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Introduction. 'W. M. Boothby and H. C. Wang [3] have studied a com-
pact manifold with a regular contact structure, and showed that it is a
principal fiber bundle over a symplectic manifold with a structural group
T'(=1-dimensional torus group). Especially it has been shown that a compact,
simply connected homogeneous contact manifold is a principal 7"-bundle
over a homogeneous Kihlerian manifold.

If we take a contact manifold M, then we can provide it a contact metric
structure choosing a suitable metric on M. Then for any principal 7"-bundle
P over M, we can give an almost complex structure using the contact metric
structure on M and an infinitesimal connection on P. The integrability
condition of this almost complex structure is a question. In this note, we
shall study the case when M is moreover compact, simply connected and
homogeneous contact manifold, and we shall show that any principal T"-
bundle P over M has a homogeneous complex structure using the above
fibering of Boothby-Wang. Since a compact, simply connected homogeneous
contact manifold M has a normal contact metric structure [8], if P is a trivial
principal bundle, then the proposition is easily shown taking a flat connection.
Therefore it is essential when P is not trivial.

I should like to express my sincere gratitude to Professors S. Sasaki and
S. Murakami for their kind guidance and many valuable criticism.

1. Preliminaries. Let M be a compact, simply connected homogeneous
manifold. It is known that the Lie group G which acts transitively on M
has a compact semi-simple subgroup which acts transitively on M. Therefore
we can take the first G as a compact semi-simple Lie group, and M is
a coset space of G by a closed subgroup L. Moreover, we can suppose with-
out loss of generality that the compact, semi-simple Lie group G is simply
connected. In fact it is sufficient to take a universal covering group of G.
Therefore we assume that in the following G is compact and simply connected.
In this situation, L is also compact, and G/L is a reductive homogeneous
space in the sense of K. Nomizu [1]. If we represent the Lie algebra of the

Lie group G and L by G and j:, then there exists a subspace M of G such
that
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2NN

G=L+M, LnM=©, I[LMci.

We consider a natural principal fiber bundle G(G/L,w,L) with a canonical
projection m: G —G/L. Then we have a natural G-invariant connection
on G in accordance with the above decomposition. We consider in the

following that the Lie algebra G of G (composed of all left invariant vector
fields on G) is identified with the tangent space of G at the unit element e.
In this identification, the differential of the right translation of G by the
element g of G can be considered as the adjoint operation of T.(G) by g.
We denote it by A,. The differentiable connection o is defined for any

element X ¢ E}'\, and g <G,
o(X) = Xz, L*o=wo
where X; means the z\-component of X. It can be shown that o satisfies
the two conditions of connection on G:
o@h)=AT"w(g), gec<TJ(G),lecL,
ogh=1"1, g<G,leTD).
Next we define a 1-form ¥ on G using a homomorphism p of L onto
T' by
VY=p-w.
Then ¥ is G-invariant and takes value in 'j’\‘. If we restrict ¥ on G, then
it satisfies the following equations:
‘I’At = ‘I’ > l € L ’
v =u@, IecL.

We take a differentiable 7"-bundle P over M. S. Murakami [2] showed
that if the Lie group G is compact and simply connected, then any differenti-
able principal bundle P over a homogeneous space G/L with an abelian
structural group 7" corresponds to a differentiable homomorphism p: L — T
P is obtained from x and the principal fiber bundle G(G/L, m, L) as follows:
Let GXT" be the product space of G and 7", and we introduce an equivalence
relation (~) in Gx 7" by the rule

(g, a)~@lLpD'a), l<cL.

Then the manifold P= GxT"/(~) is a differentiable principal bundle space
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over G/L with the structural group 7". We take a 1-form ¥ for this homo-
morphism u. If we write the kernel of p by K, then K is clearly a closed
subgroup of L and of course that of G. We suppose that the homogeneous
space G/L admits a non-trivial principal 7"-bundle P over it. Then by
virtue of the theorem of Murakami cited above, there exists a non-trivial
homomorphism u of L onto T". This fact is also equivalent to the condition
that the compact Lie group L is not semi-simple.

