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Let n be any rational integer > 2 and ζn a primitive n-th root of unity
over the field P of rational numbers (e.g. ξn=e2κi/n) let P ( r 0 denote the
cyclotomic field generated by the primitive n-th root of unity ζn over the
field of rational numbers. If t is any rational integer prime to n, ζn—*ζn
determines an automorphism σt of P ( n ) over P the Galois group of PM

over P consists of all σt and therefore is isomorphic with the multiplicative
group of the rational integers prime to n mod n.

Let p be any prime ideal prime to n in P ( ? ϊ ), and put Np = q\ then q = 1
(mod n). The n-th. roots of unity ξ%, for 0 5̂  α < 72, are all incongruent to
each other mod p and therefore are all the roots of the congruence Xn = 1
(mod p) in 2%).'For every integer x prime to p in P ( w ) , r*7"1 = 1 (mod p) and so
there is one and only one n-th root of unity tr

n (0 5g r < w) satisfying the
condition x{q~Λ)'n = ζr

n (mod p), since χir'n=l (mod p).

Now, let %P(Λ:) be an n-th root of unity satisfying
χp(x) ΞΞΞ Λ:^-1)/- (mod p\

and for X Ξ O (mod p) we put χp(x) = 0. Then χp is a multiplicative character
of order n of the field of q elements consisting of the congruence classes in
P ( n ) mod p.

For such a character χp and any rational integers a and b such that α,
b and α + έ φ O mod n, Jacobi sum is defined as follows:

where xx and x2 run over complete sets of representatives of the congruence
classes modulo p in JP(W) subject to the condition xx + χ2 = 1 mod p.

As Jacobi sums are closely related to the Gaussian sum we shall here
deal with both Jacobi sums and the Gaussian sums. As can be seen in the
above definition, Jacobi sums are certain sums of roots of unity in the residue
class field modulo p. It will be shown that they are left invariant under all
automorphisms of the residue class field modulo p. Jacobi sums may have
some relation to the splitting field of p with respect to P(n^/P, and indeed they
have. We shall prove that the splitting field of p arises from the rational field
by the adjunction of Jacobi sum. As for the Gaussian sum, S.Chowla [1]

1) see [8]
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shows that the Gaussian sum belonging to a character of the multiplicative

group of rational integers modulo p, where p is an odd prime number, is

equal to the product of a root of unity and\/ p if and only if the order of the

multiplicative character is twoυ. In case of the Gaussian sum belonging to

the above multiplicative character χa, it will be shown that it is equal to the

product of a root of unity and \z'Np or not, according as the splitting field

of p is real or imaginary.

D. Hubert [6] shows a set of relations among the elements of the class

group of the cyclotomic field generated by p-th. roots of unity over the rational

field, which R.E. MacKenzie [7] gives a generalization of. Here we shall prove

that the above relations also hold in the class group of any Galois extension

over P of finite degree containing P ( r 0 and in a certain "Strahl" class group

of any cyclotomic field P<n). The point of the proof which is founded on the

ideas of MacKenzie consists in employing Jacobi sums.

1. Preliminaries. Let p be any prime ideal prime to n in P ( w ) and

ψ(x) be any nontrivial character of the additive group of congruence classes

modulo p in P<»; consider the Gaussian sum

x mod P

for any integer a modulo n.

Then we get the relation between the Gaussian sum and Jacobi sum

(i) T(X?MX5) = τ(%r)»(%?, xl)
when a, b and a + b Φ 0 mod n.

And for any rational integer C Φ O mod n

(2) K%c)|2 = <7.

From this and (1) we have for any rational integers a and b such that a,b

and a + b Φ 0 mod n

(3) \ω(Xΐ,χ
b

P)\2 = q.

