PRINCIPAL COFIBRATIONS

KISUKE TSUCHIDA

(Received March 30, 1964)

Introduction. In this paper we shall define the notion of a principal cofibration which generalizes the cofibration $X \to C_f \to \Sigma Y$ induced by a map $f: X \to Y$ where C_f means the mapping cone of f and ΣY the reduced suspension of Y. The notion of a principal cofibration is a dual of a principal fibration in the sense of Peterson-Thomas [6].

One of the problem considered here is the following; under what conditions is a cofibration equivalent to a principal? This is answered by Theorem 2.7 in §2.

In §3 we dualize the results in [5], which are in the special case of induced cofibration. In §4 we mention an application to the Lusternik-Schnirelmann category and obtain a generalization of Berstein-Hilton's results.

1. Preliminaries. In this paper we assume that all spaces have base point denoted by * and all maps (homotopies) preserve (keep fixed) base point.

A map $q: B \to E$ is called a cofibration if it has the homotopy lowering property for all spaces, i.e. if, for each space P and for all maps $f_0: E \to P$ and homotopies $g_t: B \to P$ with $g_0 = f_0 q$, there exists a homotopy $f_t: E \to P$ with $g_t = f_t q$. If q is an inclusion map, this is the homotopy extension property. The quotient space F = E/q(B) is called the cofibre of q. Frequently the cofibration $q: B \to E$ with cofibre F will be denoted by the sequence

 $B \xrightarrow{q} E \xrightarrow{p} F$, where $p: E \to F$ is the projection.

Given a map $f: A \to B$, let C_f be the mapping cone of f, the space obtained from $CA \cup B$ by identifying $(a, 1) \in CA$ with f(a), where CA denotes the reduced cone over A.

The set of all homotopy classes of maps $A \to B$ will be denoted by $\pi(A, B)$, which contains the distinguished element o, i.e. the homotopy class of the constant map $*: A \to B$. The homotopy class of a map $f: A \to B$ is denoted by [f].

For maps $f: A \to C$ and $g: B \to C$, we define a map $f \bigtriangledown g: A \lor B \to C$ by

$$(f \bigtriangledown g)(a, *) = f(a) \qquad a \in A$$
$$(f \bigtriangledown g)(*, b) = g(b) \qquad b \in B$$

where $A \lor B$ is the subspace $A \times * \cup * \times B$ of $A \times B$. Then for a map $h: C \to D$ we have

(1)
$$(h \circ f) \nabla (h \circ g) = h \circ (f \nabla g).$$

For maps $f: A \to C$ and $g: B \to D$, we define a map $f \lor g: A \lor B \to C \lor D$ by $f \lor g = f \times g | A \lor B$.

A space X is an *H*-space if there exists a map $\mu: X \to X \lor X$ such that the compositions $X \xrightarrow{\mu} X \lor X \xrightarrow{1 \lor *} X \lor X \xrightarrow{\Delta'} X$ and $X \xrightarrow{\mu} X \lor X \xrightarrow{* \lor 1} X \lor X \xrightarrow{\Delta'} X$ are homotopic to the identity. Here Δ' means the folding map, i.e. $\Delta'(x, *) = \Delta'(*, x) = x$ and 1 means the identity map.

A space X is an *H'-space* in the strong sense if there exists a map $\mu: X \to X \lor X$ and a map $\nu: X \to X$ such that

- (i) the composition $X \xrightarrow{\mu} X \lor X \xrightarrow{1 \lor *} X \lor X \xrightarrow{\Delta'} X$ is homotopic to the identity.
- (ii) the composition $X \xrightarrow{\mu} X \lor X \xrightarrow{1 \lor \nu} X \lor X \xrightarrow{\Delta'} X$ is null homotopic.
- (iii) the compositions $X \xrightarrow{\mu} X \lor X \xrightarrow{1 \lor \mu} X \lor X \lor X$ and $X \xrightarrow{\mu} X \lor X \xrightarrow{\mu \lor 1} X \lor X \lor X$ are homotopic.

