REMARKS ON 4-DIMENSIONAL DIFFERENTIABLE MANIFOLDS

HIDEKIYO WAKAKUWA

(Received February 20, 1963) Revised January 25, 1964

Let X_4 be 4-dimensional differentiable manifold and let $B(X_4, Y, G)$ be an arbitrary tensor bundle over X_4 , where Y is a linear space of dimension 4^{p+q} with coordinates $(y_{j_1...j_q}^{i_1...i_q})^{1}$. It is well known ([1]) that the structural group G of $B(X_4, Y, G)$ is reducible to the orthogonal group O(4). And if X_4 is orientable, then it is easily seen that G is reducible to SO(4) or one of its subgroups. If especially Y is a 4²-dimensional linear space with coordinates (y_j^i) , then the matrix representation of SO(4) or its subgroup operates on Y as matrix transformations.

The purpose of this note is first to show the existence of two intrinsic (1-1)-type tensor bundles over X_4 , which are subbundles of $B(X_4, Y, G)$ and to show the existence or non existence of cross sections of the two intrinsic subbundles wholly depends on the group G (§2). These are owing to the speciality of SO(4).

Secondly, we classify X_4 following the structural group G and study further on each classes case by case (§3 ~ §7).

1. Preliminary. The local subgroups of SO(4) are treated by Ötsuki [2] in the standpoint of holonomy groups of 4-dimensional Riemannian manifolds. And the classification of structural equations of all connected subgroups of SO(4) is done by Ishihara [3] making use of the structural equation of SO(4) indicated by Chern [4]. We will consider it in another point of view and will do the classification of the connected subgroups of SO(4)in a different way.

As is known, SO(4) is locally represented as $SO(4) = SU(2) \otimes SU(2)$. SU(2)leaves invariant an anti-involution of the second kind and $SU(2) \otimes SU(2)$ leaves invariant that of the first kind which is the Kronecker product of the antiinvolutions left invariant by the two SU(2) (Cartan [5]; Berger [6]). SO(4)is the real representation of the group $SU(2) \otimes SU(2)$ restricted on the double element (real dimension 4) of the anti-involutions (see Appendix 1°). Let $\$_1$ and $\$_2$ be the complexifications of the Lie algebras of the first and the second SU(2). $\$_1$ and $\$_2$ are of complex dimension 3. Then $\$ = \$_1 + \$_2$ (direct sum)

¹⁾ Throughout this paper, the indices $i_1, j_1, i, j, a, b, \cdots$ run from 1 to 4, unless otherwise stated. This tensor is of type (p-q).

is the complexification of the Lie algebra of SO(4). Let $\pi_1: \mathfrak{F} \to \mathfrak{F}_1$ and $\pi_2: \mathfrak{F} \to \mathfrak{F}_2$ be the natural projections, so that $\pi_1(\mathfrak{F}) = \mathfrak{F}_1, \pi_2(\mathfrak{F}) = \mathfrak{F}_2$.

First, we consider a connected subgroup G of SO(4) irreducible in real number field. If G is reducible in complex number field, we get G = U(2) or SU(2)(real rep.) and any other cases can not occur. For, if G is a proper subgroup of SU(2), its dimension is ≤ 2 and hence G is integrable. In this case G leaves invariant a real direction or real 2-dimensional plane²⁾, but this is impossible. Consider the case G is still irreducible in complex number field (absolutely irreducible). Let \mathfrak{g} be the Lie algebra of G and we denote the complexification of g by g*. As is well known (Cartan [7]), g* is semisimple or semi-simple mod t^1 , where t^1 is the Lie algebra of the complex homothetic group (complex dimension 1). We consider the case g* is semisimple. Then, $\pi_1(\mathfrak{g}^*) \subseteq \mathfrak{s}_1$ and the kernel $\mathfrak{g}_1 = \pi_1^{-1}(0)$ ($\subseteq \mathfrak{s}_2$) is an ideal in g*. If the dimension of this kernel is equal to 1 or 2, then it is integrable. Since we now consider the case where g^* is semi-simple, we must have g_1 = 0 or \mathfrak{s}_2 (in the case where dim $\mathfrak{g}_1 = 3$, we have $\mathfrak{g}_1 = \mathfrak{s}_2$). It is analoguous for the kernel $\mathfrak{g}_2 = \pi_2^{-1}(0): \mathfrak{g}_2 = 0$ or \mathfrak{s}_1 . If $\mathfrak{g}_1 = \mathfrak{s}_2$ and $\mathfrak{g}_2 = \mathfrak{s}_1$, we get \mathfrak{g}^* $=\mathfrak{S}_1+\mathfrak{S}_2$, hence G=SO(4). If $\mathfrak{g}_1=0$, $\mathfrak{g}_2=\mathfrak{S}_1$ (resp. $\mathfrak{g}_1=\mathfrak{S}_2$, $\mathfrak{g}_2=0$), we get $\mathfrak{g}^* = \mathfrak{s}_1$ (resp. $\mathfrak{g}^* = \mathfrak{s}_2$), hence G = SU(2) (real rep.), which is the case where G is reducible in complex number field. Consider the case $g_1 = g_2 = 0$. If dim $\mathfrak{g}^* < 3$, then \mathfrak{g}^* is integrable, which is impossible. If dim $\mathfrak{g}^* = 3$, we can verify that G leaves invariant a real direction (see Appendix 2°), whose case is omitted in the present consideration. If g* is not semi-simple, g* contains the Lie algebra t^1 . In this case, it is possible only one case: G = $SU(2)\otimes T^1 = U(2)$ (real rep.), where T^1 is the one dimensional torus group. But, this is the case where G is reducible in complex number field, which is already considered.

Summing up, if a connected subgroup of SO(4) is irreducible in real number field, then G is one of the followings:

If G is reducible in real number field, then either it leaves invariant mutually orthogonal 1- and 3-dimensional planes, or two 2-dimensional planes.

Hence we get the following lemma.

LEMMA 1.1. We can sum up all connected Lie subgroups of SO(4) as follows:

(I) (irreducible in real number field); SO(4), U(2), SU(2);

²⁾ When G leaves invariant a complex direction \mathbf{z} , then G also leaves invariant the conjugate direction $\mathbf{\bar{z}}$. Hence the 2-dimensional real plane spanned by \mathbf{z} and $\mathbf{\bar{z}}$ is left invariant by G.

