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Introduction. In this paper we shall define the notion of a principal
cofibration which generalizes the cofibration X —> Cf —> 2<Y induced by a map
f \ X-+Y where Cf means the mapping cone of / and XY the reduced
suspension of Y. The notion of a principal cofibration is a dual of a principal
fibration in the sense of Peterson-Thomas [6].

One of the problem considered here is the following under what con-
ditions is a cofibration equivalent to a principal ? This is answered by
Theorem 2. 7 in § 2.

In § 3 we dualize the results in [5], which are in the special case of induced
cofibration. In § 4 we mention an application to the Lusternik-Schnirelmann
category and obtain a generalization of Berstein-Hilton's results.

1. Preliminaries. In this paper we assume that all spaces have base
point denoted by * and all maps (homotopies) preserve (keep fixed) base point.

A map q : β —> E is called a cofibration if it has the homotopy lowering
property for all spaces, i.e. if, for each space P and for all maps fo:E-^P
and homotopies gt: B-^P with g0 =foq, there exists a homotopy ft : E-+P
with gt—ftQ- If q is a n inclusion map, this is the homotopy extension
property. The quotient space F=E/q(B) is called the cofibre of q. Frequently
the cofibration q : B —> E with cofibre F will be denoted by the sequence

q P
B —>E —>F, where p: E-*F is the projection.

Given a map f: A-* B, let Cf be the mapping cone of f, the space
obtained from CA U B by identifying (a, 1) € CA with f(μ), where CA denotes
the reduced cone over A.

The set of all homotopy classes of maps A—+B will be denoted by
7r(A, B), which contains the distinguished element o, i.e. the homotopy class
of the constant map * : A —> B. The homotopy class of a map f : A —> B is
denoted by [/].

For maps / : A —> C and g : B —> C, we define a map fVg: A\JB-^>C by

(fVg)(a,*)=f(ά) at A
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where A V B is the subspace A x * U * x B of A x B. Then for a map Λ : C

—>D we have

(1) (hof)s?(hog) = ho(fs?g).

For maps / : A —> C and g : B->D, we define a map f\Jg:A\/B-*C\/D

b y / V # = / x gr|A VB.
A space X is an H'-space if there exists a map μ : X—> X\/X such that

the compositions X — X V X — X V X — X and X — X V X —
Δ'

X V X *- X are homotopic to the identity. Here Δ' means the folding

map, i.e. A'(x,*) = Δ'(*9x) = x and 1 means the identity map.

A space X is an H'-space in the strong sense if there exists a map

μ : X —> X V X and a map z>: X —• X such that

L6 IV* A'
( i ) the composition X ^X V X -—^X V X ^X is homotopic to the

identity.
μ l\Jv Δ'

(ii) the composition X ^X V X ^X V X ^X is null homotopic.

(iii) the compositions X - ^ - X V X — XVXVX and X — X V X —
XVXVX are homotopic.

2. The principal cofibration.
a p

DEFINITION 2.1. The cofibration B ^E ^F is a principal if the

following conditions are satisfied:

I). F is an //'-space with co-multiplication μ.

II). There exists a map φ:E->F\/E and a map h:F—>E%y where E*

denotes the space obtained from E V E by identifying (#(£>), *) with (*,

for each b £ B> subject to the conditions

1) the diagram

Φ
E - ^ F\J E

is commutative.

2) the diagram

B —

E -!-+• F\J E
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is commutative. Here z2 denotes the injection into the second factor.

3) the diagram

is homotopy-commutative. Here kt : E —> E# is the composition of the injec-

tion ji'.E^Ey E followed the identification map ττ\E\J £->E*, (z = 1,2).

EXAMPLE 1. The well known cofibration A-+CA-+XA is a principal.

In fact, if we represents a point in reduced cone CA by (a, t) and a point in

reduced suspension ΣA by <a, t>, then φ:CA-^ZA\/CA and h : ΣA -+ (CA)*

are denned as follows:

To show that Example 1 satisfies the conditions of Definition 2.1 is similar

to the proof of Example 2, so we only prove Example 2.

EXAMPLE 2. L e t / : A—>B be a map. Then the cofibration

induced by A —> CA —> ΣA via / is principal. We call such cofibration an

induced cofibration.

i p
Now we show that B->Cf-*2,A fullfil the conditions in Definition 2.1.

φ : C, -» ΣA V Cf is defined by

φ(b) = (*,b) b <= BdCf

«α,2f>,*) O^t^

(*, (a,2t - 1)) l/2gί^

and h:ΣA^>(Cf)* is defined as in Example 1. Then conditions 1) and 2) in

Definition 2.1 hold evidently and so we prove only 3).