LEMMA 1. The principal fiber bundle P(G/L, p, T") is equivalent to the
principal fiber bundle G/K(G/L, p,L/K) in a natural fashion.

PROOF. Let A: G— G/K be a canonical map which coincides with p
on L. We correspond any element AMg) of G/K to the class [(g,e)] of P.
This correspondence is well defined, and is clearly onto, one-to-one. We take
an element Mg) of G/K and an element u(/) of L/K =T". Since K is an

invariant subgroup of L, we have
R.yM(g) = (gD,

where R, denotes the right translation on G/K by the structural group
L/K. Therefore the above correspondence between G/K and P commutes
with the right translations of the structural groups, that is,

Rll(l) [(g: e)] = [(gl7 e)] .

This shows that the correspondence Mg) — [(g,€)] is a bundle map. Therefore
P and G/K have equivalent bundle structures. Q.E.D.

By virtue of this lemma, we can identify the principal fiber bundle
P(G/L, p, T") with G/K(G/L, p, L/K). In the following we always take this

identification. Since the Lie algebra T of the 1-dimensional Lie group 1"

N\
= L/K is the 1l-dimensional real line, we can consider every T"-valued
mapping as a real valued mapping. Therefore ¥ is a real valued left in-

AN 2\ -\ pay
variant 1-form on G. The center of L is mapped onto 7" by w: L—T"!
induced from the homomorphism L — T". Therefore we can choose an

element @ of the center of L such as w(@)=1. Then it holds
V(@) =p-o(@)=pl@=1.

T can be decomposed to the direct sum of the Lie algebra R of K and the
space {a} generated by a.
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2. Homogeneous almost contact manifold. Suppose M be a compact,
simply connected manifold on which a compact simply connected Lie group
G acts transitively. Then there exists an isotropic subgroup L of G and M
is diffeomorphic with G/L. As in the previous section, we have a 1-form V.
Furthermore we assume that M admits a G-invariant almost contact structure
(¢, &, 1). These tensors are of types (1, 1), (1,0) and (0,1) and satisfy the
following relations:

7 =1,
(&) =0,
Ppp=-3+nQE.

From the projection 7: G — G/L we have the inverse images ¢*,»* on G
¢ =a*¢p, ¥ =a¥g.

¢* is a T(M)-valued G-invariant mapping on 7(G) and »* is a G-invariant
N

tensor fields of type (0, 1) on G. The restrictions of ¢* and #* on G satisfy

the following relations;

p*A, =¢*, A =9%, IleclL,
¢* (L) = (L) =0.
We define an endomorphism I: G—G by
m(IX) = ¢¥(X) + Y (X)E,
o(IX) = —*X)a.

Then we have
Y(IX)=—n%X).
THEOREM. 1. The endomorphism I satisfies the following properties:
(i) IX=0 ifandonlyif XeK,
(ii) PX=-X (modK), X¢c0G,
(i) IAX=A,IX (modK), k<K, XeG,
(v) JaeM, Ala=Ia, le<L.
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Therefore I defines a homogeneous almost complex structure on G/K.

PROOF. (i). If XeXK, then m(IX) =0, o(IX) =0. Therefore IX = 0.

Conversely if IX=0 for X 66, then we have #X =0, and so X« 2,\
We denote X, the {a}-component of X, with respect to the decomposition

=R +{a}. Then =(IX)= ¥(X.)E&=0, therefore X.=0. This shows that X
AN\
belongs to K.
A
(ii). For any X < G, we have
T(PX)=¢(xIX)+ VYIX)E = —m(X),
Y X)= —pgrlX) = —V(X).
On the other hand X satisfies m(X)=¥(X)=0 if and only if X ¢ R. There-

fore from the above two equalities, we have
PX=—X (mod K).