(II) (reducible in real number field): $1 \times SO(3)$, $SO(2) \times SO(2)$, $1 \times SO(2)$, $SO(2) \times SO(2)$, $SO(2) \times SO(2)$, 1.

The notations are as follows. The Lie algebras of $SO(2) \times SO(2)$, $SO(2) \times SO(2)$, $SO(2) \times SO(2) \times SO(2) \times SO(2)$ are given by matrices of the form :

$$SO(2) \times SO(2): \qquad \begin{pmatrix} 0 & \lambda & & \\ -\lambda & 0 & 0 & \\ & & 0 & \mu \\ 0 & & -\mu & 0 \end{pmatrix} \quad (\lambda,\mu: \text{ independent}),$$
$$SO(2) \times SO(2): \qquad \begin{pmatrix} 0 & \lambda & & \\ -\lambda & 0 & 0 & \\ & & -\lambda & 0 & 0 \\ & & & -k\lambda & 0 \end{pmatrix} \quad (k: \text{ const. } \neq 0, \pm 1),$$
$$SO(2) \times SO(2): \qquad \begin{pmatrix} 0 & \lambda & & \\ -\lambda & 0 & 0 & \\ & & & -k\lambda & 0 \end{pmatrix} \quad .$$

If k = -1 in the case of $SO(2) \times SO(2)$, we consider the frame with opposite orientation, then we get the case of $SO(2) \times SO(2)$. $SO(2) \times SO(2)$, $SO(2) \times SO(2)$, $SO(2) \times SO(2)$, $1 \times SO(2)$ are subgroups of U(2), but not of SU(2). $SO(2) \times SO(2) \times SO(2)$ is a subgroup of SU(2) (see Appendix 3°). The relations among them are summed up in the following table.

Now, we get the following lemma.

LEMMA 1.2. Let X_4 be an orientable 4-dimensional differentiable manifold and denote an arbitrary tensor bundle over X_4 by $B(X_4, Y, G)$, where Y is a linear space of dimension 4^{p+q} with coordinates $(y_{1,\ldots,q}^{q})$. Then the group G is reducible to one of the groups indicated in Lemma 1, 1.

2. Two intrinsic (1-1)-tensor bundles associated X_4 . First, let I_1 , J_1 , K_1 and I_2 , J_2 , K_2 be the matrices such that

We remark that if we put

(2.3)
$$\lambda = \begin{pmatrix} 1 & & 0 \\ & 1 & \\ & & 1 \\ & & 1 \\ 0 & & -1 \end{pmatrix},$$

then we have

(2. 4)
$$I_2 = \lambda I_1 \lambda^{-1}, \ J_2 = \lambda J_1 \lambda^{-1}, \ K_2 = \lambda K_1 \lambda^{-1}.$$

These I_1 , J_1 , K_1 and I_2 , J_2 , K_2 satisfy the quaternic relations:

(2. 5)
$$\begin{cases} I_1^2 = J_1^2 = K_1^2 = -1; \ I_1 J_1 = -J_1 I_1 = K_1, \ J_1 K_1 = -K_1 J_1 = I_1, \\ K_1 I_1 = -I_1 K_1 = J_1; \\ I_2^2 = J_2^2 = K_2^2 = -1; \ I_2 J_2 = -J_2 I_2 = K_2, \ J_2 K_2 = -K_2 J_2 = I_2, \\ K_2 I_2 = -I_2 K_2 = J_2. \end{cases}$$

And we also remark that each I_1 , J_1 , K_1 is commutative with each I_2 , J_2 , K_2 . Now, any transformation of SO(4) decomposes into

$$(2. 6)_{1} \begin{cases} x' = a_{0}x - a_{1}y - a_{2}u - a_{3}v \\ y' = a_{1}x + a_{0}y - a_{3}u + a_{2}v \\ u' = a_{2}x + a_{3}y + a_{0}u - a_{1}v \\ v' = a_{3}x - a_{2}y + a_{1}u + a_{0}v \\ (a_{0}^{2} + a_{1}^{2} + a_{2}^{2} + a_{3}^{2} = 1) \end{cases}$$

$$(2. 6)_{2} \begin{cases} x' = b_{0}x - b_{1}y - b_{2}u - b_{3}v \\ y' = b_{1}x + b_{0}y + b_{3}u - b_{2}v \\ u' = b_{2}x - b_{3}y + b_{0}u + b_{1}v, \\ v' = b_{3}x + b_{2}y - b_{1}u + b_{0}v \\ (b_{0}^{2} + b_{1}^{2} + b_{2}^{2} + b_{3}^{2} = 1) \end{cases}$$

where (x, y, u, v) is a real vector in the 4-dimensional Euclidean space E^4 with respect to orthogonal bases. These equations are indicated in Chern [4] (see Appendix 1°).

We can see that under the transformation $(2.6)_1$, I_1 , J_1 , K_1 are left invariant and under the transformation $(2.6)_2$, each of them is transformed into a linear combination of I_1 , J_1 , K_1 . Similarly, I_2 , J_2 , K_2 are left invariant by $(2.6)_2$ and each of them is transformed into a linear combination of I_2 , J_2 , K_2 by $(2.6)_1$. That is, by SO(4), the matrices I_1 , J_1 , K_1 (resp. I_2 , J_2 , K_2) are transformed into the matrices I_1' , J_1' , K_1' (resp. I_2' , K_2'), such that

$$(2. 7)_{1} \begin{cases} I_{1}^{'} = \alpha_{1}I_{1} + \beta_{1}J_{1} + \gamma_{1}K_{1} \\ J_{1}^{'} = \alpha_{1}^{'}I_{1} + \beta_{1}^{'}J_{1} + \gamma_{1}^{'}K_{1} \\ K_{1}^{'} = \alpha_{1}^{''}I_{1} + \beta_{1}^{''}J_{1} + \gamma_{1}^{''}K_{1} \end{cases}, \qquad (2. 7)_{2} \begin{cases} I_{2}^{'} = \alpha_{2}I_{2} + \beta_{2}J_{2} + \gamma_{2}K_{2} \\ J_{2}^{'} = \alpha_{2}^{'}I_{2} + \beta_{2}^{'}J_{2} + \gamma_{2}^{'}K_{2} \\ K_{2}^{'} = \alpha_{2}^{''}I_{2} + \beta_{2}^{''}J_{2} + \gamma_{2}^{''}K_{2} \\ K_{2}^{'} = \alpha_{2}^{''}I_{2} + \beta_{2}^{''}J_{2} \\ K_{2}^{'} = \alpha_{2}^{''}I_{2} + \beta_{2}^{''}J_{2} \\ K_{2}^{''} = \alpha_{2}^{'$$

orthogonal matrices, which are easily verified from (2.5) and from the same relations among I'_1 , J'_1 , K'_1 (resp. I'_2 , J'_2 , K'_2).