( h<a,2t>
(hVkι)φ(a,t) =

( kx(a,2t-l)
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ί (*,(α,4ί)) Orgί

- ((α,2-4ί),*) 1 / 4 ^ * ^

((α,2ί-l),*) 1 / 2 ^ * ^ 1 .

Hence we have (h V k,) o φ\ CA ^ k2\ CA. Also (A V kλ) φ(b) = (b, *) = (*, &)

= *2(6) for b e B. Thus (h\7 K) o φ ^k2.

The following Lemma 2. 2 is a generalization of Proposition 4.6 in [2]

and a dual of Lemma 4.1 in [6].

LEMMA 2.2. Let B^E^F be a principal cofibration. Let X be any

space and let [v], [v] € ΊΓ (E, X). Then

if and only if there exists a map w: F—> X such that φ* [w V v] = [v'].

PROOF. Suppose that v = (w V v) © φ. Then by 2) in Definition 2.1,

v o q ̂  (w \/ v) o φ o q •= (zv V v) ° (1 V q) ° H = v o q .

Conversely suppose that vq s^ vq\ Then, by the lowering homotopy property,

we may assume that vq = vq. It is evident that v\7v':E\/E—>X induces

a map v V v : E* —>X such v V v ° TΓ = v V v . We set τv = v V v ° A. and

consider the map (wS/v) ° φ: E-^>F \/ E —>X.

Since ^^(^V^')0^! =.v\7v °π ojx = vVv' o kίy we have

v = (v V t/ o A) V (v V v o ̂ x) = 77 V τ/ ° (A V h) by (1).

Hence (wVv) oφ=v\7v'o(hS7k1)oφ=vS7vok2 (by 3) in Definition 2.1).

But vSJv o k2 = v\7v' o TΓ oj2 — (v\7v') °j2 = v\ Thus we have φ* [zv\7v]

= [v'l Q. E. D.

q P
Let B —> E —> F be a principal cofibration and let X be any space. Let

WtiF-* X be maps (z = 1, 2). Then zê  + w2 = Δ' © {-wλ V w2) ° A6 induces a

binary operation in τr(F,X).

Consider the diagram

E J
U \iyp
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By 1) in Definition 2. 1, the left sequence is commutative and clearly

Δ' o (wγ V xv2) ° (1 V p) — xvi V w2 p. Thus we have,

L E M M A 2.3. />* [w1 + m>] = φ* [z^ v w2ρ].

Lemma 2.3 generalizes Proposition 4. 6' in [2].

Following to [3], a diagram in the category of sets

AQ *- Ai

is called an exact square if it is commutative and if £i(#i) = k2(a2) for

di^Ai (i = 1,2) then there exists an ao^Ao such that at =ji(μ0) (i — 1,2).

The following Lemma 2.4 together with Lemma 2.2 have the key-roles

for the later discussions.

q p
LEMMA 2.4. Let B-^E-^F be a principal cofibration. Let f:X->Y be

a map such that f# : τr(F> X)—• τr{F9 Y) is a surjection. Then if q* : τr(Ey X) —>

τr(JS,X) is a surjection, the diagram

7Γ(£,X) - ^ 7ΓCB,X)

\ f ,

is an exact square.

PROOF. Let [u] <E τr(J3, X) and [v] £ τr(E, Y) such that / * [u] = g* b ] .

Since g* : τr(E, X)—> 7r(β, X) is a surjection, there exists an [s] € τr(E, X) such

that q* [s\ — [u]. Then we have q*f* [s] = q*[v]. Hence, by Lemma 2.2 there

exists a map xv : F -^ Y such that φ* [τv V fs] = [v].

Also since /. ) f : τr(F, X) —» ττ(F, X) is a surjection, there exists [d] e ΊΓ(F, X)

such that f*[d\ — \w\. Then we have [v] = φ*[fd\7fs] — φ*f*[d>\7s\. If we

define a map I: E-^ X by l = (d\7s)φ, then fl ^v and so / # [ Z ] = Ϊ ; . NOW again

applying Lemma 2.2 to the map Z = (d\7s)φ> we have g*[Z] = g*[s] = [v].

From now on, we work in the category of the spaces having the homotopy

type of connected CW-complexes.

DEFINITION 2.5. Two cofibrations B-+E-+F and B-> E'-> F> are

equivalent if there exists a homotopy equivalence s:E^>E' such that sq = q.
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We remark that if cofibres F and F' are 1-connected, then an equivalence

$:£—•£' induces a homotopy equivalence s:F->F\ We call such an s an

induced cofibre equivalence. This is proved as follows.