2. The principal cofibration.

DEFINITION 2.1. The cofibration $B \xrightarrow{q} E \xrightarrow{p} F$ is a *principal* if the following conditions are satisfied:

I). F is an H'-space with co-multiplication μ .

II). There exists a map $\phi: E \to F \lor E$ and a map $h: F \to E_*$, where E_* denotes the space obtained from $E \lor E$ by identifying (q(b), *) with (*, q(b)) for each $b \in B$, subject to the conditions;

1) the diagram

$$E \xrightarrow{\phi} F \lor E$$

$$p \mid \qquad \qquad \downarrow 1 \lor p$$

$$F \xrightarrow{\mu} F \lor F$$

is commutative.

2) the diagram

$$\begin{array}{cccc} B & \stackrel{i_2}{\longrightarrow} & F \lor B \\ q & & & & & \\ F & & & & & \\ E & \stackrel{\phi}{\longrightarrow} & F \lor E \end{array}$$

is commutative. Here i_2 denotes the injection into the second factor. 3) the diagram

$$E \xrightarrow{\phi} F \lor E$$

$$\downarrow k_2 \qquad \downarrow k \lor k_1$$

is homotopy-commutative. Here $k_i: E \to E_*$ is the composition of the injection $j_i: E \to E \lor E$ followed the identification map $\pi: E \lor E \to E_*$, (i=1,2).

EXAMPLE 1. The well known cofibration $A \xrightarrow{i} CA \xrightarrow{p} \Sigma A$ is a principal. In fact, if we represents a point in reduced cone CA by (a, t) and a point in reduced suspension ΣA by $\langle a, t \rangle$, then $\phi: CA \to \Sigma A \lor CA$ and $h: \Sigma A \to (CA)_*$ are defined as follows:

$$\phi(a, t) = \begin{cases} (, *) & 0 \le t \le 1/2 \\ (*, (a, 2t-1)) & 1/2 \le t \le 1 \end{cases}$$
$$h < a, t> = \begin{cases} (*, (a, 2t)) & 0 \le t \le 1/2 \\ ((a, 2-2t), *) & 1/2 \le t \le 1 \end{cases}$$

To show that Example 1 satisfies the conditions of Definition 2.1 is similar to the proof of Example 2, so we only prove Example 2.

EXAMPLE 2. Let $f: A \to B$ be a map. Then the cofibration $B \to C_f \to \Sigma A$ induced by $A \to CA \to \Sigma A$ via f is principal. We call such cofibration an induced cofibration.

Now we show that $B \xrightarrow{i} C_f \xrightarrow{p} \Sigma A$ fullfil the conditions in Definition 2.1. $\phi: C_f \to \Sigma A \lor C_f$ is defined by

$$\phi(b) = (*, b) \quad b \in B \subset C_f$$
 $\phi(a, t) = \left\{egin{array}{ccc} (< a, 2 \ t >, *) & 0 \leq t \leq 1/2 \ (*, (a, 2 \ t - 1)) & 1/2 \leq t \leq 1 \ , \end{array}
ight.$

and $h: \Sigma A \to (C_f)_*$ is defined as in Example 1. Then conditions 1) and 2) in Definition 2.1 hold evidently and so we prove only 3).

$$(h \bigtriangledown k_1) \phi(a, t) = \begin{cases} h < a, 2t > 0 \leq t \leq 1/2 \\ k_1(a, 2t - 1) & 1/2 \leq t \leq 1, \end{cases}$$

$$= \begin{cases} (*, (a, 4t)) & 0 \leq t \leq 1/4 \\ ((a, 2-4t), *) & 1/4 \leq t \leq 1/2 \\ ((a, 2t-1), *) & 1/2 \leq t \leq 1. \end{cases}$$

Hence we have $(h \bigtriangledown k_1) \circ \phi | CA \cong k_2 | CA$. Also $(h \bigtriangledown k_1) \phi(b) = (b, *) = (*, b)$ = $k_2(b)$ for $b \in B$. Thus $(h \bigtriangledown k_1) \circ \phi \cong k_2$.

The following Lemma 2.2 is a generalization of Proposition 4.6 in [2] and a dual of Lemma 4.1 in [6].