A transformation of SO(4) in a neighborhood of the identity is given by $\exp \alpha$, where

$$\alpha = \begin{pmatrix} 0 & a & b & c \\ -a & 0 & d & e \\ -b & -d & 0 & f \\ -c & -e & f & 0 \end{pmatrix}^{3}$$

is a matrix in a neighborhood of the 0-matrix. For this α , we can verify that

(2. 8)
$$\begin{cases} \alpha I_1 - I_1 \alpha = (c - d)J_1 - (b + e)K_1 \\ \alpha J_1 - J_1 \alpha = (a - f)K_1 - (c - d)I_1 \\ \alpha K_1 - K_1 \alpha = (b + e)I_1 - (a - f)J_1 , \end{cases}$$
$$\begin{cases} \alpha I_2 - I_2 \alpha = -(c + d)J_2 - (b - e)K_2 \\ \alpha J_2 - J_2 \alpha = (a + f)K_2 + (c + d)I_2 \\ \alpha K_2 - K_2 \alpha = (b - e)I_2 - (a + f)J_2 . \end{cases}$$

LEMMA 2.1. The necessary and sufficient condition that $a (4 \times 4)$ -matrix A satisfy $A^2 = -1$ is that $A = \alpha I_1 + \beta J_1 + \gamma K_1 (\alpha^2 + \beta^2 + \gamma^2 = 1)$ or $A = \alpha' I_2 + \beta' J_2 + \gamma' K_2 (\alpha'^2 + \beta'^2 + \gamma'^2 = 1)$, where I_1, J_1, K_1 or I_2, J_2, K_2 are given by (2.1), (2.2).

³⁾ This matrix decomposes into the form (6) in the Appendix 1°.

PROOF. The sufficiency easily follows from (2.5). Conversely, suppose that A satisfy $A^2 = -1$. By an orthogonal transformation M, we can transform A into $A' = MAM^{-1}$ which is just the same as I_1 in (2.1). First, suppose that $\det|M| = 1$. Under the present transformation by M, I_1 , J_1 , K_1 are transformed into I'_1 , J'_1 , K'_1 such that (see (2.7)₁)

$$\begin{cases} A'(=I_1) = \alpha_1 I'_1 + \alpha'_1 J'_1 + \alpha''_1 K'_1 \\ J_1 = \beta_1 I'_1 + \beta'_1 J'_1 + \beta''_1 K'_1 \\ K_1 = \gamma_1 I'_1 + \gamma'_1 J'_1 + \gamma''_1 K'_1 \end{cases}$$

If we consider the first equation with respect to the original coordinate system, we see that $A = \alpha_1 I_1 + \alpha'_1 J_1 + \alpha''_1 K_1$ and $\alpha_1^2 + \alpha''_1^2 + \alpha''_1^2 = 1$.

If det|M| = -1, we can put $M = \lambda M_0$, where λ is given by (2.3) and det $|M_0| = 1$. From $MAM^{-1} = I_1$, we have $M_0AM_0^{-1} = \lambda^{-1}I_1\lambda = I_2$. In this case, we get $A = \alpha_2 I_2 + \alpha'_2 I_2 + \alpha''_2 K_2$ ($\alpha_2^2 + \alpha'_2^2 + \alpha''_2 = 1$). Q.E.D.

Now, let Y be a linear space of dimension 4^2 with coordinates (y'_j) (i, j = 1, 2, 3, 4). We denote the subspace of Y which is the set of all matrices $\alpha I_1 + \beta J_1 + \gamma K_1$ $(\alpha^2 + \beta^2 + \gamma^2 = 1)$ by Y_1 . Similarly, we denote the subspace of Y which is the set of all matrices $\alpha' I_2 + \beta' J_2 + \gamma' K_2$ $(\alpha'^2 + \beta'^2 + \gamma'^2 = 1)$ by Y_2 . Any matrix A of Y_1 or Y_2 satisfies $A^2 = -1$ by Lemma 2.1 and we can write symbolically $\lambda Y_1 \lambda^{-1} = Y_2$, taking account of (2.4).

By virtue of (2.7), these subspaces Y_1 and Y_2 are invariant under SO(4).

DEFINITION. Let Y, Y_1, Y_2 be as in the above and let $B(X_4, Y, G)$ be the (1-1)-type tensor bundle over X_4 , where G is SO(4) or one of its connected subgroups which are indicated in §1. As is well known, with the same base space X_4 and group G, there exist two subbundles of $B(X_4, Y, G)$ with fibre Y_1 and Y_2 . We denote these subbundles by $B_1(X_4, Y_1, G)$ and $B_2(X_4, Y_2, G)$ respectively.

THEOREM 2.1. Let X_4 be an orientable 4-dimensional differentiable manifold. Then we can associate to X_4 intrinsically two (1-1)-type tensor bundles $B_1(X_4, Y_1, G)$ and $B_2(X_4, Y_2, G)$, where G is SO(4) or one of its connected subgroups.

And with respect to the cross sections we can state as follows.⁴⁾

1° Any of the two bundles does not admit cross sections if and only if $G = SO(4), 1 \times SO(3)$.

2° One of the two bundles and only one admits at least a cross section

⁴⁾ Hereafter, if we denote G=U(2) for instance, then we mean that the G of X_4 is reducible to U(2), but not to any connected proper subgroup of U(2).

if and only if G = U(2), SU(2).

