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1. Let X be a compact Hausdorff space and A a function algebra on X.
Recently Bishop [3] and Glicksberg [4] succeded to express the algebra A in
terms of antisymmetric algebras in the following form :

THEOREM A. Every antisymmetric set of A is contained in a maximal
antisymmetric set. The collection of all maximal antisymmetric sets forms
a pairwise disjoint, closed covering of X satisfying:

(1) f € C(X) and f\K^A\K for every maximal antisymmetric sets imply
f t A,

(2) A\K is closed in C(K).

In succeeding sections, we shall be concerned with the meaning of this
decomposition for general function algebras. We shall show (Theorem 2)
that the decomposition of the algebra A in the representing space is always
deduced from that of A in the maximal ideal space and the collection of
all maximal antisymmetric sets consisting of a single point plays a special
role. Next, the relationship between the decomposition and the essential set
of A is made explicit in Theorem 3, from which preceding results relating
for essential sets such as Bear [2] and Hoffman and Singer [5] are easily
derived, adding some more precise formulations.

2. By a function algebra A on a compact Hausdorff space X we mean
a closed subalgebra of C(X), the usual algebra of continuous complex functions
on X, containing constants and separating points of X. In this case we call
X the representing space of A. M(A) always denotes the space of all maximal
ideals of A (with Gelfand topology) and dA the Silov boundary of A. We
notice that M(A) is the largest representing space of A and dΛ the smallest
one. A closed set F (in X) is called the peak set of A (in X) if F = {p £ X
\f(j>) = l] for some / ζ A where \f(p)\<l for pφF. A representing measure
Up associated to a point pzM(A) is the positive Borel measure on dA such

as f(p) = j fdμp for every f € A.

The following theorem is the slight modification of Theorem 5.2 in [5].
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THEOREM 1. Let F be an intersection of peak sets of A in M{A), then
A\F is closed and

1. M(A\F) = F,
2. if p € F9 then any measure μp on dA which represents p is supported

in dA Π F,
3. dΛ]F c dΛ n F.

PROOF. The closedness of the restriction of A to F, A\F, was pointed
out in [4] and M(A\F)=F is almost known, because F is hull-kernel closed
in M(A). Let pz F and μp be a representing measure of p. Take an arbitrary
point q^F, then there exist disjoint open sets O1? O2 in M(A) such as q^Ox

and FcO2. By compactness of M(A) some finite intersection K of the peak
sets containing F is contained in O2 and K is again a peak set of A. Let /
be a function of A which peaks on K. Then, as pointed out in [5], the relation

1=ΛP)= [ fdμ, and | / | = g l

imply that we must have f = 1 on the support of μp, hence the support of
μp(lK. Therefore the support of μp is contained in dA(^F which proves 2.

The assertion 3 is an easy consequence of the assertion 2 because, for

a point p€ F and a function f in A we have f(p) = I fdμp = I fdμp .
JdA JdAnF

A subset K (of X) is called an antisymmetric set of A if, for / in A, f
real valued on K implies f is constant on K. Let P be the collection of all
maximal antisymmetric sets of A in M(A) which consist of a single point.

THEOREM 2. Let M(A) = PuKauKβu be the decomposition ofM(A)
into antisymmetric parts for A, then for any representing space X of A,

χ = Pu (KΛnX) u (KβnX) u •

forms the decomposition of X into antisymmetric parts for A, and

1. the set P is invariant, that is, the collection of all maximal antisym-

metric sets in X consisting of a single point coincides with P,

2. each Ka Π X contains a perfect set,

3. each Ka is connected.

The fact that every maximal antisymmetric set containing more than one
point (hence containing infinitely many points) contains a perfect set was
pointed out in Glicksberg [4] using Rudin's result in [8], but we shall show
that the assertion 2 is a direct consequence of the boundary behavior of A \ Ka,
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hence we get Rudin's results [8 Theorem 3 and 4], as a corollary of the
above theorem. The assertion 3 also appears in [4].

PROOF OF THEOREM 2. Let K be a maximal antisymmetric set of A
in M(A). Since, by Theorem 1 and Lemma 2. 3 in [4], we have

&A\K adAnKc.XΓ)K,

XΠK is always non-empty. Hence we see that Pa X. Suppose f € A is a
real function on XπK, then f is real valued on dA\κ, the Silov boundary of
A\K9 hence f is a real function on K and reduces to a constant function on
K. Thus XΓ\K is an antisymmetric set of A in X, and moreover a maximal
antisymmetric set in X. Therefore

X = Pu (XnKa) u (XnKβ) u •••

is the decomposition of X into antisymmetric parts for A. Notice that, for
each index a, XΓ)Ka does not reduce to a single point because XπKa ΌdA\κa.
Hence the assertion 1 holds.

For the assertion 2 we proceed as follows since Ka is connected by a
well known theorem of Silov [7 p. 168] it suffices to prove 2 when 3A\κa^Ka,
but in this case it is known that dA\κa contains a perfect set (for example
cf. [7 Theorem 3. 3. 21]).