From [3; Theorem 3.6 and Corollary 3.7] we may assume that two

coίibrations q and q are inclusion cofibrations.

Then, from §7 in [3] and sp = ps, we have a commutative diagram:

Hr(β) — Hr(E) - ^ Hr(F) - ^ Hr-λ(B) - ^ Hr^{E)

1 / Js* Js* II / 1s*
Hr(B) - ^ Hr(E) - ^ Hr(E) ^ Hr.^B) - ^ Hr.λ{E)

where upper and lower sequences are exact.

By Five Lemma, we have ~s*'.Hr(F)^Hr(F') for all r. Since F and F'

are 1-connected, we may conclude that ϊs:F—*F' is a homotopy equivalence.

LEMMA 2.6. (J. H. C. Whitehead) (cf. [7]) Let X and Y be ^-connected

spaces and f:X—>Y a map. Then the following statememts are equivalent',

a) f% : τrt(X) —• 7rt(Y) is isomorphic for i < N and epimorphic for i fg N,

b) For any CW-complex K, / * : τr(K, X)-^ ττ(X, Y) is injective for dim K<N

and surjective for dim K^N.

q , p>
THEOREM 2.7. Let B —> E —> F ' &e α cofibration, where E and F' are

q p
1-connected, and B-+ E^»F a principal cofibration. Then the former is

equivalent to the latter if the following condition are satisfied:

i) there exists a homotopy equivalence ω : F —> F\

ii) E, B are CW-complexes such that q(B) is subcomplex of E and dim

F^r, and B is (r — ϊ)-connected,

iii) Hι(F', G) = 0 for i > 5 and an arbitrary abelίan group G, and E

is (5—1)-connected.

PROOF. We have the commutative diagram

<F,E')

\p,
7Γ\Γ, Γ )

P*^ — ( TP J7"\7Γ\1L, CL )

1*
π(E,F')

q >

<B, E)

where upper and lower sequences are exact.

The obstructions extending the map q : B —> E to a map of E into E

are in Hί+1 (E, B TΓ^E)). Since the pair (E,E) satisfies the homotopy
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extension property, we have HJJE, E) ?& Ht(F) for all i. Thus, by virtue of
the conditions i) and iii), it results that

Hί+\E, B TΓiCJE')) = 0 f or i ^ s .

But E' is (s — reconnected, and so Hι(E, B TΓ^E')) = 0 for i^s — 1. Hence
the existence of a map s : E—> E' such that s'q = q is assured.

Since B is (r — l)-connected, p* : Ht(E') —> Ht(F') is isomorphic for i < r
and epimorphic for z :g r and />'* : ir^E) —> πι(F') is so. By Lemma 2.6 and
the condition ii), it follows that p'* τr(F, E) —> 7r (.F,F) is surjective.

Now if we take the maps q\B—>E' and ωp: E -+ F\ then p'*[q] =0
— q*[ωp]. Thus Lemma 2.4 may be applied and we see that there exists a
map s: E—>E' such that sq as </ and >̂'s ̂  ω£.

Accordingly we have the diagram in which each ladder is homotopy-
commutative

B — E — F

B — - E — F\

Applying the (inclusion) cofibration homology exact sequence to the above
diagram, we have a commutative diagram

Hί+1(F) — HIB) -^ HIE) A HIF) — H^B)

By Five Lemma, s*'Hi(E)-+Ht(E) is isomorphic onto for each i and £ , £ '
are 1-connected. Hence s:E->E' is a homotopy equivalence.

3. Induced cofibratijns. Throughout the remainder we assume that all
spaces have the homotopy type of connected CW-complexes.

An induced cofibration is a precise dual of the principal fibration in [5]
and hence the results obtained in [5] can be dualize.

In the well known cofibration A —> CA —> ΣA, we consider

J: τr(ΣA, ΣA) -> TΓ^A, p) and ι*: ττ(A, A) -> TΓ^A, p) ,

where the definitions of J and i* axe due to that of Eckmann-Hilton [3].
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LEMMA 3.1. Define σ:2A-»2A, by σ<a,t> = <a,l-t>, then

where 1 represents the identity map of A.

LEMMA 3. 2. For a map f:XA-^B, let ft:CA->B be a nullhomotopy
°f fp- V w e define f : XA —• B by f <a, s> =f8-1 ι(ά)9 then

Since the proofs of Lemma 3.1 and 3.2 are precise dual of that of Lemmas
2.1 and 2.2 in [5] respectively, we shall omit it.