3° Both of them admit cross sections if and only if $G = SO(2) \times SO(2)$, $SO(2) \times SO(2)$, $SO(2) \times SO(2)$, $1 \times SO(2)$, 1.

In the cases 2° and 3° , X_4 admits at least an almost complex structure.

PROOF. a) In order that the bundle $B_1(X_4, Y_1, G)$ or $B_2(X_4, Y_2, G)$ admits a cross section, it is necessary and sufficient that $G \subseteq U(2)$ (i. e. X_4 admits an almost complex structure), which follows at once from Lemma 2.1. This proves 1° and a part of 2°.

b) It is remained for us only to prove that if the bundles B_1 and B_2 admit cross sections simultaneously, then $G \neq U(2)$, SU(2). If B_1 and B_2 together admit cross sections, then X_4 admits two almost complex structures a(x) and b(x) ($x \in X_4$), where $a^2 = b^2 = -1$. And we see that $a \neq \pm b$ by virtue of (2.1) and (2.2). Hence the tensor field $c(x) = a(x) \cdot b(x)$ over X_4 gives a non-trivial almost product structure: $c^2 = 1$. This means that G can be reducible to a group reducible in real number field, so that G is one of the groups indicated in 3°. This proves 2° and 3°. Q. E. D.

In the general tensor bundle $B(X_4, Y, G)$, G is one of the subgroups indicated in (1.1). In the following, we will consider such X_4 's, the coordinate neighborhood being given by (x^i) (i = 1, 2, 3, 4).

3. X_4 with $G = 1 \times SO(3)$. If $G = 1 \times SO(3)$, G leaves invariant a matrix of the form

$$Y^{st} = \left(egin{array}{cccc} -1 & & & 0 \ & 1 & & \ & 1 & & \ & & 1 & \ & & 1 & \ 0 & & & 1 \end{array}
ight),$$

with respect to a suitable orthogonal coordinate system. And $B(X_4, Y^*, G)$ is a subbundle of $B(X_4, Y, G)$. This subbundle admits a cross section, which is an *almost product structure*: $a(x) = (a_j^i(x))$ over X_4 so that $a^2 = 1$. If we put $p = \frac{1}{2}(1-a), q = \frac{1}{2}(1+a)$, that is,

$$p_j^i = \frac{1}{2} (\delta_j^i - a_j^i), \ q_j^i = \frac{1}{2} (\delta_j^i + a_j^i),$$

then $p = (p_j^i)$, $q = (q_j^i)$ are projection tensors so that $p^2 = p$, $q^2 = q$, p + q = 1

(Walker, [9], [10]). They define two complementary distributions D, D' over X_4 respectively. The rank of (p_j^i) and hence the dimension of D is 1. D is always integrable. The rank of (q_j^i) and hence the dimension of D' is 3. On the other hand in order that the distribution D' defined by $p_j^i dx^j = 0$ be completely integrable, it is necessary and sufficient that $\partial_{[a} p_{b]}^i q_j^a q_k^b = 0$ or

(3. 1)
$$N_{jk}{}^i + N_{ja}{}^i a_k{}^a = 0,$$

where N_{jk}^{i} is the Nijenhuis tensor of a_{j}^{i} :

$$N_{jk}{}^{i} = \frac{1}{2} \left[a_{[j}{}^{a} \partial_{|a|} a_{k]}{}^{i} - a_{[j}{}^{a} \partial_{k]} a_{a}{}^{i} \right].$$

The condition (3.1) is equivalent to $N_{jk}{}^i = 0$, since the relation $N_{jk}{}^i - N_{ja}{}^i a_k{}^a = 0$ corresponding to the integrability condition for $q_j{}^i dx^j = 0$ is always satisfied.

Summing up, the X_4 under consideration is as follows:

(i) There exists an almost product structure.

(ii) There exist two complementary distributions D, D' of dimension 1 and 3 respectively. The distribution D is always integrable.

(iii)	$N_{jk}{}^i\equiv 0;$		$N_{jk}^{i} \neq 0;$	
	the distribution D' is also		the distribution D' is not	
	integrable.	j	integrable.	

Furthermore, in this manifold, there exist a non singular symmetric tensor field a_{ij} with signature (+++-) and two symmetric tensor fields of rank 1 and 3.

An example is $R^1 \times S^3$. In this case, $N_{jk}{}^i \equiv 0$.

4. X_4 with G = U(2) or SU(2). A transformation T of U(2) decomposes into (4) and (7) in the Appendix 1°. In this case, we can easily verify that

 $\begin{cases} TI_1T^{-1} = I_1 \\ TJ_1T^{-1} = lJ_1 + mK_1 \\ TK_1T^{-1} = -mJ_1 + lK_1 \end{cases} \quad (l^2 + m^2 = 1).$

Hence I_1 is invariant by U(2) and this gives rise a cross section in $B(X_4, Y_1, G)$ which is an almost complex structure $\phi(x) = (\phi_j^i(x))$ in X_4 . On the other hand, if we put

$$A = \alpha J_1 + \beta K_1 \qquad (\alpha^2 + \beta^2 = 1),$$

then $A^2 = -1$, and we denote the set of all such A's by Y'. There exists a subbundle $B'_1(X_4, Y'_1, G)$ of $B_1(X_4, Y_1, G)$. If this subbundle admits a cross section, then it gives rise another almost complex structure $\psi(x) = (\psi_j^i(x))$ in X_4 and we can easily see that $\tau(x) = \phi(x) \cdot \psi(x) = -\psi(x) \cdot \phi(x)$ gives the third almost complex structure. In this case, G is reducible to SU(2).

Consequently, if the structural group G is U(2) or one of its subgroups, then we can associate a (1-1)-type tensor bundle $B'_{1}(X_{4}, Y'_{1}, G)$, which is a subbundle of $B_{1}(X_{4}, Y_{1}, G)$. If this subbundle admits a cross section, then G is reducible to SU(2) or one of its subgroups and vice versa.

1) G = U(2). According to the vanishing or non vanishing of the Nijenhuis tensor $N_{jk}{}^{i}$ of $\phi_{j}{}^{i}$ we can classify X_{4} into two classes, which is well known.