LEMMA 2.2. Let $B \xrightarrow{q} E \xrightarrow{p} F$ be a principal cofibration. Let X be any space and let $[v], [v'] \in \pi(E, X)$. Then

$$q^*[v] = q^*[v']$$

if and only if there exists a map $w: F \to X$ such that $\phi^*[w \bigtriangledown v] = [v']$.

PROOF. Suppose that $v' \simeq (w \bigtriangledown v) \circ \phi$. Then by 2) in Definition 2.1,

$$v^{'}\circ q\cong (w\bigtriangledown
abla v)\circ \phi\circ q=(w\bigtriangledown
abla v)\circ (1\lor q)\circ i_{2}=v\circ q\,.$$

Conversely suppose that $vq \approx vq'$. Then, by the lowering homotopy property, we may assume that vq = vq'. It is evident that $v \bigtriangledown v' : E \lor E \to X$ induces a map $v \bigtriangledown v' : E_* \to X$ such $v \bigtriangledown v' \circ \pi = v \bigtriangledown v'$. We set $w = v \bigtriangledown v' \circ h$ and consider the map $(w \bigtriangledown v) \circ \phi : E \to F \lor E \to X$.

Since $v = (v \bigtriangledown v') \circ j_1 = \overline{v \bigtriangledown v'} \circ \pi \circ j_1 = \overline{v \bigtriangledown v'} \circ k_1$, we have

$$w \bigtriangledown v = (\overline{v \bigtriangledown v'} \circ h) \bigtriangledown (\overline{v \bigtriangledown v'} \circ k_1) = \overline{v \bigtriangledown v'} \circ (h \bigtriangledown k_1)$$
 by (1).

Hence $(w \nabla v) \circ \phi = \overline{v \nabla v'} \circ (h \nabla k_1) \circ \phi = \overline{v \nabla v} \circ k_2$ (by 3) in Definition 2.1). But $\overline{v \nabla v} \circ k_2 = \overline{v \nabla v'} \circ \pi \circ j_2 = (v \nabla v') \circ j_2 = v'$. Thus we have $\phi^* [w \nabla v] = [v']$. Q. E. D.

Let $B \xrightarrow{q} E \xrightarrow{p} F$ be a principal cofibration and let X be any space. Let $w_i: F \to X$ be maps (i = 1, 2). Then $w_1 + w_2 = \Delta' \circ (w_1 \lor w_2) \circ \mu$ induces a binary operation in $\pi(F, X)$.

Consider the diagram

$$E \xrightarrow{\phi} F \lor E \xrightarrow{w_1 \lor w_2} X$$

$$\downarrow p \qquad \qquad \downarrow 1 \lor p \qquad \qquad \uparrow \Delta'$$

$$F \xrightarrow{\mu} F \lor F \xrightarrow{w_1 \lor w_2} X \lor X.$$

By 1) in Definition 2.1, the left sequence is commutative and clearly $\Delta' \circ (w_1 \lor w_2) \circ (1 \lor p) = w_1 \bigtriangledown w_2 p$. Thus we have,

LEMMA 2.3. $p^*[w_1 + w_2] = \phi^*[w_1 \bigtriangledown w_2 p]$.

Lemma 2.3 generalizes Proposition 4.6' in [2]. Following to [3], a diagram in the category of sets

$$(2) \qquad \begin{array}{c} A_0 \xrightarrow{f_1} A_1 \\ j_2 \downarrow & \downarrow k_1 \\ A_2 \xrightarrow{k_2} A_3 \end{array}$$

is called an exact square if it is commutative and if $k_1(a_1) = k_2(a_2)$ for $a_i \in A_i$ (i = 1, 2) then there exists an $a_0 \in A_0$ such that $a_i = j_i(a_0)$ (i = 1, 2).

The following Lemma 2.4 together with Lemma 2.2 have the key-roles for the later discussions.

