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1. Introduction. Let M?*'! be a contact manifold with a contact form
7 [2], [3]. By definition, 5 satisfies the relation

n

(1) g NdnpA\-+-Ndnp+0,

where d means the exterior differentiation and A means the exterior mul-
tiplication. The Pfaffian equation

(2) n=0

determines in M?"*! a 2n-dimensional distribution D which we shall call the
contact distribution. We say that a tangent vector X of M?®™*' belongs to
the distribution D if and only if

(3) 7(X) =0

is satisfied.

An r-dimensional submanifold F in M?"*! is said to be an integral sub-
manifold (of the contact distribution D) if and only if every tangent vector
of F at every point p of F belongs to D. An integral submanifold of
dimension 7 in M?®"*! is said to be a maximal intergral submanifold if it is
not a pure subset of any other integral submanifold of dimension 7.

A diffeomorphism of M?®*"*! is said to be a contact transformation [3] of
M?*+' if and only if

(4) Jxn =on

holds good, where fyx is the dual map of f which acts on the vector space of
1-forms of M***! and o is a function over M?®"*! which does not vanish at
any point of M®*!,

The purpose of this paper is to prove Theorem B which characterizes
contact transformations. Theorem A on the highest dimension of integral
submanifold of D is given as a preliminary of Theorem B.
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THEOREM A. Let M*™*' be a contact manifold. Then the highest
dimension of integral submanifolds of the contact distribution D is equal
to n.

THEOREM B. A diffeomorphism f of a contact manifold M*"*' trans-
forms every integral submanifold of D of the highest dimension to another
such if and only if f is a contact transformation of M?*"**,

2. Proof of Theorem A. First we shall show the existence of n-
dimensional integral submanifolds of D. By virtue of a theorem of E. Cartan [1]
every point p of M?***' has a neighborhood U with local coordinates (x®, y%,
2) (@=1,2,+++.,n) such that the contact form 5 can be written as

(5) n=dz— 3y da

in U. We call such local coordinates as adapted local coordinates for
brevity. In U, we can give as an example a piece of n-dimensional integral
submanifold F of D containing p defined by x*=xf, =2, where (8, »¢, z,)
are local coordinates of p. ,

A maximal integral submanifold of dimension 7# which contains F as a
pure subset gives an example of a global integral submanifold of dimension .

Secondly, we shall show that there exists no integral submanifold of D
whose dimension is higher than n. To prove it, we introduce a contact
metric structure (¢, & 7, g) associated to the contact form [3]. They satisfy
the relations

$E =0, in=0,
En=1, ¢iph=—-8+Enm
(6) ,
m = 9uE
guﬂ% = gre— MmNk -
Suppose F' were an integral submanifold of dimension 7 and
(7) T =@, u--,u)  (4,j=1,2,-+-,2n+1)

were a local parametric representation of F. Then, as every tangent vector
of F belongs to D, we have

i
(8) i i=0 (Xa: g;fl> (7\1,;‘,:1,-",7'),
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where 5 = 5, dx'. Differentiating the last equation with respect to #*, and
subtracting the equation obtained by interchanging A and x from the last
equation, we have

(9) ¢, Xi X, =0,
where ¢,; is given by

e) 2
(10) ¢ii = gm¢? = a_z; - a_;’; .

As (9) can be written as
gun(P3 Xi) X =0,

the vector X} and ¢! X/ are othogonal. On the other hand we can easily see
from (6); and (6); that & are orthogonal to Xi and ¢}X),. Hence (27+1)
vectors &, Xi, ¢, X} are linearly independent. Therefore we see that r = n.

3. Integral element. We consider adapted local coordinates (%, y*, 2)
around a point p of M*®"*! and suppose (zf, y5, 2,) are coordinates of 2.
Then, we have the following

LEMMA 1. In order that r sets of values (af, b5, 1) W\p =1,2,+++,7)
are components of linearly independent tangent vectors at p of an integral
submanifold of dimension r through p, it is necessary and sufficient that

(11 a =2 yiaf,
(12) S ashr =3 abs,
are satisfied.
PROOF. As
(13) 7= (=%0,1),
1 if  j=nt+i (Q=i=Zn),
(14) dy=1{ —1 if i=n+j (A=j=n),

0 otherwise

in adapted local coordinates, the necessity of the lemma is clear from (8)

and (9).
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To prove the sufficiency, we put
x* = ¢+ Y asut,
(15) ¥ =5+ 2 bt

1
z =z + 2ot + 5 aulut,
where
(16) cw= afbi=>"asbj.
Then, we can easily see that

oz . Ox"

is satisfied identically is #*. Hence, (15) gives an integral submanifold of D
admitting (af, b%, 1) as tangent vectors at p(u* = 0). Q.ED.