Furthermore, since there exist Riemannian metrics such that $g_{ab}\phi_i^a\phi_j^b = g_{ij}$, we put $\phi_{ij} = g_{ja}\phi_i^a$ and $\phi_{ijk} = \partial_{[k}\phi_{ij]}$. With respect to such a metric g_{ij} , X_4 is classified according to the vanishing or non vanishing of ϕ_{ijk} .

An example is the two dimensional complex projective space (in its real representation). In this case, $N_{jk}{}^{i} = \phi_{ijk} = 0$, the Riemannian metric g_{ij} being kählerian to the complex structure $\phi_{j}{}^{i}$.

2) G = SU(2). In this case, as has been shown, there are three almost complex structures $\phi = (\phi_j^i)$, $\psi = (\psi_j^i)$, $\tau = (\tau_j^i)$ such that $\phi \psi = -\psi \phi = \tau$, $\psi \tau$ $= -\tau \psi = \phi$, $\tau \phi = -\phi \tau = \psi$. The set of ϕ, ψ, τ is the so-called almost quaternion structure. Let $N_{jk}{}^i(\phi)$, $N_{jk}{}^i(\psi)$, $N_{jk}{}^i(\tau)$ be the Nijenhuis tensor of ϕ, ψ, τ respectively, then the following theorem is known ([11], Cor. 2 to Thm. 10. 4):

THEOREM. $N_{jk}{}^{i}(\phi)$, $N_{jk}{}^{i}(\psi)$, $N_{jk}{}^{i}(\tau)$ vanish identically if any two of them vanish identically.

Hence, X_4 is classified into one of the followings:

- (1) Any one of $N_{jk}{}^{i}(\phi)$, $N_{jk}{}^{i}(\psi)$, $N_{jk}{}^{i}(\tau)$ does not vanish.
- (2) One and only one of the above three Nijenhuis tensors vanish.
- (3) All of them vanish.

Now, since it is known that there exist Riemannian metrics hermitian with respect to all ϕ, ψ, τ ([11]), we put $\psi_{ij} = g_{ja} \psi_i^{a}$, $\tau_{ij} = g_{ja} \tau_i^{a}$, and $\psi_{ijk} = \partial_{[k} \psi_{ij]}$, $\tau_{ijk} = \partial_{[k} \tau_{ij]}$. The following theorem is known.

THEOREM. $N_{jk}{}^{i}(\phi)$, ψ_{ijk} , τ_{ijk} vanish identically if any two of them vanish identically ([12], Thm. 5.3).

Hence, with respect to such a Riemannian metric g_{ij} , X_4 is classified into one of the following types.

- $\begin{cases} (i) & Any one of N_{jk}{}^{i}(\phi), \psi_{ijk}, \tau_{ijk} does not vanish. \\ (ii) & One and only one of the above three tensors vanish. \\ (iii) & All of them vanish. \end{cases}$

An example is the manifold of the tangent bundle of a 2-dimensional differentiable manifold (cf. the last part of §8).

5. X_4 with $G = SO(2) \times SO(2)$. As mentioned in §1, the Lie algebra of G is given by the matrices of the form

$\begin{pmatrix} 0\\ -\lambda \end{pmatrix}$	λ 0	0			
0		0	μ	$(\lambda, \mu \text{ independent})$	
		$-\mu$	0 /		

with respect to a suitable orthogonal coordinate system. And G leaves invariant the matrices I_1 and I_2 in (2.1) and (2.2). I_1 and I_2 are commutative: $I_1I_2 = I_2I_1$, and these I_1, I_2 give rise cross sections in $B_1(X_4, Y_1, G), B_2(X_4, Y_2, G)$, which are almost complex structures $\phi = (\phi_j^i)$, $\phi' = (\phi_j')$ in X_4 . And we see that $\phi \phi' = \phi' \phi$. If we put $\pi = -\phi \phi'$, that is, $\pi_j^i = -\phi_j^a \phi_a^{\prime j}$, then we see that π is an almost product structure in X_4 . The normal form of π is such that

$$\pi = egin{pmatrix} 1 & & & 0 \ & 1 & & \ & & 1 & \ & & -1 & \ & 0 & & -1 \end{pmatrix}.$$

There are relations as follows:

 $\phi^2 = \phi'^2 = -1, \ \pi^2 = 1; \ \phi \phi' = \phi' \phi = -\pi, \ \phi' \pi = \phi, \ \pi \phi = \phi'.$ (5. 1)

This system (ϕ, ϕ', π) is the so-called almost complex product structure (of the second kind) ([13], p. 394).

We can sum up the general properties of X_4 as in the followings, where b), c) are easily verified as in the case $G = 1 \times SO(3)$.

(5.2) {a) There exists a so-called almost complex product structure of the 2nd kind.
(b) There exist two complementary distributions D, D' of dimension 2.

In this manifold there exist a non singular symmetric tensor field with signature (++--) and two symmetric tensor fields of rank 2.

Next, we will classify the X_4 . Let $N_{jk}{}^i(\phi)$, $N_{jk}{}^i(\phi')$, $N_{jk}{}^i(\pi)$ be the Nijenhuis tensor of ϕ, ϕ', π respectively. Then we know that the vanishing of any two of $N_{jk}{}^{i}(\phi)$, $N_{jk}{}^{i}(\phi')$, $N_{jk}{}^{i}(\pi)$ implies the vanishing of the remaining one ([14]).

The integrability conditions of the distributions D and D' are given by the followings respectively:

$$n_{jk}{}^i(D) \equiv N_{jk}{}^i(\pi) - N_{ja}{}^i(\pi) \,\, \pi_k{}^a = 0, \,\, n_{jk}{}^i(D') \equiv N_{jk}{}^i(\pi) + N_{ja}{}^i(\pi) \pi_k{}^a = 0.$$

The X_4 is one of the following types.

- i) Any of the tensors $N_{jk}{}^i(\phi), N_{jk}{}^i(\phi'), N_{jk}{}^i(\pi), n_{jk}{}^i(D), n_{jk}{}^i(D')$ does not
- (5. 3) (1) They by the tensors $W_{jk}(\phi)$, $W_{jk}(\phi)$, $W_{jk}(D)$, $n_{jk}(D)$, $n_{jk}(D)$ does not vanish. (ii) $n_{jk}{}^{i}(D) = 0$; the others do not vanish. In this case, the distribution D is integrable. (iii) $N_{jk}{}^{i}(\pi) = 0$, $n_{jk}{}^{i}(D) = 0$, $n_{jk}{}^{i}(D') = 0$; the others do not vanish. In this case, the distributions D and D' are both integrable.