Let Ax —• A2 —> A3 be a differential triple, i.e. βa = # .
We set A2 Γ)βEA3 = {(ai9u) <= A2 x EA3 π(u) = β{a2)}y where EA3 is the
path space in A3 starting at the base point * and ir: EA3 —> A3 is defined by
7r(u) = u(l).

Let P be any space and for any map w:P^> A2 ΠβEA3, we set w{x)
= (u(x)9 ΰ(x))9 where u(x) € A2 and ΰ(x) z EA3. Then it is evident that w
induces maps u\P—>A2 and ΰ:P—>EA3. Now if we define v:CP^>A3 by
v(xyi) = ΰ(x)(t), then βu(x) =v(x9ϊ). Thus to a map w: P-> A2ΠβEA3, we
may correspond a pair of maps (u, v):

u

v
CP A3.

Let (u9v) be a pair of maps corresponding to another map w : P-> A2ΠβEA3.
Then it is easily verified that if zv = zv\ then (w,77) ^ (u, v').

Conversely a homotopy class of map w:P-^A2 ΠβEA3 corresponds to
a homotopy class of pair (u9v).
Thus we have a one-to-one correspondence θ : τr(P, A2 Π ^£^3)—> πχ(P9β) defined

If we define a:Aι->A2 Γ)βEA3 by aia^ = (Λαb*) where * <= £A 3 denotes
a constant path based at *, then we have the commutative diagram :

ΠβEA3) —θ—> irx{Pyβ)

a* \ / a*
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q p
THEOREM 3.3. Let B-+E -^F be a cofibration and I: XA->F a homotopy

equivalence. Then the cofibration q is equivalent to an induced cofibration
voith induced cofibre equivalence in [I] if and only if J [Iσ] £ Im q*.

The proof of Theorem 3.3 are obtained by dual discussion of Theorem
3.4 in [5] and we shall omit it.

q p
COROLLARY 3.4. Let B-+E-+F be a cofibration and I: ΣA -> F a homo-

topy equivalence. Then the cofibration q is equivalent to an induced cofibration
with induced cofibre equivalence [I] if and only if θ~1J[lσ] € Imq#.

In the next Theorem all spaces are assumed to be connected CW-complexes.

q p
THEOREM 3.5. Let B-+E-^ Fbe a cofibration where B is(r—l)-connected

and F (s — 1)-connected ( s > r > l ) . Suppose that dimF:=gr+5 —1. Then the
cofibration q is equivalent to an induced cofibration.

PROOF. By the assupmtion F is (s — 1)-connected and dim F fg 2s — 1. Then
it is well known that F is homotopically equivalent to a suspension space,
say, XA. Since H\F) *e H'(ΣA) * Hl~l{A\ we have H\A) = 0 for i ^ r + s - 1 .
Clearly A is 1-connected. Hence applying Hilton's Theorem 1' in [4],

q*: π(A, B) -> τr(A, E Π pEF)

is surjective. Therefore Theorem follows from Corollary 3.4.

q p
Let B —> E —> F be a cofibration where B, E are 1-connected. Suppose that F

is a K'{G, 5)-space, where K'(G> s) is a polyhedron with abelian fundamental
group such that Ht(K\G, s)) =0 for i ^ s and HS(K'(G, s)) = G. Then F is
(5—l)-connected and may be considered as a (5 + l)-dimensional polyhedron.
Thus, we have Hilton's Theorem 7.1 in [3] as a Corollary.

q p
COROLLARY 3.6. {Hilton) Let B-+E-+F be α cofibration where B and

F are 1-connected and F is a K\Gys)-space. Then the cofibration is equivalent

to an induced cofibration.

4. Application to Lusternik-Schnirelmann category. Let Xn be the

Cartesian product of w-copies of X, and let Tn(X) be the subspace of Xn

consisting of points (xu , xn) such that xt = * for some i.

DEFINITION 4.1. X has category 5g n (cat Xt=kn) if there exists a map
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η : X -> Tn(X) with jη ss Ax where / : Tn(X) -> X* is injection and Ax : X-+Xw

is the diagonal map.
The map η is called the structure map.

q p
THEOREM 4.2. Let B-+ £—> F be a principal cofibration where F is a

H-space in the strong sense {see, § 1). If cat B^n and there exists a map
f:E—>Tn(E) such that Tn(q)oη ^ / o q9 where η is the structure map for B
and T\q): T\B) -> Tn{E) is induced by qy then cat E^n.