Moreover, it follows that for any rational integer αΦO mod n
n-Λ

(4) I I ω(χT, Xv) (Np)" = r(χ$r
μ = l

where d denotes the positive greatest common divisor of a and nP

On the other hand, rc-th power of the Gaussian sum τ(χ£) is an integer in

P ( n ) whose prime ideal decomposition in P ( r O is given by Stickelberger and

Hasse [5], [9], [10] as follows; for a φ 0 mod n

(5) w

2) In the case μ = - ^ - 1 , «(xjμ, x£) is equal to x£( - 1).
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where θ(a) denotes the sum Σ r(~ ta)σΓlm, r{x) denotes the least positive rest
t

of x mod n and the summation is over all rational integers t prime to n
modulo n. Thus θ(a) is an element of the group-ring (with integral coefficients)
of the Galois group of P ( n ) over P; symbolic powers of ideals of P ( 7 θ are to

be understood as usual by putting e.g. av = JJ.t (dσt)n' if v is the element v

— Σ ntσt of the group-ring. It is clear that we have
t

(6. 1) θ{a)σt = θ(ta)

(6. 2) θ(a)(σι + σ_.) = θ(a) + 0(-a) = nΣJσι
t

where t is again prime to n.
Now, Jacobi sum ω(χj, %£) is an integer in P ( r O . From (1) and (4), the

prime ideal decomposition of Jacobi sum in P ( n ) is obtained as follows:
when a, b and a + b Ψ 0 mod n

(7)

Here η(a, b) denotes the sum Σ d( — ta, — tb)σjι, where generally
t

x _ rprO + r(x2) - r (^ ! + x2) _ /0 for r(xx)
2)~ 7i " U for r(xλ)

and the sum is taken over all integers t prime to n modulo n.
Since the expression d(xu x2) is equal to 0 or 1 according as r{xλ) + r(x2) < n
or r(xχ) 4- r(^2) ^ ?̂ ^(^, έ) is an element of the group-ring (with integral
coefficients) of the Galois group of P ( 7 θ over P. And we see at once that
nη{a,b) = θ(ά)-\-θ(b) — θ(a + b) as elements of the group-ring, so we have

(8. 1) η(a9 b)σt = η(ta, tb)

(8. 2)
t

Let /> be the prime number which is divisible by p. Then the Gaussian
sums τ(χp) are integers in JP<W3,), so any element of the Galois group of P ( r O

over Pacts on them; for an automorphism ps of P(7lJ,)/P(7ϊ) which corresponds to
the automorphism ξp -> ζs

p of P<nj,)/P<») we have τ(%J)Pί = %JΓα(5)τ(%?) and for
an automorphism σt of P^^/P^ which corresponds to the automorphism σt

of P(n )/P, we have also τ(%£)σ< = τ(χf). On the other hand, any element of
the Galois group of P ( w ) over P acts on w-th power of Gaussian sum and
Jacobi sum ω(χp, χl), which are integers in P ( n ) . Therefore we have the
following;
(9)
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for all elements σt of the Galois group of P ( r 0 over P.
Now, let k be any finite algebraic number field over P containing P ( r 0

and p be any prime number which does not divide the discriminant of k;
let p denote a prime divisor of p in P ( n ) , and 5)3 a prime divisor of p
in k.

For the character χp of the multiplicative group of congruence classes
modulo p, the character %«p of the multiplicative group of congruence classes
modulo 5)3 is defined bv

(10) χ*(Έ) = χAN£)

where x is any integer prime to 5)3 in k and N denotes the norm mapping
from the multiplicative group of congruence classes modulo 5)3 to the multipli-
cative group of congruence classes modulo p.
Furthermore, le t/be the relative degree of 5)3 with respect to k/P^, namely Mβ
= pf then Nx = χ*+"+-+«f-1 = £fa'-υ/«z-o m o c i p Therefore, by the definition,
for any rational integer αφO mod n χ${x) ΞΞ χu

f-ua/n

 m o d p and so mod 5)3.
Hence we see that χ%{x) — χp(Nx) for any rational integer αφO mod TZ.
For such characters χ j and %jp Jacobi sum ω(χj, % )̂ and the Gaussian sum
τ(%5) may be defined in the same way, then Hasse [2], [5] proved the
following relation;

(Π) ω(χa, Xl) = ω(χϊ, la)'.