- (iv) N_{jk}ⁱ(φ)= 0; the others do not vanish. The almost complex structure φ is integrable.
 (v) N_{jk}ⁱ(φ)= 0, n_{jk}ⁱ(D)= 0; the others do not vanish.
 (vi) All tensors in (i) vanish.

An example is $S^2 \times S^2$. This is the case (vi).

6. X_4 with $G = 1 \times SO(2)$. The Lie algebra of G is given by the matrices of the form:

Since this is a subgroup of $SO(2) \times SO(2)$, there exists in X_4 the almost complex product structure of the 2nd kind (5.1). Although the properties (5.2) for $G = SO(2) \times SO(2)$ hold good, we can furthermore decompose the almost product structure $\pi = (\pi_j^i)$ as follows.

Evidently, G leaves invariant the matrices

$$(6.1) \qquad \begin{pmatrix} 1 & 0 \\ 0 & \\ & 0 & \\ & 0 & \\ 0 & & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & \\ & 0 & \\ 0 & & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & \\ & 1 & \\ & 0 & \\ 0 & & 1 \end{pmatrix},$$

and $B(X_4, Y, G)$ admits cross sections corresponding to (6.1), which are tensor fields $p = (p_j^i)$, $q = (q_j^i)$, $r = (r_j^i)$ over X_4 . We see that

(6. 2)
$$p^2 = p, q^2 = q, r^2 = r; pq = qr = rp = 0, p + q + r = 1,$$

and furthermore $p + q - r = \pi$. The tensor fields p, q, r define complementary distributions D, D', D'' of dimension 1, 1, 2 respectively. These distributions are defined by $(q_j^i + r_j^i)dx^j = 0$, $(p_j^i + r_j^i) dx^j = 0$, $(p_j^i + q_j^i) dx^j = 0$ respectively. The 1-dimensional distributions D, D' are always integrable. The integrability condition of the distribution D' is $n_{jk}{}^{i}(D') \equiv (\partial_{[a}p_{b]}{}^{i} + \partial_{[a}q_{b]}{}^{i})$ $r_j^a r_k^b = 0$, which is equivalent to $N_{jk}^i(\pi) = 0$.

The general properties of X_4 are summed up as follows. They are special cases of (5.2).

- (a) All properties of (5.2) hold good.
- b) Especially the last property c) of (5.2) is stated more precisely as follows: There exist three complementary distributions D,D', D'' defined by projection tensors p, q, r in (6.2), where $p + q - r = \pi$. The 1-dimensional distributions D and D' are always integrable.

And X_4 is classified into one of the following types:

- (i) Any of $N_{jk}{}^{i}(\phi)$, $N_{jk}{}^{i}(\phi')$, $N_{jk}{}^{i}(\pi)$ do not vanish.
- (ii) $N_{jk}(\pi) = 0$; the others do not vanish. The distribution D' is integrable.
- (iii) $N_{jk}{}^{i}(\phi) = 0$; the others do not vanish. The almost complex structure ϕ is integrable. (iv) $N_{jk}{}^{i}(\phi) = N_{jk}{}^{i}(\phi') = N_{jk}{}^{i}(\pi) = 0.$

An example of such an X_4 is $R^2 \times S^2$. This is the case (iv).

REMARK. In the present X_4 , if we put $\pi_1 = p - q + r$, $\pi_2 = p - q - r$, then we can easily see that

$$\pi^2=\pi_1^2=\pi_2^2=1,\;\pi\pi_1=\pi_1\pi=\pi_2,\;\pi_1\pi_2=\pi_2\pi_1=\pi,\;\pi_2\pi=\pi\pi_2=\pi_1.$$

7. X_4 with $G = SO(2) \times SO(2)$. This is the case $\mu = k\lambda$ $(k \neq 0, \pm 1)$ in §5. Hence, for the X_4 the general properties and the classification in §5 are valid in the present case.

The X_4 can not be a global product manifold $X_2 \times X'_2$, where X_2 and X'_2 are 2-dimensional differentiable manifolds. For, if $X_4 = X_2 \times X'_2$ (in the global sense), then the minimal connected subgroup containing the structural group is $SO(2) \times SO(2)$, $1 \times SO(2)$ or 1. But these are impossible (cf. footnote 4)).

8. X_4 with $G = SO(2) \times SO(2)$. The Lie algebra of G is given by the matrices of the form

(0 - λ	λ 0	0	
		0	0	λ
		v	$-\lambda$	0

This is a special case of G = SU(2) and $G = SO(2) \times SO(2)$, hence we can find in X_4 an almost quaternion structure (ϕ, ψ, τ) (see §4) and an almost complex product structure (ϕ, ϕ', π) (see §5). Furthermore, since ϕ' is commutative with all ϕ, ψ, τ (see §5 and §2), we put

$$\psi \phi' = \phi' \psi = -\pi_1, \ \tau \phi' = \phi' \tau = -\pi_2.$$

Then (ψ, ϕ', π_1) , (τ, ϕ', π_2) are also almost complex product structures. The normal forms of π, π_1, π_2 are as follows:

$$\pi = \left(egin{array}{c|ccccc} 1 & 0 & & & \ 0 & 1 & 0 & & \ & & & & \ & & & & \ & & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & & \ & & \ & & & \ & \ & \ & & \ & & \ &$$

An example of such an X_4 is the manifold of the tangent bundle of a 2-dimensional differentiable manifold (the details will be appear in another paper).