(iii). Since ¢, & and 5 are G-invariant, we have for 2 € K, X < /G\,
m(IAx X) = (L' wX) + (X)L, ' &
= L™ {¢(rX) + ¥(X) &}
= L' m(IX) = m(A: IX),
V(A X) = —n(mrA; X) = —n(r X),
V(AL IX) = —n(rX) .
Therefore it holds IA, X = A;IX (mod I/<\) for all X € 6 We see more
precisely that in this equation the element of K can be replaced with the

element of L, since the above three equations hold when we take /<L in

place of k¢ K.
(iv). If we put 8 = Ia, then
m(B) = ¢(ra) + Y(@)§ =£+0,
o(B) = —n(ra) =0.
Therefore 8 is non-zero and belongs to M. As the Lie algebra G is reduc-

tive we have A,8 Eﬁ for [ € L. On the other hand, we have seen that
P
TA,a=A,Ia (mod K) for Il € L. As a is an element of the center of /I:, it
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holds that A,@ =a for [ € L. Therefore we have A8 =8 (mod j{\) There-
2\
fore A,8—8 belongs to both M and f(\, which means

A B =8, lelL. Q.E.D.

The conditions (i)~(iii) of this theorem show that any 7™-bundle P over
M=G/L has a homogeneous almost complex structure.

Conversely, we take a 7"'-bundle P over a compact simply connected
homogeneous manifold M=G/L and suppose that P=G/K admits a homo-
geneous almost complex structure. Then there exists an endomorphism

I: G— G which satisfies the conditions (i)~(@ii) of Theorem 1. If there

exists an element « € /E such that
(iv) B=IachM, AB=8B for lclL,

then the base manifold G/L admits a homogeneous almost contact structure.
In fact, by virtue of (iv), the non-zero vector m8 € T, (G/L) can be extended
to a G-invariant vector field & over G/L which takes value 78 at x, = m(e)
€ G/L. For this purpose it is sufficient to define' &, = L, &, for x = L,x,.
Other tensors ¢, n over G/L can be defined as follows: for any vector
zeT,(G/L), taking a lift X of x with respect to the connection o on
G(G/L,m, L) (see §1), we define at x,

¢(z) =r(IX),
7(x) = —¥(IX).

For any x = L,x,€G/L, we define ¢, = L, ¢, L', 7, = 1+ Ly*. Then for
N\
alift X € G of a vector ¢ Tw(G/L), X belongs to M and so the lift of

LixzeT, (G/L) is A X ¢ M for I € L. Therefore we have by virtue of (i)
and (iii)

Li¢(L,z) = L' w(IA, X) = L' n(A,IX) = n(IX) = ¢(2),
7L, x) = —V(UIA,X) = —V(A,IX) = 7(Z).

The tensors ¢, n are well-defined, and clearly are G-invariant. Next for any

element X of (/;\, we have m(IX3)=V(X) & Since the element X3 is a lift of
a vector in T,(G/L), we see that

d(rXi) = ml(X—Xp) = 7(IX) — V(X)) €.
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Therefore
w(IX) = $(rX) + WX)£.

In a similar way

V(IX) = —n(rX)

for any X € G. Since the lift of a vector ¢x is IX—W(X)B when X is a
lift of x € T,(G/L), using these equations and the condition (ii), we see

g =1, n¢x)=0, ¢& =0,
P*(x) = — + n(x)E.

Therefore (¢, €, n) admits a homogeneous almost contact structure on M.
This proves the following theorem.

THEOREM 2. Let M be a compact simply connected homogeneous mani-
fold. If a principal T*-bundle P over M admits a homogeneous almost

e N
complex structure which can be defined by an endomorphism 1: G — G satisfy-
ing the condition (iv), then M admits a homogeneous almost contact structure.

