψ1/), T = (T/) such that φψ1 = — ψφ = τ, ψτ

— _ Tψ = φ? τφ = — φτ = ψ. The set of φ,ψ,τ is the so-called almost quater-

nion structure. Let Njkiφ), Njk(ψ), Njk(T) be the Nijenhuis tensor of φ9ψ,τ

respectively, then the following theorem is known ([11], Cor. 2 to Thm. 10. 4):

THEOREM. N^iφ), Njk\ψ\ NjkXτ) vanish identically if any two of them

vanish identically.

Hence, X4 is classified into one of the followings:

/1) Any one of N^iΦX Njkχψ), Nj^ir) does not vanish.

2) One and only one of the above three Nijenhuis tensors vanish.

3) All of them vanish.

Now, since it is known that there exist Riemannian metrics hermitian

with respect to all φ,ψ,τ ([11]), we put ψι3 = gjaψia, τi5 = gjaTia, and ψίjk =

^[kψij], τm = d[kTij]. The following theorem is known.

THEOREM. N^iΦ), ψisk, τm vanish identically if any two of them vanish
identically ([12], Thm. 5. 3).
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Hence, with respect to such a Riemannian metric gij9 XA is classified into
one of the following types.

( i ) Any one of Njk\φ)9 ψίjk, τm does not vanish.

(ii) One and only one of the above three tensors vanish.

(iii) All of them vanish.

An example is the manifold of the tangent bundle of a 2-dimensional diffe-
rentiable manifold (cf. the last part of §8).

5. X4 with G = SO(2) x 5O(2). As mentioned in §1, the Lie algebra of
G is given by the matrices of the form

0

- λ

λ

0

(λ, μ independent)

0 /

with respect to a suitable orthogonal coordinate system. And G leaves inva-
riant the matrices Ix and I2 in (2.1) and (2. 2). 7X and 72 are commutative:
1^2=hlu and these Il9I2 give rise cross sections in JBi(X4, Yi9 G), B2(X±, Y2, G)9

which are almost complex structures φ = (φ/), φ' =(φ'f) in X^- And we see
that φφ/=φ/φ. If we put 7r=—φφ', that is, TΓ/ = — φjaφa, then we see that
7Γ is an almost product structure in X4. The normal form of TΓ is such that

I 1

TΓ =

0 \

- 1

V o
There are relations as follows:

- 1 /

(5. 1) φ2 = φ'2= — 1, 7Γ2 = 1; φφ' = φφ = — 7Γ, φV = φ, 7rφ = φ'.

This system (φ, φ', 7r) is the so-called almost complex product structure (of
the second kind) ([13], p. 394).

We can sum up the general properties of X4 as in the followings, where
b), c) are easily verified as in the case G = 1 X *SΌ(3).
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(5.2)
a) There exists a so-called almost complex product structure of the

2nd hind.

b) There exist two complementary distributions D, Ό' of dimension 2.

In this manifold there exist a non singular symmetric tensor field with
signature (+H ) and two symmetric tensor fields of rank 2.

Next, we will classify the XA. Let Njk\φ\ Njk\φ'), Njkχ<7r) be the Nijen-
huis tensor of φ,φ',τr respectively. Then we know that the vanishing of any
two of Njk(φ)9 Njk(φ'\ Njkiπ) implies the vanishing of the remaining one
([14]).

The integrability conditions of the distributions D and D' are given by
the followings respectively:

njk\D)= Njk\τr)- NJa\w) τrk

a - 0, nJk\Df)=

The XA is one of the following types.

= 0.

(5.3)

( i ) Any of the tensors Njk\φ), Njk\φf)9 A ^ T Γ ) , n]k(D), n]k(Π) does not

vanish.

(ii) njk(D)= 0; the others do not vanish. In this case, the distribution

D is integrable.

(iii) Njk(yr)= 0, njk%D)= 0, njk(D')= 0; the others do not vanish.

In this case, the distributions D and Π are both integrable.
(iv) Njk

ι(φ)= 0; the others do not vanish. The almost complex

structure φ is integrable.
(v) Njk

ι(φ)= 0, njk(D)= 0; the others do not vanish.

(vi) All tensors in (i) vanish.

An example is *S2 x S2. This is the case (vi).