PROOF. We have a commutative diagram :

\j

π(F,E«)

in which the horizontal rows exact. By the assumption, we have q*[f]
= [Tn(q)oη]. Since F is a if-space in the strong sense, by the same arguments
as in Proposition 2.8 in [1] and the remark in the course of the proof of
Theorem 3.4 in [1], it follows that

is surjective.
Now we have j*[Tn(q)oη] = [jEoTn(q)ov] = [qn ojEoη] = [qnoAB] = [AEoq]

= (J*[AE\. Thus Lemma 2.4 may be applied and the existence of a map ζ:
E -> Tn[E] such that joξ ^ AE is assured. Q. E. D.

REMARK. Theorem 4.2 is a generalization of Theorem 3.4 in [1]. In

fact, let f:A—>B be a map and let B->CT^ΣA be a cofibration induced
by f. Suppose that f is w-quasiprimitive in the sense of Berstein and
Hilton [1]. Then if catB^n with the structure map η:B-^Tn(B), there
exists a map ψ : A —> Tn(A) such that the diagram

A ~L- B

T\A) —?U T\B)

is homotopy-commutative.
Consider a diagram
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A _ Z _ B _JU cf

Tn(Cf)

where q : 5 —> C/ is the (inclusion) coίibration.
Then it is easily verified that the sequence

7r(C/? T\Cf)) - i — > 7Γ(5, T^C,) - ^ U 7Γ(A

is exact. Since Tn(i) μfz* Tn(i)Tn(f)ψ ^ *, there exists a map u:Cf-+ Tn{Cf)
with #oz" ̂  Tn(t)°μ.

Thus we see that if a cofibration q: B-* Cf is induced by / and / is n-
quasiprimitive, then the assumptions of Theorem 4.1 are satisfied and cat

5. Appendix. Finally we shall define a dual of H-fibration in [5] which
is a intermediate notion between arbtrary cofibration and principal cofibration.

q p
DEFINITION 5.1. A cofibration B-+E-+F is a //'-cofibration if there

exists a co-operation φ:E-+F\/ E and a homotopy Ht: E-+ FxE subject
to the following conditions:
(a) the diagram

B *2 >

q

E Φ

is commutative.
(b) Ho = i ° φ (j:F\/E-^FxE injection) and Hx = (pxΐ)oΔEy

Htq = * for all t.

PROPOSITION 5.2. Ht induces an H'structure on F.

PROOF. By Definition 5.1, we have Htq = * for any t and especially
Hoq = jφq = *. Hence (1 X p)jφq = *.
In the diagram

£ * > FVE J

j
FVF JF > F x F
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where jF:F\/F-*FxF is the injection, we have (lxp)j =ji(lVί>)> Since j F

is the injection, (l\Jp)φq = *. Hence (l\/p)φ induces a map μ:F-+F\/F
such that μp=(lVp)φ. Also (lxp)Hι induces a homotopy H't:F->FxF such
that Htp=(lx p)Ht. Then H[p = (1 x p)Hx = (1 x />)(/> x 1)ΔE = Δ*/>, where
Δ^ and Δ^ denote the diagonal maps in E and .F respectively. Also H'o p
^(lxp)H0 = (lxp)jφ =jrμp.

Thus it follows that H'0=jFμ and H[ — ΔF. Hence the map μ:F-+F\/F
defines an ΐΓ-structure. Q. E. D.

THEOREM 5.3. Let B-+E-+F be a H'-cofibration in -which all spaces
are CW-complexes. If uz Hn(E, Q) and v £ Hm(F, Q\ where Q is the field of
rational numbers, then we have

p*(v) U u = 0.

PROOF. Let E#E be the quotient space ExE/E\/E and let π:ExE-+

E#E be the projection. If we identify Hr(E#E,Q) = Σ, Hp(E,Q)®Hq(E,Q)9
p+q=r
P,Q>0

by the definition of the cup product in terms of the diagonal map, we have

p*(v)\ju =(τrΔE)*(ρ*(v)®u). Let ρxl:E#E->F#E be a map induced by
pxl'.ExE^FxE, there exists a commutative diagram:

Hm(F, Q)®H\E, Q) -—^ Hm(E, Q)®H\Ey Q)

Hm+n(F # E, Q) -—^ Hn+m(E # Ey Q).

Hence (τrAEγ%p%v)®u) = (τrAE)*(ρ>ΓL)*(y<g)u). But jφ ^ (px ΐ)ΔB by the con-
dition b) in Definition 5.1. Hence (pxl)τrΔE = π{pxl)ΔE ^ πjφ ̂  *.

Thus we may conclude that p*(v) U u = 0. Q. E. D.
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