LEMMA 2.4. Let $B \xrightarrow{q} E \xrightarrow{p} F$ be a principal cofibration. Let $f: X \to Y$ be a map such that $f_*: \pi(F, X) \to \pi(F, Y)$ is a surjection. Then if $q^*: \pi(E, X) \to \pi(B,X)$ is a surjection, the diagram

$$\begin{aligned} \pi(E,X) & \xrightarrow{q^*} \pi(B,X) \\ & \downarrow f_* & \downarrow f_* \\ \pi(E,Y) & \xrightarrow{q^*} \pi(B,Y) \end{aligned}$$

is an exact square.

PROOF. Let $[u] \in \pi(B, X)$ and $[v] \in \pi(E, Y)$ such that $f_*[u] = q^*[v]$. Since $q^*: \pi(E, X) \to \pi(B, X)$ is a surjection, there exists an $[s] \in \pi(E, X)$ such that $q^*[s] = [u]$. Then we have $q^*f_*[s] = q^*[v]$. Hence, by Lemma 2.2 there exists a map $w: F \to Y$ such that $\phi^*[w \bigtriangledown fs] = [v]$.

Also since $f_*: \pi(F, X) \to \pi(F, X)$ is a surjection, there exists $[d] \in \pi(F, X)$ such that $f_*[d] = [w]$. Then we have $[v] = \phi^*[fd \bigtriangledown fs] = \phi^*f_*[d \bigtriangledown s]$. If we define a map $l: E \to X$ by $l = (d \bigtriangledown s)\phi$, then $fl \approx v$ and so $f_*[l] = v$. Now again applying Lemma 2.2 to the map $l = (d \bigtriangledown s)\phi$, we have $q^*[l] = q^*[s] = [v]$.

From now on, we work in the category of the spaces having the homotopy type of connected *CW*-complexes.

DEFINITION 2.5. Two cofibrations $B \xrightarrow{q} E \xrightarrow{p} F$ and $B \xrightarrow{q'} E' \xrightarrow{p'} F'$, are equivalent if there exists a homotopy equivalence $s: E \to E'$ such that sq=q'.

We remark that if cofibres F and F' are 1-connected, then an equivalence $s: E \to E'$ induces a homotopy equivalence $\bar{s}: F \to F'$. We call such an \bar{s} an induced cofibre equivalence. This is proved as follows.

From [3; Theorem 3.6 and Corollary 3.7] we may assume that two cofibrations q and q' are inclusion cofibrations.

Then, from §7 in [3] and $\bar{s}p = p's$, we have a commutative diagram :

where upper and lower sequences are exact.

By Five Lemma, we have $\bar{s}_*: H_r(F) \approx H_r(F')$ for all r. Since F and F' are 1-connected, we may conclude that $\bar{s}: F \to F'$ is a homotopy equivalence.

LEMMA 2.6. (J. H. C. Whitehead) (cf. [7]) Let X and Y be 0-connected spaces and $f: X \to Y$ a map. Then the following statements are equivalent; a) $f_*: \pi_i(X) \to \pi_i(Y)$ is isomorphic for i < N and epimorphic for $i \leq N$,

b) For any CW-complex K, $f_*: \pi(K, X) \rightarrow \pi(K, Y)$ is injective for dim K < Nand surjective for dim $K \leq N$.

THEOREM 2.7. Let $B \xrightarrow{q'} E' \xrightarrow{p'} F'$ be a cofibration, where E' and F' are 1-connected, and $B \xrightarrow{q} E \xrightarrow{p} F$ a principal cofibration. Then the former is equivalent to the latter if the following condition are satisfied:

i) there exists a homotopy equivalence $\omega: F \to F'$,

- ii) E, B are CW-complexes such that q(B) is subcomplex of E and dim $F \leq r$, and B is (r-1)-connected,
- iii) $H^{i}(F', G) = 0$ for i > s and an arbitrary abelian group G, and E' is (s-1)-connected.

PROOF. We have the commutative diagram

where upper and lower sequences are exact.

The obstructions extending the map $q': B \to E'$ to a map of E into E are in $H^{i+1}(E, B; \pi_i(E'))$. Since the pair (E, B) satisfies the homotopy

extension property, we have $H_i(E, B) \approx H_i(F)$ for all *i*. Thus, by virtue of the conditions i) and iii), it results that

$$H^{i+1}(E, B; \pi_i(E')) = 0 \text{ for } i \geq s.$$

But E' is (s-1)-connected, and so $H^i(E, B; \pi_i(E')) = 0$ for $i \leq s-1$. Hence the existence of a map $s': E \to E'$ such that s'q = q' is assured.