6. X4 with G = 1 x SO(2). The Lie algebra of G is given by the matr-
ices of the form:

/

0

0 0

- λ

0

λ

0

\
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Since this is a subgroup of 50(2) x 5O(2), there exists in X^ the almost
complex product structure of the 2nd kind (5. 1). Although the properties
(5. 2) for G = 50(2) x 50(2) hold good, we can futhermore decompose the
almost product structure TΓ =(rτrj

i) as follows.
Evidently, G leaves invariant the matrices

/ 1

(6. 1)

0 \

V 0 0

0

V o

o \

0 J

I 0 o \

V 0

and B(XA, Y, G) admits cross sections corresponding to (6.1), which are tensor
fields p=(pj

ί), q=(q}\ r =(r/) over X4. We see that

(6. 2) p2 = p, q2 = q, r2 = r; pq = qr=rp=O, p+ q + r= 1,

and furthermore p + q — r = TΓ. The tensor fields p, q, r define complementary
distributions D, D\ D" of dimension 1,1, 2 respectively. These distributions
are defined by {q} + r/)dxj = 0, (/>/ + r/) dxs = 0, (/>/ + q}) dxj = 0 respect-
ively. The 1-dimensional distributions D, U are always integrable. The
integrability condition of the distribution D" is njk

l{P")=(d[apbf + d[aqb]1)
rjark

b = 0, which is equivalent to iViA;

t(7r)= 0.
The general properties of X4 are summed up as follows. They are special

cases of (5. 2).

a) All properties of (5. 2) hold good.

b) Especially the last property c) of (5. 2) z*5 stated more precisely as

follows: There exist three complementary distributions D,D\ D" defined

by projection tensors p, q, r in (6. 2), where p + q — r = TΓ. The

1-dimensional distributions D and D' are always integrable.

And X4 is classified into one of the following types:

/(i) Any of Nj^φ), Njk\φ'), NJk\τr) do not vanish.

(ii) Njk

i(π)= 0 the others do not vanish. The distribution D" is integrable.

(iii) Njk(φ)= 0; the others do not vanish. The almost complex structure φ

is integrable.

(iv) NΛΦ)= NΛΦΊ= NΛπ)= 0.
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An example of such an X4 is R2 x S2. This is the case (iv).

REMARK. In the present X4, if we put irι = p — q + r, 7Γ2 = p — q — r,
then we can easily see that

7Γ2 — 7Γ77*! = =

— 7 Γ 2 , 77*1*77*2 =

7. X4 with G = 5O(2)_>1 5O(2). This is the case μ = k\ (k^O, ±1) in §5.
Hence, /or £&e X4 ίA^ general properties and the classification in §5 are
valid in the present case.

The X4 can not be a global product manifold X2 x XL where X2 and
X2 are 2-dimensional differentiable manifolds. For, if X4 = X2 x X2 (in the
global sense), then the minimal connected subgroup containing the structural
group is SO(2) X SO(2)9 1 X SO(2) or 1. But these are impossible (cf. footnote
4)).

8. X4 with G = 5 0 ( 2 ) ^ SO(2). The Lie algebra of G is given by the
matrices of the form

/ 0 λ

0

0

- λ

λ

0 J

This is a special case of G = SU(2) and G = SO(2) x 5O(2), hence we
can find in X4 an almost quaternion structure (φ, ψ, r) (see §4) and an almost
complex product structure (φ,φ\π) (see §5). Furthermore, since φ' is commu-
tative with all φ,ψ,τ (see §5 and §2), we put

= φV = — 7Γ2.

Then (Ί/Γ, φr, TΓJ), (τ9φ\τr2) are also almost complex product structures. The
normal forms of TΓ, TΓX, TΓ2 are as follows:

7Γ =

/ 1

0

0

0

1
0

- 1

0

0

- 1 J

>

f

0

0

^ - 1

1

0

0

1

0

- 1

0

\
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7Γ2 =

1

0

0

1

1

0

0 \

1

An example of such an X4 is the manifold of the tangent bundle of a
2-dimensional differentiable manifold (the details will be appear in another
paper).

APPENDIX

1° (see §1). In SO(4)= SU(2)®SU(2), the transformations of the first
and the second SU(2) in a complex 2-dimensional linear space C2 are given
by

(1)!

z\ = azx + bz2

z'i — — bzi + az2

(aa + bb = 1),

(1).

w [ = awγ + βw2

w2 — — βwx + aw2

{aa + ββ)= 1) ,

where (zl9z2)z C2 and (wί9 w2) £ C2. (1)A and (1)2 leave invariant anti-invol-
utions of the second kind: Zλ = z29 Z2 — — zλ and Wx = w2, W2 =— Wι res-
pectively. If we put

ztj = Zi®Zi (ij = 1, 2),

then a transformation of SU{2)<g)SU{2) is given by

' z'n = acίzu + aβzl2 4- δΛz2i + &/92:22

z[2 = — aβzn + aaz12 — bβz2l + to^22

z2i = — ten — bβz12 + αrt^i + α/Sz22

2:22 = bβzn — baz12 — aβz2ί + αcte:22 .