2. Gaussian sums and Jacobi sums. Let p be any prime ideal prime
to n in P(W) and put Np = p?\ where p is a rational prime number.

In the following, a prime ideal p and rational prime number p mean what
is mentioned above unless otherwise stated. We also omit the subscript p in
characters %?, the Gaussian sums τ(%?) and Jacobi sums ω(χj, χ δ ).

We shall first deal with Jacobi sums. Using (7) and that the prime ideal
p is left invariant under the Frobenius substitution of p with respect to PM/P9

we see at once that the Frobenius substitution of p leaves fixed the principal
ideal generated by Jacobi sum. However, we shall now show that Jacobi sum
itself is left invariant under the Frobenius substitution of p. This follows
from these consideration: using (9), for the Frobenius substitution φ of p with
respect to P^/P, characterized by ζζ = ζζ, we have the following;

ω(χ\ χbr = ωor, x

bη =- Σ, xap(^)xbp(^)
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Here, paying attention to the quality of the Frobenius substitution of p we
have further

= - Σ % α M % δ α - χ,v) = - Σ xa(ocιv)x\χ,v)

Hence Jacobi sum ω(χa, χb) is left invariant under any element of the splitting
group of p with respect to P ( w ) /P.

Conversely, assume ω(χa, χb) = ω(χa, χh)σk for some element σk of the
Galois group of PM over P, then we have (ω(χa. χb)) = (ω(χa, χb))σ\ By (7)
and (8.1) we obtain the prime ideal decomposition of (ω(χa, χb))σk in P ( n ) as
follows:

Here, let p^ 1, pσϊJ, pσl\ (s = φ{n)lf)^ be different prime divisors of p.
Then (7) may be written in the form

2 niati.btΰσf1

(12) («(%?,%>)) = P i = 1

/'-I

where D(x1,x2) denotes the sum Σ d(— xλρ
μ, — x2p

μ)-

By (12) and the assumption, we get

W, xb))σt =

This implies that each prime ideal p^T1 in both sides of the above equation has
the same exponent, that is, D(katiy kbti) =D(atί9 btt) holds for each i,i = 1,
2, , s.

If there exists at least one D(ath bt3) different from the others, then we
see immediately that the above equation holds only when k is the power of
p namely σk is contained in the splitting group of p.

Thus we have the following

LEMMA 1. Assume that there exists at least one D(atj9 bt3) different
from the others. Then in order that some elements of the Galois group of P<»
over P leave Jacobi sum ω(χj, χl) fixed, it is necessary and sufficient that
they are contained in the splitting group of p with respectct to PM/P.

According to Lemma 1, it may be possible that some of Jacobi sums are
real numbers, and indeed they are. Then we have the following

3) φ{n) denotes Euler's function.
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LEMMA 2. If the splitting field of p with respect to P^IP is a real
subfield of -Poo, then Jacobί sum ω(χ%, χl) is equal to zt^/Np which is a
rational integer and conversely, if there exists at least one D(atj, btj) different
from the rest.

PROOF. In order that the splitting field of p is a subfield of the maximal
real subfield of P(^>, it is necessary and sufficient that the complex conjugation
σ_! of the imaginary field PM is contained in the splitting group of p.
Suppose that the splitting field of p is real, then we see at once that
ω(χa,χb)σ-1 = ω(%α, χb) for the complex conjugation σ_x from the first part of
Lemma 1 and what is mentioned above. And we see further from (3) that
Np = ω(χa,χb) ω(χa,χb)σ-1 = ω(χa,χb)2. When we put Np = ρf\ by the assump-
t ion/ ' is an even integer. Therefore Jacobi sum is equal to ±y/Np and a
rational integer.
Conversely, suppose that there exists at least one D(atj,btj) different from

the rest and Jacobi sum is equal to db */Np which is not necessarily a rati-
onal integer, then it holds that ω(χa, χb)σ-* = ω(χa

y χb). This fact shows that
the complex conjugation σ_x is contained in the splitting group of p by the
latter part of Lemma 1. Thus we obtain the assertion to be proved.