APPENDIX

1° (see §1). In $SO(4) = SU(2) \otimes SU(2)$, the transformations of the first and the second SU(2) in a complex 2-dimensional linear space C^2 are given by

(1)₁
$$\begin{cases} z'_{1} = az_{1} + bz_{2} \\ z'_{2} = -\bar{b}z_{1} + \bar{a}z_{2} \\ (a\bar{a} + b\bar{b} = 1), \end{cases}$$
 (1)₂
$$\begin{cases} w'_{1} = \alpha w_{1} + \beta w_{2} \\ w'_{2} = -\bar{\beta}w_{1} + \bar{\alpha}w_{2} \\ (\alpha \bar{\alpha} + \beta \bar{\beta}) = 1) \\ (\alpha \bar{\alpha} + \beta \bar{\beta}) = 1) \end{cases}$$

where $(z_1, z_2) \in C^2$ and $(w_1, w_2) \in C^2$. (1)₁ and (1)₂ leave invariant anti-involutions of the second kind: $Z_1 = \overline{z}_2$, $Z_2 = -\overline{z}_1$ and $W_1 = \overline{w}_2$, $W_2 = -\overline{w}_1$ respectively. If we put

$$z_{ij} = z_i \otimes z_j$$
 $(i, j = 1, 2),$

then a transformation of $SU(2)\otimes SU(2)$ is given by

(2)
$$\begin{cases} z_{11}^{'} = a\alpha z_{11} + a\beta z_{12} + b\alpha z_{21} + b\beta z_{22} \\ z_{12}^{'} = -a\overline{\beta}z_{11} + a\overline{\alpha}z_{12} - b\overline{\beta}z_{21} + b\overline{\alpha}z_{22} \\ z_{21}^{'} = -\overline{b}\alpha z_{11} - \overline{b}\beta z_{12} + \overline{a}\alpha z_{21} + \overline{a}\beta z_{22} \\ z_{22}^{'} = \overline{b}\overline{\beta}z_{11} - \overline{b}\overline{\alpha}\overline{z}_{12} - \overline{a}\overline{\beta}\overline{z}_{21} + \overline{a}\overline{\alpha}\overline{z}_{22} \end{cases}$$

This transformation leaves invariant an anti-involution of the first kind:

$$Z_{11} = \overline{z}_{22}, \ Z_{12} = -\overline{z}_{21}, \ Z_{21} = -\overline{z}_{12}, \ Z_{22} = \overline{z}_{11}.$$

which is the Kronecker product of the preceding two anti-involutions. The

double element of this anti-involution (real dimension 4) is defined by $z_1 = \overline{z}_{22}$, $z_{12} = -\overline{z}_{21}$. SO(4) is the restriction of (2) on this double element. If $(1)_2$ is the identity, then (2) reduces to

(3)
$$\begin{cases} z'_{11} = az_{11} + bz_{21} \\ z'_{12} = az_{12} + bz_{22} \\ z'_{21} = -\overline{b}z_{11} + \overline{a}z_{21} \\ z'_{22} = -\overline{b}z_{12} + \overline{a}z_{22} \end{cases}$$

If we put

 $z_{11} = \overline{z}_{22} = x + \sqrt{-1} y, \ z_{12} = -\overline{z}_{21} = u + \sqrt{-1} v, \ a = a_0 + \sqrt{-1} a_1,$ $b = a_2 + \sqrt{-1} a_3$, then (3) becomes

.

(4)
$$\begin{cases} x' = a_0 x - a_1 y - a_2 u - a_3 v \\ y' = a_1 x + a_0 y - a_3 u + a_2 v \\ u' = a_2 x + a_3 y + a_0 u - a_1 v \\ v' = a_3 x - a_2 y + a_1 u + a_0 v \end{cases} (a_0^2 + a_1^2 + a_2^2 + a_3^2 = 1).$$

If (1)₁ is the identity and if we put $\alpha = b_0 + \sqrt{-1} b_1$, $\beta = -b_2 + \sqrt{-1}$ then we get similarly

(5)
$$\begin{cases} x' = b_0 x - b_1 y - b_2 u - b_3 v \\ y' = b_1 x + b_0 y + b_3 u - b_2 v \\ u' = b_2 x - b_3 y + b_0 u + b_1 v \\ v' = b_3 x + b_2 y - b_1 u + b_0 v \end{cases} \qquad (b_0^2 + b_1^2 + b_2^2 + b_3^2 = 1).$$

Any transformation of SO(4) decomposes into (4) and (5) with respect to a fixed oriented orthogonal frame. (cf. [4]). The Lie algebra of SO(4) is given by the matrices of the form:

(6)
$$\begin{pmatrix} 0 & -(\lambda_{1} + \lambda'_{1}) & -(\mu_{1} + \mu'_{1}) & -(\nu_{1} + \nu'_{1}) \\ (\lambda_{1} + \lambda'_{1}) & 0 & -(\nu_{1} - \nu'_{1}) & (\mu_{1} - \mu'_{1}) \\ (\mu_{1} + \mu'_{1}) & (\nu_{1} - \nu'_{1}) & 0 & -(\lambda_{1} - \lambda'_{2}) \\ (\nu_{1} + \nu'_{1}) & -(\mu_{1} - \mu'_{1}) & (\lambda_{1} - \lambda'_{1}) & 0 \end{pmatrix}.$$

If we put $\alpha \overline{\alpha} = 1$, $\beta = 0$ in $(1)_2$, then we obtain a transformation of U(2). In this case, (5) turns into

(7)
$$\begin{cases} x' = b_0 x - b_1 y \\ y' = b_1 x + b_0 y \\ u' = b_0 u + b_1 v \\ v' = -b_1 u + b_0 v \end{cases} (b_0^2 + b_1^2 = 1).$$

That is, a transformation of U(2) decomposes into (4) and (7) with respect to a fixed oriented orthogonal frame.