This transformation leaves invariant an anti-involution of the first kind:

" 1 1 — •̂ '22> " 1 2 — Z2\9 " 2 1 — Z\2y " 2 2 — ^ l l

which is the Kronecker product of the preceding two anti-involutions. The

(2)
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double element of this anti-involution (real dimension 4) is defined by zx

— z22, z12 = — z21. *5O(4) is the restriction of (2) on this double element. Iί
(1)2 is the identity, then (2) reduces to

(3)

If we put

Zli — £22
 = &

z'n = azn

z[2 = az12

Z2i=- bzn

bz2

— 1 y, zί2 = — z21 =

= α2 + \ / — 1 α3, then (3) becomes

(4)

x — aox — aλy — a2u — azv

y — aλx 4- aoy — a3u + a2v

u — a2x + a3y + aou — a{v

v — azx — a2y + aλu + aov

If (l)i is the identity and if we put ci = b0

then we get similarly

(5)

( x = b
o
x — b

x
y - b

2
u - &

3
τ;

y = &χθ: + &o3̂  + b
s
u - &

2
v

w' = b
2
x — &

3
^ + &o# + ̂1^

τ;' = b
3
x + ̂ ^ — ̂ iW + b

o
v

bz2

az2

a\ + a\ + a\ = 1).

— ! bu β = — b2

= 1).

Any transformation of 50(4) decomposes into (4) and (5) with respect
to a fixed oriented orthogonal frame, (cf. [4]). The Lie algebra of *SΌ(4) iί
given by the matrices of the form:

(6)

/ 0

(λ, H

(μι -

-„;)

-(λ, +

0

( " i -

— 0*1 —

λί) - ( / * I + μd

-(»> - vd

0

(Ml

- ( λ ,

0

+ vd

-μd
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If we put act =• 1, β = 0 in (1)2, then we obtain a transformation of
U(2). In this case, (5) turns into

(7)

x = box - bxy

y = bxx + boy

u — bou + b{v

v = — bxu + bov

l = l).

That is, a transformation of C7(2) decomposes into (4) and (7) with respect
to a fixed oriented orthogonal frame.

2° (see §1). If Qt = Q2 = 0 and dim 9* = 3, then ^ ( 8 * ) = §x and τr2(S
κ-)

= 32 I n this case, we can consider that the bases of the real Lie algebra S
are given by

Xx -(IY1 + mY2 + nYs), X2 ~(ΪYι + mΎ2 + nΎ3),

where Xl9 X2, X3 and Yl9 Y2, Ys are bases of the Lie algebras of (4) and
(5) respectively. Furthermore, we can consider that the X's and F's are so
chosen that

[X,X2] = Xt, [X2X3] = Xu [X,X,] = X2; [Y1Y2]= - Yt,

Hence we know that the matrix

(8)

(I m n \

Γ m n

I" m" n"

is an orthogonal matrix and the determinant is equal to + 1. In this case,
among the constants of (6) there are relations such that

λί = 11

μ[ = n

v[ = n

W + Vμx +

^λ1 + m! μλ

λj + ΐl/μ1 -

l"υλ

-V m//v1
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Since one of the characteristic roots of (8) is equal to + 1, there exists
a real vector (x0, y0, z0) such that

(Z — ί)x0 + my0 + nz0 = 0

Γx0 +(nϊ - ΐ)y0 + n'z0 = 0

l"xo + m"yo+(n" - ΐ)z0 = 0.

Consequently, in the 4-dimensional Euclidean space 2Ϊ4, the real vector
(0, x0, y0, z0) is invariant under G, taking account of (6).

3°. a) 1 x SO(3) is not a subgroup of (7(2). With respect to a suitable
orthogonal coordinate system, a transformation of G = lx5O(3) in a neighbor-
hood of the identity is given by exp σ, where σ is of the form

/ 0

0

0

0

0

0

-d

— e

0

d

0

e

f
0

(T =

If G is a subgroup of ί/(2), then it leaves invariant a matrix A such
that A2 = — 1. According to Lemma 2.1, we have A = alx + βJx + ΊKλ or
A = ccΊ2 + β'J2 + ΫK2, for example, A = alγ + βjλ + ΊKλ (a2 + β2 + Ί2 = 1).
From σA — Aσ = 0 and making use of (2.8), we see that G is of dimension
1 or 0, which is impossible.

b) C/(2)=> 50(2) x 5O(2), 6 ^ SE7(2) ^ 50(2) x 5O(2). We remark that if
GQ5C7(2), then G leaves invariant all Il9 Jί9 Kλ or all 72, J 2, K2. Then, with
respect to a suitable orthogonal coordinate system, a transformation of G
= SO(2) x 5O(2) in a neighborhood of the identity is given by exp σ, where
σ is given in § 5. We know that σlx — Iγσ = 0 and σ/2 — 72σ = 0, hence
G C £7(2). However since

0 (λ — μ)

-(λ-l/) 0

0

\ - ( λ -
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σJ2 —

0

\ (λ+/i) 0

0 -(

- ( λ + μ) 0

0

we know that G ς£ SU(2). Moreover, if we consider the case μ = λ, μ = kλ
(kΦ±l\ μ = 09 respectively, then we see that SU(2) D SO(2)^SO(2\ SU{2)

_x SO{2\ and SU(2)^1 x 5O(2).
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