Since B is (r-1)-connected, $p'_*: H_i(E') \to H_i(F')$ is isomorphic for i < rand epimorphic for $i \leq r$ and $p'_*: \pi_i(E') \to \pi_i(F')$ is so. By Lemma 2.6 and the condition ii), it follows that $p'_*: \pi(F, E') \to \pi(F, F')$ is surjective.

Now if we take the maps $q': B \to E'$ and $\omega p: E \to F'$, then $p'_*[q'] = 0 = q^*[\omega p]$. Thus Lemma 2.4 may be applied and we see that there exists a map $s: E \to E'$ such that $sq \cong q'$ and $p's \cong \omega p$.

Accordingly we have the diagram in which each ladder is homotopycommutative;

$$B \xrightarrow{q} E \xrightarrow{p} F$$

$$\downarrow 1 \qquad \downarrow s \qquad \downarrow \omega$$

$$B \xrightarrow{q'} E' \xrightarrow{p'} F'.$$

Applying the (inclusion) cofibration homology exact sequence to the above diagram, we have a commutative diagram

By Five Lemma, $s_*: H_i(E) \to H_i(E')$ is isomorphic onto for each *i* and E, E' are 1-connected. Hence $s: E \to E'$ is a homotopy equivalence.

3. Induced cofibrations. Throughout the remainder we assume that all spaces have the homotopy type of connected CW-complexes.

An induced cofibration is a precise dual of the principal fibration in [5] and hence the results obtained in [5] can be dualize.

In the well known cofibration $A \xrightarrow{\iota} CA \xrightarrow{\rho} \Sigma A$, we consider

$$J: \pi(\Sigma A, \Sigma A) \to \pi_1(A, \rho) \text{ and } \iota_*: \pi(A, A) \to \pi_1(A, \rho),$$

where the definitions of J and ι_* are due to that of Eckmann-Hilton [3].

LEMMA 3.1. Define $\sigma: \Sigma A \to \Sigma A$, by $\sigma < a, t > = <a, 1-t >$, then

 $J[\sigma] = \iota_*[1],$

where 1 represents the identity map of A.

LEMMA 3.2. For a map $f: \Sigma A \to B$, let $f_t: CA \to B$ be a nullhomotopy of $f\rho$. If we define $f': \Sigma A \to B$ by $f' < a, s > = f_{s-1}\iota(a)$, then

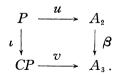
 $f' \cong f \sigma$.

Since the proofs of Lemma 3.1 and 3.2 are precise dual of that of Lemmas 2.1 and 2.2 in [5] respectively, we shall omit it.

Let $A_1 \xrightarrow{\alpha} A_2 \xrightarrow{\beta} A_3$ be a differential triple, i.e. $\beta \alpha = *$.

We set $A_2 \cap_{\beta} EA_3 = \{(a_2, u) \in A_2 \times EA_3; \pi(u) = \beta(a_2)\}$, where EA_3 is the path space in A_3 starting at the base point * and $\pi: EA_3 \to A_3$ is defined by $\pi(u) = u(1)$.

Let P be any space and for any map $w: P \to A_2 \cap_\beta EA_3$, we set $w(x) = (u(x), \overline{u}(x))$, where $u(x) \in A_2$ and $\overline{u}(x) \in EA_3$. Then it is evident that w induces maps $u: P \to A_2$ and $\overline{u}: P \to EA_3$. Now if we define $v: CP \to A_3$ by $v(x,t) = \overline{u}(x)(t)$, then $\beta u(x) = v(x,1)$. Thus to a map $w: P \to A_2 \cap_\beta EA_3$, we may correspond a pair of maps (u, v):

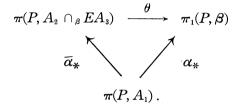


Let (u, v) be a pair of maps corresponding to another map $w': P \to A_2 \cap_{\beta} EA_3$. Then it is easily verified that if $w \simeq w'$, then $(u,v) \simeq (u', v')$.