2° (see §1). If $\mathfrak{g}_1 = \mathfrak{g}_2 = 0$ and dim $\mathfrak{g}^* = 3$, then $\pi_1(\mathfrak{g}^*) = \mathfrak{g}_1$ and $\pi_2(\mathfrak{g}^*) = \mathfrak{g}_2$. In this case, we can consider that the bases of the real Lie algebra \mathfrak{g} are given by

$$X_1 - (lY_1 + mY_2 + nY_3), X_2 - (l'Y_1 + m'Y_2 + n'Y_3), X_3 - (l''Y_1 + m'Y_2 + n'Y_3),$$

where X_1 , X_2 , X_3 and Y_1 , Y_2 , Y_3 are bases of the Lie algebras of (4) and (5) respectively. Furthermore, we can consider that the X's and Y's are so chosen that

$$[X_1X_2] = X_3, \ [X_2X_3] = X_1, \ [X_3X_1] = X_2; \ [Y_1Y_2] = -Y_3, \ [Y_2Y_3] = -Y_1, \ [Y_3Y_1] = -Y_2.$$

Hence we know that the matrix

(8) $\begin{pmatrix} l & m & n \\ l' & m' & n' \\ l'' & m'' & n'' \end{pmatrix}$

is an orthogonal matrix and the determinant is equal to +1. In this case, among the constants of (6) there are relations such that

$$\begin{cases} -\lambda'_1 = l\lambda_1 + l'\mu_1 + l''\nu_1 \\ -\mu'_1 = m\lambda_1 + m'\mu_1 + m''\nu_1 \\ -\nu'_1 = n\lambda_1 + n'\mu_1 + n''\nu_1 \end{cases} .$$

171

Since one of the characteristic roots of (8) is equal to +1, there exists a real vector (x_0, y_0, z_0) such that

$$\left\{egin{array}{ll} (l-1)x_{0}+my_{0}+nz_{0}=0\ l'x_{0}+(m'-1)y_{0}+n'z_{0}=0\ l''x_{0}+m''y_{0}+(n''-1)z_{0}=0\,. \end{array}
ight.$$

Consequently, in the 4-dimensional Euclidean space E^4 , the real vector $(0, x_0, y_0, z_0)$ is invariant under G, taking account of (6).

3°. a) $1 \times SO(3)$ is not a subgroup of U(2). With respect to a suitable orthogonal coordinate system, a transformation of $G=1\times SO(3)$ in a neighborhood of the identity is given by exp σ , where σ is of the form

$$\sigma = \begin{pmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & d & e \\ 0 & -d & 0 & f \\ 0 & -e & -f & 0 \end{pmatrix}$$

If G is a subgroup of U(2), then it leaves invariant a matrix A such that $A^2 = -1$. According to Lemma 2.1, we have $A = \alpha I_1 + \beta J_1 + \gamma K_1$ or $A = \alpha' I_2 + \beta' J_2 + \gamma' K_2$, for example, $A = \alpha I_1 + \beta J_1 + \gamma K_1 (\alpha^2 + \beta^2 + \gamma^2 = 1)$. From $\sigma A - A\sigma = 0$ and making use of (2.8), we see that G is of dimension 1 or 0, which is impossible.

b) $U(2) \supset SO(2) \times SO(2)$, but $SU(2) \not\supseteq SO(2) \times SO(2)$. We remark that if $G \subseteq SU(2)$, then G leaves invariant all I_1 , J_1 , K_1 or all I_2 , J_2 , K_2 . Then, with respect to a suitable orthogonal coordinate system, a transformation of $G = SO(2) \times SO(2)$ in a neighborhood of the identity is given by $\exp \sigma$, where σ is given in § 5. We know that $\sigma I_1 - I_1 \sigma = 0$ and $\sigma I_2 - I_2 \sigma = 0$, hence $G \subset U(2)$. However since

$$\sigma J_1 - J_1 \sigma = \begin{pmatrix} 0 & (\lambda - \mu) \\ -(\lambda - \nu) & 0 \\ 0 & (\lambda - \mu) \\ -(\lambda - \mu) \mathbf{i} & 0 \end{pmatrix},$$

$$\sigma J_2 - J_2 \sigma = egin{pmatrix} 0 & -(\lambda + \mu) \ 0 & -(\lambda + \mu) & 0 \ -(\lambda + \mu) & 0 \ 0 & (\lambda + \mu) & 0 \ (\lambda + \mu) & 0 \ \end{pmatrix}$$

we know that $G \not\subset SU(2)$. Moreover, if we consider the case $\mu = \lambda$, $\mu = k\lambda$, $(k \neq \pm 1)$, $\mu = 0$, respectively, then we see that $SU(2) \supset SO(2) \times SO(2)$, $SU(2) \supset SO(2) \times SO(2)$, and $SU(2) \supset 1 \times SO(2)$.

References

- [1] N. STEENROD, The topology of fibre bundles, Princeton (1951).
- [2] T.ÔTSUKI, On the types and canonical forms of holonomy groups of 4-dimensional Riemannian spaces, Study of Holonomy Groups (in Japanese), 2(1947).
- [3] S. ISHIHARA, Homogeneous Riemannian spaces of four dimensions, Journ. Math. Soc. Japan, 7(1955), 345-370.
- [4] S.S. CHERN, On Riemannian manifolds of four dimensions, Bull. Amer. Math. Soc., 51(1945), 964-971.
- [5] E. CARTAN, Les groupes projectifs continus réels qui ne laissent invariante aucune multiplité plane, Bull. Soc. Math. France, 41(1913), 53-96.
- [6] M. BERGER, Sur les groupes d'holonomie des variétés riemanniennes non symétriques, C. R. Acad. Sci. Paris, 237(1953), 1306-1308.
- [7] E. CARTAN, Les groupes de transformations continus, infinis, simples, Ann. Ec. Norm., 26(1909), 93-161.
- [8] A. NIJENHUIS, On the holonomy group of linear connections, I_B, Proc. Kon. Ned. Ak. Wetens. Amsterdam, A. 56(3), 241(1953), 241-249.
- [9] A.G. WALKER, Connexions for parallel distributions in the large, Quart. Journ. Math. Oxford (2), 6(1955), 301-308.
- [10] _____, Connexions for parallel distributions in the large (II), Quart. Journ. Math. Oxford (2), 9(1958), 221-231.
- [11] M. OBATA, Affine connections on manifolds with almost complex, quaternion or hermitian structure, Japanese Journ. Math., 26(1956), 43-77.
- [12] H. WAKAKUWA, On almost complex symplectic manifolds and affine connections with restricted homogeneous holonomy group Sp(n, C), Tôhoku Math. Journ. , 12(1960), 175-202.
- [13] —, On linearly independent almost complex structures in a differentiable manifold, Tôhoku Math. Journ., 13(1961), 393-422.
- [14] C. J. HSU, On some structures which are similar to the quaternion structure, Tôhoku Math. Journ., 12(1960), 403-428.

FUKUSHIMA UNIVERSITY.