It is to be noticed that by Theorem 2 we have

M(A) - X = {(M(A)-X) n Ka} u [M(A)^X) n Kβ] u

Therefore the behavior of a real function f of A on M(A) — X is parallel
to that of f on X^P. The decomposition of the representing space of A
into its antisymmetric parts is deduced from that of A in its maximal ideal
space M(A) and the type of this decomposition is unaltered in X. Hence
we give the following

DEFINITION 1. If there exists only one maximal antisymmetric set for
A containing more than one point, the decomposition is called the first type
and zve call A an almost antisymmetric algebra. Otherwise, the decomposition
is called the second type.

3. The essential set E of A in X is the set which is a hull of the largest
ideal of C(X) contained in A (Bear [1]). Thus, the essential set is the minimal
closed set £ in X such that for any continuous function f if f=0 on E, then
fz A. If E=X, A is called an essential algebra.
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Let Pι be the interior of P in M(A). We note that P c dΛ.

LEMMA 1. Let Pλ be the interior of P in X, then P1=Pί, that is, Pι is
unaltered in X.

PROOF. Let fbe an arbitrary function of C(X) vanishing on X—Pι.
Then by (1) of Theorem A / belongs to A. Take a point p0 z Pλ. There
exists a real function / in A such as f(p0) ^ 0 and f(X^Pι)=0. By Theorem
2, f(Ka)=0 for all index a and then /(M(A)—P) =0. Therefore the open set
U = {pzM(A)\f(j>)^Q] is clearly contained in P. Thus P^P1 which com-
pletes the proof since the other inclusion is clear.

THEOREM 3. Let E be the essential set of A in X, then

PROOF. Since any function of C(X) vanishing on E is in A it is clear
that X^EoP. Hence, by Lemma 1, X^EdP1. We have X^P'cE. On
the other hand the same argument as in the first part of the proof of Lemma
1 gives the opposite inclusion.

As it is known, every essential maximal algebra are antisymmetric (Helson
and Quigley [6], Bear [2] etc.) hence maximal algebras are almost antisymmetric
in the sense of Definition 1. As for P, if there is only a finite number of
maximal antisymmetric sets containing more than one point P is an open
set in X (hence open in M(A) by Lemma 1) and E=X^P. However this
fact does not necessarily hold in general.

Now for the essential set E of a function algebra A, Bear [2] has proved
the following results

1. if E =̂= X, X^E is an (non-zero) open set in M(A),
2. E u (M(A)—X) is the essential set of A in M(Λ),
3. for every function / <= A, if / = 0 on E, / = 0 on E U (M(A)—X),
4. M{A\E) =Eu (Λf(A)—X).
The assertions 1 and 2 are easy consequences of Theorem 3. For 3, we

get the following more precise form.

THEOREM 4. Let Eo be the essential set for A in M(A), then dΛ]Eo(ZdA

ΠE0. Hence A\E is isometrically isomorphic to A\E0.

PROOF. Let p0 be an arbitrary point in M(A) — Eo. We can find a
continuous function / € A on M(A) such that 0 ^ / ^ l , f\E0=0 and f(j>0)
= 1. Put F(p0) = {p £ M(A)\f(j>) = 0], then one easily see that F(j>0) is a

peak set of A containing Eo. We have EQ= f} F(p), and Eo is an intersection
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of peak sets, It follows, by 3 of Theorem 1, dA\Eo C dA Π EQ = dA~~Pι.
The assertion 4 follows directly from the above theorem and 1 of

Theorem 1.

In [5], Hoffman and Singer considered the following sets in M(A)
I = M(A)—dA, the interior of M(A)

L = I — /, the accessible set,

S# the minimal support set which is obtained by intersecting the closed
supports of all measures μp on dA representing points p in /,

S* the maximal support set which is the closure of the union of the
closed supports of all measures μp on dA representing points p in /.

Generally these sets are related with the essential set E of A in 2>A in
the following manner:

1. L c £ ( [ 5 ; Theorem 5.3]), 2. S*dE ([5; Theorem 5.4]).
If A is a maximal subalgebra of C(dA\ and if dA^M(A), L<zE = S* = S*
and Hoffman and Singer conjecture that for any algebra A with / non-empty
the inclusion S# c L holds.

Now the assertion 1 follows directly from our Theorem 3 because PιΓ\I
= 0 implies Pι Π I— 0. As for 2 we can show more precise result. Let
S£ be the maximal support set of A\Ka where Ka is an maximal antisym-
metric set of A in M(A) containing more than one point, then by 2 of
Theorem 1 we have S%(lKandA. Hence by Theorem 2 we get the following

THEOREM 5. S* = \J S*9 the closure of\JS*, hence S* c dA^Pι.
a a

One direct consequence of this theorem is that Hoffman and Singer's con-
jecture loses its interest unless A is an almost antisymmetric algebra, in fact
if it is not the case we have S# — 0.
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