Conversely a homotopy class of map $w: P \to A_2 \cap_{\beta} EA_3$ corresponds to a homotopy class of pair (u, v).

Thus we have a one-to-one correspondence $\theta : \pi(P, A_2 \cap_\beta EA_3) \rightarrow \pi_1(P, \beta)$ defined by $\theta[w] = [(u, v)].$

If we define $\overline{\alpha}: A_1 \to A_2 \cap_{\beta} EA_3$ by $\overline{\alpha}(a_1) = (\alpha a_1, *)$ where $* \in EA_3$ denotes a constant path based at *, then we have the commutative diagram:



THEOREM 3.3. Let $B \xrightarrow{q} E \xrightarrow{p} F$ be a cofibration and $l: \Sigma A \rightarrow F$ a homotopy equivalence. Then the cofibration q is equivalent to an induced cofibration with induced cofibre equivalence in [l] if and only if $J[l\sigma] \in \text{Im } q_*$.

The proof of Theorem 3.3 are obtained by dual discussion of Theorem 3.4 in [5] and we shall omit it.

COROLLARY 3.4. Let $B \xrightarrow{q} E \xrightarrow{p} F$ be a cofibration and $l: \Sigma A \to F$ a homotopy equivalence. Then the cofibration q is equivalent to an induced cofibration with induced cofibre equivalence [l] if and only if $\theta^{-1} J[l\sigma] \in \operatorname{Im} \overline{q}_*$.

In the next Theorem all spaces are assumed to be connected CW-complexes.

THEOREM 3.5. Let $B \xrightarrow{q} E \xrightarrow{p} Fbe$ a cofibration where B is(r-1)-connected and F (s-1)-connected (s > r > 1). Suppose that dim $F \leq r+s-1$. Then the cofibration q is equivalent to an induced cofibration.

PROOF. By the assumption F is (s-1)-connected and dim $F \leq 2s-1$. Then it is well known that F is homotopically equivalent to a suspension space, say, ΣA . Since $H^i(F) \approx H^i(\Sigma A) \approx H^{i-1}(A)$, we have $H^i(A)=0$ for $i \geq r+s-1$. Clearly A is 1-connected. Hence applying Hilton's Theorem 1' in [4],

$$\bar{q}_{*}: \pi(A, B) \to \pi(A, E \cap pEF)$$

is surjective. Therefore Theorem follows from Corollary 3.4.

Let $B \xrightarrow{q} E \xrightarrow{p} F$ be a cofibration where B, E are 1-connected. Suppose that F is a K'(G, s)-space, where K'(G, s) is a polyhedron with abelian fundamental group such that $H_i(K'(G, s)) = 0$ for $i \rightleftharpoons s$ and $H_s(K'(G, s)) = G$. Then F is (s-1)-connected and may be considered as a (s+1)-dimensional polyhedron. Thus, we have Hilton's Theorem 7.1 in [3] as a Corollary.

COROLLARY 3.6. (Hilton) Let $B \xrightarrow{q} E \xrightarrow{p} F$ be a cofibration where B and F are 1-connected and F is a K'(G,s)-space. Then the cofibration is equivalent to an induced cofibration.

4. Application to Lusternik-Schnirelmann category. Let X^n be the Cartesian product of *n*-copies of X, and let $T^n(X)$ be the subspace of X^n consisting of points (x_1, \dots, x_n) such that $x_i = *$ for some *i*.

DEFINITION 4.1. X has category $\leq n$ (cat $X \leq n$) if there exists a map

 $\eta: X \to T^n(X)$ with $j\eta \simeq \Delta_X$ where $j: T^n(X) \to X^n$ is injection and $\Delta_X: X \to X^n$ is the diagonal map.

The map η is called the structure map.

THEOREM 4.2. Let $B \xrightarrow{q} E \xrightarrow{p} F$ be a principal cofibration where F is a H-space in the strong sense (see, §1). If cat $B \leq n$ and there exists a map $f: E \to T^n(E)$ such that $T^n(q) \circ \eta \cong f \circ q$, where η is the structure map for B and $T^n(q): T^n(B) \to T^n(E)$ is induced by q, then cat $E \leq n$.