Pl ey A\ N 2\ N\ ;\
We can decompose G=L+M as L=K+{a}, M= {B}+ M,
G=RK+ {a} + {8} + Z\//\I’, (direct sum)

where {8} denotes the 1-dimensional subspace generated by 8. By virtue of
Theorems 1 and 2, a compact simply connected homogeneous space G/L
admits a homogeneous almost contact structure when and only when there

N
exists an endomorphism of G whose component is

r 2 2n
—_—— —_—— —_—
(
0 0 0 }r
r=dim K,
0 1 2 1=dimM
0 1 o0 0 } 2n+1=dim M,
0 E }2
n
0 0 —E 0

Py
for an adequate basis of G.
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3. Homogeneous contact manifold. Let M be a compact, simply con-
nected homogeneous contact manifold. Then M is a coset space of a compact
and simply connected Lie group G by an isotropy subgroup L. Let 7 be the
contact form on M such that 7 A (dp)" %« 0 on M. Then we shall prove the
following

THEOREM 3. There exists on M a homogeneous almost contact metric
structure which associates to the homogeneous contact form 7.

PROOF. As M is a compact homogeneous manifold G/L, M admits a
Riemannian metric which is invariant by the left operation of G. We take
such a G-invariant metric 2. Since the 2-form dy is skew-symmetric and
has rank 27, we can adopt the method of Y. Hatakeyama [7]. Consider two
G-invariant distributions D,, D, at each point of M:

Dy(x) = {z « T.(M); »(x) = 0},
Dy(z) = {z « T,(M); dn(z,T,(M)) = 0} .

Then D, and D, span the whole tangent space T, (M) and are complement
to each other. Therefore we can take at each point x of M a coordinate
neighbourhood U and orthonormal frames e, e, -+, e, ea with respect to
the metric 2, such that e,,---,e,, € D, and ex € D,. Now for any x € M,
g<G, we put y=L,x € M. Then we can take open neighbourhoods U of x=
and V of y such that L,U c V and they have the above adapted frames.
Since for the element g of G, L, is an isometric transformation, it has with
respect to the adapted frame the component

AY 0
L, =
0 1

where AY is an orthogonal matrix of degree 2n. On the other hand, the
components of 2-form dn on U are

v 0
Yoy =
0 0

where ¥, € GL(2n). We can decompose the regular matrix 7 as the product
of ¢ € O(2n) and gy € H(2n) where O(2n) and H(2n) denote the orthogonal
group of degree 27z and the set of all positive definite symmetric matrices of
degree 2n. Since d7 is G-invariant, we have L,yy = {ryL,, therefore
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ATYy =YL A7
And so
AT ¢yt AT AT g5t AV = rgv.

From the uniqueness of the decomposition GL(27n)— O(2n) x H(2n) and
from the fact that AY is an orthogonal matrix, we have

¢y = AV o A7,
g = AY g AT
Therefore, for the tensors g and ¢ whose components are

gs 0 $v 0

b4 >

0 1 0 0

it holds that L,gv = g»L,s, Ly$r = ¢ L,. This shows that the almost contact
metric structure (¢, &, 7, g) is G-invariant. Q.E.D.

By virtue of this Theorem 3, we can consider G/L as a homogeoeous
almost contact manifold. We take a non-trivial T'-bundle over a compact
simply connected homogeneous contact manifold M = G/L. Then by virtue
of §1, this principal bundle space can be identified with the homogeneous
space G/K where K is the kernel of the homomorphism p: L - T". Let K,
be the identity component of K. As G is simply connected, P, = G/K, is a
universal covering space of G/K=P. Moreover we know owing to Boothby-
Wang [3] that a compact simply connected homogeneous contact manifold
G/L is a principal T"-bundle over a homogeneous Kihler manifold G/H.
The fiber H/L is a 1-parameter torus group 7' which is generated at each
point of M by an associated direction field ¢ of the contact form 7.

LEMMA 2. The Lie algebra j2 of the Lie subgroup H is spanned by T
and B.

PROOF. Since dim (G/H) = 2n, we have dim & = dim Z+1. We take
al 2N
an element Y € G which spans H in company with L. The Lie algebra of

2N\
T'=H/L which can be considered as the image of H by the natural projec-
tion m: G— G/L is isomorphic with the vertical subspace of a tangent space
to G/L at any point of G/L (with respect to the connection 7). The latter
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is spanned by & Therefore we have {#Y}={mB}, and 7 is equal to 8 modulo

PaN
L. This proves our Lemma.