Now, paying attention to Lemma 2 we can express Lemma 1 in another
way, that is the following

THEOREM 1. Assume that the splitting field Fz of p with respect to
Pcn-ϊ/P is an imaginary subfield of Pw and there exists at least one D(ath btj)
different from the others. Then we have Pz = P(ω(χ%,

PROOF. We see immediately that ω(%α, χb) is not contained in P, but
contained in Pz. Furthermore, Lemma 1 shows that the number of the diffe-
rent conjugates of the element ω(χa, χb) in Pz is equal to the degree of Pz over
P and P(ω(χa, χb)) is a normal extension over P. Hence our assertion is true.

Next, we shall deal with the Gaussian sums. As mentioned above, Jacobi
sum is left invariant under any element of the splitting group of p with
respect to P^/P- From this and (4) it follows that any element of the splitting
group of p leaves n-th. power of the Gaussian sum fixed.

As before, let pσh , p°Λ, . . ,pσts ? (5 = φ(n)/f) be different prime divisors of p.
Then (5) may be written in the form

(13)

/'-i

where R(x) denotes the sum ^ r(—xpμ).
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Now, assume τ(χa)n = τ(χa)n<Tk for some element σk of the Galois group of
JP(W) over P. Then by (13) we get

This implies that R(tta) is equal to R(tjza) for each i, i = 1, 2, s. If there
exists at least one R{tμ) different from the others, then we see immediately
that the above equation holds only when σk is contained in the splitting group
of p.
Thus we have the following

LEMMA 3. If there exists at least one R{tμ) different from the rest,
then n-th power of the Gaussian sum τ(%J) is left invariant under some
elements of the Galois group of P ( w ) over P only when they are contained
in the splitting group of p.

When Xp is a multiplicative character of order 2 of the multiplicative
group of congruence classes modulo p in particular, it is a famous fact that

the Gaussian sum τ(%£) is equal to :+:*/%£( — l) Np. As to the Gaussian sum
of multiplicative characters of oder n of the multiplicative group of congru-
ence classes modulo p, we have the following

THEOREM 2. We put the Gaussian sum τ(χa) = S(χ?) */~Np If the split-
ting field of p with respect to P^/P is real, then in the case p is odd, £(%α)
is an n-th root or a 2n-th root of unity according as n is even or odd, and
in the case p is 2, S(χa) is an n-th root of unity and conversely if there is
at least one R(tjά) different from the others. Then we have £(%α)6(%δ) — ±8

(xa+b).
This theorem is proved by the same methods as in the proof of Lemma 2.
Now, assume that the splitting field of p is imaginary and there is at least
one R(tjθ) different from the rest. Obviously £(%α) is not a root of unity.
Since τ(%α) is equal to €(χa)\/Np~, S(χa)2n is contained in P ( r O more expli-
citly, in the case n and / ' is odd, where / ' denotes the degree of p relative
to P, S(χa)2n is contained in P ( n ) and in other cases £(χa)n is contained in
Pin> And its prime ideal decomposition in P(TO) follows from (5) and (6. 2);

S = l

2 (2r(-αί)-w)σf1 2 &R(tia)-nf')a-1

(ε(χa)2n) = p ι = p ί=J . As for the exponents of pσu , we

have the relation R(tta) + R((n — t^a) = nf for each i, where i is an integer

satisfying 1 5g i ^~^~ or — - — according as 5 is even or odd, respectively,
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because we may take {σζ"1, σ*"1, ,σΰ\, o n-t,} as a representative system of
the right coset of the splitting group oί p in the Galois group of P<W) over
P and r(— x) + r(x) = n holds. Therefore the sign of the rational integer
2R(tjά) — nf does not coincide with the sign of the rational integer 2R((n
— tj)a) — nf by the assumption; this implies that £(%α)2n is not an integer
but we have |£(%α)| = 1 easily. As the field P ( w ) is purely imaginary, there
is no distinction to be made between the norms of the number £(%α)2w and
of the principal ideal (S(χa)2n). Therefore, by the above prime ideal decom-
postion we have AΓP(w)/P£(%α)2rϊ.