PROOF. We have a commutative diagram:

in which the horizontal rows exact. By the assumption, we have $q^*[f] = [T^n(q) \circ \eta]$. Since F is a H'-space in the strong sense, by the same arguments as in Proposition 2.8 in [1] and the remark in the course of the proof of Theorem 3.4 in [1], it follows that

$$j_*: \pi(F, T^n(E)) \longrightarrow \pi(F, E^n)$$

is surjective.

Now we have $j_*[T^n(q) \circ \eta] = [j_E \circ T^n(q) \circ \eta] = [q^n \circ j_E \circ \eta] = [q^n \circ \Delta_B] = [\Delta_E \circ q]$ = $q^*[\Delta_E]$. Thus Lemma 2.4 may be applied and the existence of a map $\zeta : E \to T^n[E]$ such that $j \circ \zeta \approx \Delta_E$ is assured. Q. E. D.

REMARK. Theorem 4.2 is a generalization of Theorem 3.4 in [1]. In fact, let $f: A \to B$ be a map and let $B \xrightarrow{i} C_f \to \Sigma A$ be a cofibration induced by f. Suppose that f is *n*-quasiprimitive in the sense of Berstein and Hilton [1]. Then if $\operatorname{cat} B \leq n$ with the structure map $\eta: B \to T^n(B)$, there exists a map $\psi: A \to T^n(A)$ such that the diagram

$$\begin{array}{ccc} A & \xrightarrow{f} & B \\ \psi \downarrow & & \downarrow \mu \\ T^n(A) & \xrightarrow{T^n(f)} & T^n(B) \end{array}$$

is homotopy-commutative.

Consider a diagram;

$$\begin{array}{cccc} A & \stackrel{f}{\longrightarrow} & B & \stackrel{q}{\longrightarrow} & C_{f} \\ \psi \downarrow & & \downarrow \mu & & \downarrow \\ T^{n}(A) & \stackrel{T^{n}(f)}{\longrightarrow} & T^{n}(B) & \stackrel{T^{n}(q)}{\longrightarrow} & T^{n}(C_{f}) \end{array}$$

where $q: B \rightarrow C_f$ is the (inclusion) cofibration.

Then it is easily verified that the sequence

$$\pi(C_f, T^n(C_f)) \xrightarrow{i^*} \pi(B, T^n(C_f) \xrightarrow{f^*} \pi(A, T^n(C_f))$$

is exact. Since $T^n(i) \mu f \cong T^n(i)T^n(f) \psi \cong *$, there exists a map $u: C_f \to T^n(C_f)$ with $u \circ i \cong T^n(i) \circ \mu$.

Thus we see that if a cofibration $q: B \to C_f$ is induced by f and f is *n*-quasiprimitive, then the assumptions of Theorem 4.1 are satisfied and cat $C_f \leq n$.

5. Appendix. Finally we shall define a dual of H-fibration in [5] which is a intermediate notion between arbitrary cofibration and principal cofibration.

DEFINITION 5.1. A cofibration $B \xrightarrow{q} E \xrightarrow{p} F$ is a *H'*-cofibration if there exists a co-operation $\phi: E \to F \lor E$ and a homotopy $H_t: E \to F \times E$ subject to the following conditions:

(a) the diagram

$$\begin{array}{cccc} B & \stackrel{i_2}{\longrightarrow} & F \lor B \\ \downarrow q & & \downarrow 1 \lor q \\ E & \stackrel{\phi}{\longrightarrow} & F \lor E \end{array}$$

is commutative.

(b) $H_0 = j \circ \phi$ $(j: F \lor E \to F \times E \text{ injection})$ and $H_1 = (p \times 1) \circ \Delta_E$, $H_t q = *$ for all t.

PROPOSITION 5.2. H_t induces an H'-structure on F.