LEMMA 3. The homogeneous space H/K, is a complex 1-dimensional torus.

PROOF. By virtue of the condition (iv) of Theorem 1, we know [2, 8]
AN AN
=0. Therefore H=L+ {8} is contained in the centralizer of 8 in G. Since
AN N A NAY N D Py
[H, H|=[L,L] c K, the Lie algebra K is an ideal of H, and the quotient
AA
subalgebra H/K is abelian. Consequently the compact connected abelian Lie

AN D
group H/K, associating to the Lie algebra H/K is isomorphic with the 2-
dimensional torus 72. However we can verify easily that the endomorphism

\ A
I: G— G gives a homogeneous almost complex structure on H/K,. Since
N N
the generators «, 8 of the Lie algebra H/K satisfy Ia=8, I8=—a, we have

Ma, 8) = [a,B] + I[la,8] + I[a, I8] — [Ia, 18] = 0.

Therefore this almost complex structure on H/K, is integrable, and so H/K,
is a complex 1l-dimensional torus.

From this Lemma, we can give the structure of a complex Lie algebra

of H/K, by the relation
B=s—-1a.

Next we consider the integrability condition of the almost complex struc-
ture defined in Theorem 1. As the base space G/H of the fibering of
Boothby-Wang is a homogeneous Hodge manifold, we can take a normal
contact metric structure (¢, & 7, g) on G/L associated to the contact form 7
[8]. In this case, for the G-invariant complex structure J, of G/H, it holds

q¢ = Jiq
where g denotes the natural projection ¢: G/L — G/H. As 7 and the metric
g is G-invariant, ¢ is also G-invariant. We can give to a principal bundle

P,=G/K\(G/L, p, L/K,;) an endomorphism I defined as in Theorem 1. A
G-invariant almost complex structure I, of G/K, can be defined by

)«I: Ioh,

where M denotes the natural projection G — G/K,.
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Now we consider the principal bundle G/K,(G/H,r, H/K,). The pro-
jection 7 is the product of the projections p and gq. Then we have

7"10 = Jor.

As G/H is a reductive homogeneous space, we can take a natural G-invariant
connection @, on G(G/H,H) with some reduction of G/H. Then on a
principal bundle G/K,(G/H, r, H/K,) there exists a connection ®» associated
to @,. Then we have

LEMMA 4. @ is of type (1, 0) for the almost complex structure I, on
G/K,, that is, it holds

HLw) =~ =1 a@, u<TG/K).

PROOF. It is sufficient to prove for the tangent vector at Ae) € G/K,.

We take an element AX of Ty (G/K,), where X belongs to é\ =T (G).
Then

oI, X) = @(IX) = UX)z,
N\ N\ N A\ AN\
X4 denotes the H-component of X. As IH c H, IM' ¢ M’, we have
UIX)p=1Xp=s"-1 a(0AX).

The principal bundle G/K,(G/H,r, H/K,) is therefore almost complex
principal bundle. Since the curvature form of the connection @ is dw, we
have the following proposition by virtue of Theorem 2 of [5].

PROPOSITION. The almost complex structure 1, is integrable if and only
if the (0, 2)-component of dw vanishes.

However, with respect to the homogeneous complex structure of a princi-
pal bundle space P over M, we see that P is covered universally by a C-
manifold P,=G/K,. In fact, since H/K, is an abelian group, the commutator
subgroup of H is contained in K,. If we denote the semi-simple parts of
groups H and K, by H' and K;, then K; coincides with H’. For the
homogeneous Kihlerian C-manifold G/H, the isotropy subgroup H is a C-
subgroup of G. Therefore H is the semi-simple part of a centralizer of a
torus in G, and K; is also. This shows that G/K, is a C-manifold and
G/K(G/H, H/K,) is a complex torus bundle [4]. This proves the following
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THEOREM 4. Let M be a compact, simply connected homogeneous contact
manifold. Then any principal T'-bundle space P over M has a homogeneous
complex structure and it is a non-Kdahlerian complex analytic principal

TY(C)-bundle over a Kdhlerian C-manifold.
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