Thus we have the following

COROLLARY 1. Let notation S(χa) be as in Theorem 2. Assume that the
splitting field of p with respect to PM/P is imaginary and there exists at
least one R{t^a) different from the others. Then ζ(%α) is not an integer in
PM but it is characterized by \S(χa)\ = 1 and NPin)/Pε(χayn = 1

Moreover we have

THEOREM 3. Assume that the splitting field Pz of p with respect to PM

/P is imaginary and there exists at least one R(tjά) different from the rest.
Then we have Pz = P(τ(χϊ)n).

This theorem can be proved in the same way as in the proof of
Theorem 1.

3. An application of Jacobi sums. Let k be any finite algebraic number
field over P containing P ( 7 θ and p be any rational prime number which does
not divide the discriminant of k.
Let pσ^ (i — 1, 2, , s) denote the distinct prime divisors of p in JP(w) as
before and moreover, let $σΰ = ^iti'^u2' ' * Φs.r, be the prime ideal decomposi-
tion of p σ ί in k, then for any rational integer a and b such that a, b and
a + b Φ 0 mod n, the prime ideal decomposition of Jacobi sum ω(%J, χb

p) in
k is given by

(14)
i = l 3=1

Let ί£tj denote the ideal class of k containing the prime ideal 5βtJ for each
iy j (i = 1, 2, -,sj = 1, 2, , r j . Then it follows from (14) that for any
rational integer a and b such that aj? and α + i Φ O mod n

Π Π «w = i
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where O{tta, ttb) denotes the same notation as in (12).
Especially, assume that k is a Galois extension over P containing P(n ).

Let the Galois groups of P ( r O /P and k/PM be denoted by & and ξ),
respectively. Then we denote by σt a representative in the Galois group of
k/P of the coset corresponding to an element σt of @.

We now prove the following

THEOREM 4. Assume that k is a Galois extension over P of finite degree
containing JP(rO. Let β be any ideal class of k. Then for any rational integers
a and b except when α Φ O , b Φ 0 and a -f b = 0 mod n

where the product is over all automorphisms of k.

PROOF. The generalized theorem on arithmetric progressions assures us
that every ideal class of k contains prime ideals of degree 1 relative to P. Let
β be any ideal class of k and $ be a prime ideal in k of degree 1 relative
to P which is contained in β. Then for this ideal class we may state from

(14) t h a t Π I I (Jt^T*'-*".-*) is the principal class, provided that neither a

nor b is divisible by n. On the other hand, in case that a or b or both are
divisible by n, the value of Jacobi sums ω(%α, %δ) are as follows:

Xb) =

— (Np — 2) when a ΞΞΞ 0 mod n and J Ξ O mod n

1 when a = 0 mod n or & = 0 mod ?z

%α( — 1) when a + b = 0 α φ O and & Φ 0 mod n.

So, in these cases the exponents d( — ia, — ib) of p σ r l in the prime ideal
decomposition of Jacobi sum in P ( r O is all equal to zero except when a + b
Ξ O , α Φ O and J Φ O mod n. Moreover, from what is mentioned above, the
above statement regarding ffi is true even if either a or b is divisible by
n. Hence Theorem 4 is true.

REMARK: Put k = P ( r O in this theorem, then we have Theorem 4 of
MacKenzie [7].

Particularly, as to the cyclotomic fields we see that Theorem 4 is true
even if ffi is any absolute ideal class of a cyclotomic field (an absolute ideal
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class means an ideal class in the narrow sense). And what is more, we prove
the following

THEOREM 5. Let n be any rational integer > 2, p be any prime ideal
prime to n in P ( 7 θ and m be an ideal of P ( n ) such that ω(%?, χl)— 1 or
ω(χnp, χl)+ 1 is divisible by m. Let fi) be the "StrahΓ class mod m of PM

containing p. Then we have for any rational integer a and b such that a
+ b Φ 0 mod n

Π

-where D(atu bt^) denotes the sa?ne notation as in (12).