PROOF. By Definition 5.1, we have $H_tq = *$ for any t and especially $H_0q = j\phi q = *$. Hence $(1 \times p)j\phi q = *$. In the diagram;

$$E \xrightarrow{\phi} F \lor E \xrightarrow{j} F \times E$$

$$\downarrow p \qquad \qquad \downarrow 1 \lor p \qquad \qquad \downarrow 1 \times p$$

$$F \xrightarrow{f} F \lor F \xrightarrow{f_F} F \times F$$

where $j_F: F \vee F \to F \times F$ is the injection, we have $(1 \times p)j = j_F(1 \vee p)$. Since j_F is the injection, $(1 \vee p) \phi q = *$. Hence $(1 \vee p) \phi$ induces a map $\mu: F \to F \vee F$ such that $\mu p = (1 \vee p) \phi$. Also $(1 \times p)H_1$ induces a homotopy $H'_t: F \to F \times F$ such that $H'_t p = (1 \times p)H_t$. Then $H'_1 p = (1 \times p)H_1 = (1 \times p)(p \times 1)\Delta_E = \Delta_F p$, where Δ_E and Δ_F denote the diagonal maps in E and F respectively. Also $H'_0 p$ $= (1 \times p)H_0 = (1 \times p)j\phi = j_F\mu p$.

Thus it follows that $H'_0 = j_F \mu$ and $H'_1 = \Delta_F$. Hence the map $\mu: F \to F \lor F$ defines an H'-structure. Q. E. D.

THEOREM 5.3. Let $B \xrightarrow{q} E \xrightarrow{p} F$ be a H'-cofibration in which all spaces are CW-complexes. If $u \in H^n(E, Q)$ and $v \in H^m(F, Q)$, where Q is the field of rational numbers, then we have

$$p^*(v) \cup u = 0.$$

PROOF. Let E # E be the quotient space $E \times E/E \vee E$ and let $\pi: E \times E \rightarrow E \# E$ be the projection. If we identify $H^r(E \# E, Q) = \sum_{\substack{p+q=r\\p,q>0}} H^p(E,Q) \otimes H^q(E,Q)$,

by the definition of the cup product in terms of the diagonal map, we have $p^*(v) \cup u = (\pi \Delta_E) * (p^*(v) \otimes u)$. Let $\overline{p \times 1} : E \neq E \to F \neq E$ be a map induced by $p \times 1 : E \times E \to F \times E$, there exists a commutative diagram:

$$\begin{array}{cccc} H^{m}(F,Q) \otimes H^{n}(E,Q) & \xrightarrow{(\not p \times 1)^{*}} & H^{m}(E,Q) \otimes H^{n}(E,Q) \\ & & & \downarrow \\ & & & \downarrow \\ H^{m+n}(F \not \# E,Q) & \xrightarrow{(\not p \times 1)^{*}} & H^{n+m}(E \not \# E,Q). \end{array}$$

Hence $(\pi\Delta_E)^*(p^*(v)\otimes u) = (\pi\Delta_E)^*(\overline{p\times 1})^*(v\otimes u)$. But $j\phi \cong (p\times 1)\Delta_E$ by the condition b) in Definition 5.1. Hence $(p\times 1)\pi\Delta_E = \pi(p\times 1)\Delta_E \cong \pi j\phi \cong *$.

Thus we may conclude that $p^*(v) \cup u = 0$. Q. E. D.

References

- [1] L. BERSTEIN AND P. J. HILTON, Category and generalized Hopf invariants, Illinois. Math., 4(1960), 437-451.
- [2] B. ECKMANN AND P. J. HILTON, Operators and Co-operators in homotopy theory, Math. Ann., 141(1960), 1-21.
- [3] P. J. HILTON, Homotopy theory and duality, mimeographed notes, Cornell University, 1959.
- [4] _____, On excision and principal fibrations, Comment. Math. Helv., 35(1961).
- [5] J. P. MYER, Principal fibrations, Trans. Amer. Math. Soc., 107(1963), 177-185.

[6] F. P. PETERSON AND E. THOMAS, A note on non-stable cohomology operations, Bol. Soc. Mat. Mexicana, 3(1958), 13-18.
[7] H. TODA, An outline of the homotopy theory, Sugaku (in Japanese), 15(1964).

MATHEMATICAL INSTITUTE HIROSAKI UNIVERSITY.