[N.B.] The integral submanifolds which have (af, &%, c1) as tangent
vectors at p are not unique, because the condition to be an integral sub-
manifold is too weak.

In the proof of Theorem A, we saw thatif X; (AZ\=1,2,+--,7) are tangent
vectors of an integral submanifold of D at a point p, then Xj satisfy (8) and
).

Conversely, if X; (A=1,2,-+-,7r) are linearly independent tangent vectors
of M**! at a point p satisfying (8) and (9), then there exists an integral
submanifold F7 which has these vectors as tangent vectors. This can be
easily seen by taking adapted local coordinates around p and applying Lemma
1. Hence, we see that the following lemma is true.

LEMMA 2. In order that r linearly independent vectors Xy (W=1,2,--
-,7) at a point p of M*™*' are tangent vectors of an integral submanifold
of dimension r of the distribution D, it is necessary and sufficient that (8)
and (9) hold at p.

We say that an r-space determined by 7 linearly independent vectors Xi
at a point p of M®**! satisfying (8) and (9) as an r-dimensional integral
element of D.

4. Proof of Theorem B.

LEMMA 3. Let X be a tangent vector of a contact manifold M*"*!
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belonging to the contact distribution D at a point p of M***'. Then, there
exists an r-dimensional integral submanifold F of D through p 1 =r=n)
such that X is a tangent vector of F at p.

PROOF. We take a neighborhood containing p and adapted local coordi-
nates (x%, ¥%, z). Suppose (xf, ¥§, 2,) are coordinates of the point p and
(af, b%, ¢;) are components of the vector X with respect to the adapted
coordinates. As X belongs to the distribution D there exists a relation

(18) o= yiaf.

First, suppose af #= 0 and we will show that we can take (r—1) vectors (ag,
b3, ¢,) (p=2,++-,7) so that they and (af, bf, c,) together span an r-dimen-
sional integral element of D. To do so, we take ag,---, a® so that

(19) rank (a%) =r (7\1 = 17 2’ DY r) >

and define ¢, +--,c, by (11) for A=2,---,7. Then, (11) holds good {for
A=1,2,--0,7.

We determine &%, - -, b7 inductively. Assuming that &¢,:++,82 1=¢o
=r—1) is already determined, we take bZ,; as a set of solutions of

Z arx* = Z aia by,
@) ] el ceeeee ,

2oasxt =3 ag, bt

as these equations admit solutions by (19). Then we can see that the con-
stants af, b%, ¢y thus determined satisfy (12) for A, p=1,2,---,7. So (af, b%,
c1) define an 7r-dimensional integral element containing X.

Secondly, if af=0 then we have ¢,;=0 by (18). In this case (0, 5%, 0)
such that rank (b§5)=7 determine an 7-dimensional integral element containing
X.

Hence, in any case there exists an integral submanifold of demension r
of D which satisfies the required property by § 3.

[N.B.] The case »r=n of Lemma 3 is used in the proof of Theorem B.

LEMMA 4. If a diffeomorphism f of a contact manifold M*"*' with
a contact form n transforms every tangent vector X belonging to the contact
distribution D again to such one, then f is a contact transformation.
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PROOF. We put f(p)=¢q, X, € D and
(21) X =fX,,

where f is the induced map of the tangent space M, at p onto the tangent
space M, at ¢ by f. Then, as X, belongs to D by assumption,

22) 0= 9(Xy) = 9(f" X,) = (fan) (X,),

where fy is the dual map of f which acts on the vector space of 1-forms at
qg. As the last equation holds good for every tangent vector X, of M,
belonging to D we see that the relation

(23 Jen=o0n

holds good at p. As p is a general point of M?*"*!, (23) shows that f is a
contact transformation of M*"*!,

PROOF OF THEOREM B. We put f(p) = g and take an arbitrary tangent
vector X, of M, belonging to D. By Lemma 3, there exists an n#-dimensional
integral submanifold F of D such that p<F and X, is a tangent vector of
F at p. Now, by assumption f transforms F to an zn-dimensional integral
submanifold fF of D. As X,=f X, is a tangent vector of fF, X, belongs
to D. Hence, by Lemma 4, f is a contact transformation of M?"+!,
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