PROOF. By the assumption we see at once that "StrahΓ' class mod m
containing the principal ideal generated by Jacobi sum ω(%α, %b) is the "Strahl"
mod m. So it follows from (14) that our assertion is true.

Furthermore, we have the following

V

THEOREM 6. Assume that /z = U If is the factorization of n into
4 = 1

powers of distinct primes and l? is a pri?ne divisor of lh in P^y Let K be

any "StrahΓ class mod If ( 1 ^ c ^ lv

i

i~μ and 1 ^ μ ^ vt or 2 ^ μ ^ vt accord-

ing as lt is odd prime or even).

Then for any rational integer a and b except when α Φ O , έ Φ O and

=0 mod n we have

Π

where sμ denotes the rational integer such that n — lμιSμ and d{— sβta,
— sμtb) denotes the same notation as in (7).

PROOF, Since ^2 χaSβ(x)—~ 1 holds trivially Jacobi sum can be also
x^O.lraodJ)

written as follows: for any rational integer a,b and α + i Φ O mod n

= - Σ xSβ(^)
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-L / ' X \pC\)\X \^- *£\) -*-/•
x %.o. l

Let Utμ be the prime divisor of U in P ^ Then we have Γίι|t = (lf •)*' " ^

the assumption multiplicative characters χ"*^) and χbSμ (1 — x j are at most

/?-th roots of unity, hence χaSμ(xι) and χbSμ(l — #1) = 1 mod titfi and so mod

l\. From this the congruence follows

χ?Sμ(xι) (χbSμ(l — Xι) — 1) = %δS/i(l — Xi)— 1 mod If, when x ^ O , 1 mod p
and consequently

ω(χaSβ, χbSμ)= 1 - Σ C% (̂1 - * i ) - 1)= iVpΞl mod n and so mod If.

In other cases, the last congruence trivially holds. Therefore we see that the
"StrahΓ'class mod If containing the principal ideal generated by Jacobi sum
is the "Strahl" mod If. The generalized theorem on arithmetic progressions
assures us that every "Strahl" class mod If of P ( w ) contains prime ideals of
degree 1 relative to P. So, putting the "Strahl" class mod If in the place of
the ideal class in Theorem 4 the remaining part can be proved in the same
way as in the proof of Theorem 4.

This theorem can be expressed in another way as follows:

THEOREM 6'. The assumptions being the same as in Theorem 6, let β
be any "StahΓ class mod ίf of P ( r O and § denotes the Galois group of P ( r O

over the cyclotomic field P(ι
μ) generated by the primitive If -th root of unity

over the rational field. Then for any rational integer a and b except when
α , i Φ 0 and a + b Ξ 0 mod n we have

Π Π ψ?'na

t

allwhere d<-\- ta, - tb)= r(-ta+r(-tb)-r(-ta,-tb) a n d ^ r a n g e $

elements of a representative system of the factor group of the Galois group

of PM/P h the Galois group of PM/P^

PROOF. Assume that p is a prime ideal in P ( n) of degree 1 relative to
P and q is the prime ideal in P(ij* which is divisible by p, then the prime

ideal decomposition of Jacobi sum ω(χl, χ§) in P(n> is as follows:
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Here, σf1 ranges over all elements of a representative system of the factor
group of the Galois group of P ( n ) /Pby the Galois group of P ( 7 ϊ )/ίV) and r ranges
over all elements of the Galois group § of P(r0/iVt>. On the other hand, we
have seen that ω(%%, %q)=l mod If, except when α φ O , J φ O and a + b = 0
mod w. Therefore let ffi be the "Strahl" class mod If containing p, we see at
once that

Hence Theorem 6' is true for the case when fi) is the "Strahl" class mod ίf
containing p. As any "Strahl" class mod If surely contains the prime ideal
of degree 1 relative to P, the above statement regarding $ is true for any
"Strahl" class mod If. Hence our assertion is true.
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