THE INTEGRABILITY OF A STRUCTURE ON A DIFFERENTIABLE MANIFOLD

CHORNG-SHI HOUH

(Received June 13, 1964, Revised December 15, 1964)

1. Let M be an *n*-dimensional differentiable manifold of class C^{ω} . Let M_x be the tangent space at each point *x* of the manifold *M* and M_x^c the $\mathop{\rm{complexification}}$ of M_x . A (1, 1) tensor field of class C^{ω} defines an endo morphism on each tangent space M_x^c . Such an endomorphism is denoted by *F*. Suppose *F* satisfies the condition $F^2 = \lambda^2 E$ where $\lambda^2 = \pm 1$ and *E* is the identity mapping. *F* is said to be integrable if at each point of the manifold there exists a coordinate neighborhood in which the field *F* has numerical components. Let M'_x and M''_x be the eigen spaces of F associated with the eigen values λ and $-\lambda$ respectively. It is known that *F* is integrable if and only if the distributions $x \rightarrow M'_x$ and $x \rightarrow M''_x$ are involutive.

On *M* we consider a structure *{F, G]* defined by two fields *F, G* of class C^{ω} satisfying the following conditions:

(a)
$$
F^2 = \lambda^2 E
$$
, $G^2 = \mu^2 E$ where λ , μ satisfy $\lambda^2 = \pm 1$, $\mu^2 = \pm 1$.

We take λ , μ to be *i* or 1.

(b) $FG = GF$.

DEFINITION. *The structure [F, G} satisfying* (a), (b) *is said to be integrable if at each point of the manifold there is a coordinate neighborhood in which the fields F, G have simultaneously numerical components.*

If $\lambda^2 = -1$ or $\mu^2 = -1$ then *F* or *G* is an almost complex structure. The dimension *n* of *M* turns out to be an even number. So in this case if *{F, G}* is integrable, the coordinate neighborhood is a complex coordinate neighbor hood. We are going to investigate a necessary and sufficient condition for such a structure to be integrable. To do this, we define a $(1, 2)$ tensor field *[F, F']* assciated with two (1,1) tensor fields *F, F'* as follows: for any two vector fields X, *Y*

(1)
$$
[F, F](X, Y) = [FX, FY] - F[X, FY] - F[FX, Y] + FF[X, Y] + [FX, FY] - F[X, FY] - F[X, FY] - F[FX, Y] + F'F[X, Y].
$$

Thus $\frac{1}{2}$ [*F, F*] is the Nijenhuis tensor of *F,* and [*F, F*] = 0 and [*G, G*] = 0 mean that *F, G* are integrable respectively. The result is

THEOREM. *The structure {F,G} satisfying* (a), (b) *is integrable if arid only if* $[F, F]=0$, $[G, G]=0$ *and* $[F, G]=0$.

Let $x \rightarrow M'_x$ and $x \rightarrow M''_x$ be the distributions we mentioned above. Let N'_x and N''_x be the eigen spaces of *G* associated with the eigen values μ and $-\mu$ respectively. By the above definition, the structure $\{F, G\}$ is integrable if and only if the distributions $x \to M'_x \cap N'_x$, $x \to M'_x \cap N''_x$, $x \to M''_x \cap N'_x$, $x \to$ $M''_x \cap N''_x$ are involutive and the distributions $x \rightarrow M'_x \cap N'_x \oplus M''_x \cap N''_x$, $x \rightarrow$ $M'_x \cap N''_x \oplus M''_x \cap N'_x$ are involutive.

2. The vector subspaces M'_x , M''_x , N'_x and N''_x are invariant by F and G. In fact, let *u* be any vector in M'_x then $F(Gu) = G(Fu) = G(\lambda u) = \lambda G(u)$ since *FG — GF.* This proves that *M^x* is invariant by *G.* Similar proofs hold good for the other subspaces.

LEMMA.
$$
M_x^c = M_x' \cap N_x' \oplus M_x' \cap N_x'' \oplus M_x'' \cap N_x' \oplus M_x'' \cap N_x''
$$
. (*Direct sum*)

PROOF. Put

$$
P' = (1/2)(E + \lambda F), P'' = (1/2)(E - \lambda F),
$$

\n
$$
Q' = (1/2)(E + \mu G), Q'' = (1/2)(E - \mu G).
$$

Then P', P'' are projections from M_x^c to the subspaces M'_x, M''_x or M''_x, M''_x α respectively, Q' , Q'' are projections from M_x^c to the subspaces N'_x , N''_x or N_x ^{*''*}, N_x ['] respectively. For instance, take the image $P'(M_x^c)$. The following relations are clear:

(2)

$$
P'F = FP' = \frac{1}{\lambda}P', \quad P''F = FP'' = -\frac{1}{\lambda}P'',
$$

$$
Q'G = GQ' = \frac{1}{\mu}Q', \quad Q''G = GQ'' = -\frac{1}{\mu}Q''.
$$

Thus if $\lambda^2 = 1$, $F(P'M_x^c) = \lambda P'M_x^c$. Hence $P'M_x^c = M'_x$. If $\lambda^2 = -1$, $F(P'M_x^c)$ $=-\lambda P'M_x^c$. Hence $P'M_x^c = M_x^{\prime\prime}$. P' is a projection since $P'P' = P'$. We can check that the other mappings $P^{\prime\prime},Q^\prime,Q^{\prime\prime}$ have the above mentioned property by similar processes.

The following relations are also easy to verify.

74 C. S. HOUH

 $P' + P'' = E$, $Q' + Q'' = E$.

$$
\left(\,3\,\right)
$$

$$
P'P'' = P''P' = 0, \quad Q'Q'' = Q''Q' = 0.
$$

\n
$$
P'Q' = Q'P', \quad PQ'' = Q''P', \quad P''Q' = Q'P'', \quad P''Q'' = Q''P''.
$$

\n
$$
E = P'Q' + P'Q'' + P''Q' + P''Q''.
$$

Thus we have

$$
M_x^c = (P'Q' + P'Q'' + P''Q' + P''Q'') M_x^c
$$

= $(M_x' \cap N_x') \oplus (M_x' \cap N_x') \oplus (M_x'' \cap N_x') \oplus (M_x'' \cap N_x'')$.

Since the products of any two of $P'Q'$, $P'Q''$, $P''Q'$, $P''Q''$ are zero, the sum is a direct sum. This proves our lemma.

3. Now we are going to prove the theorem. If the structure *{F, G}* is integrable, it is clear that F and G are integrable respectively and $[F, G]=0$. Conversely, suppose F and G are both integrable and $[F, G]=0$. It is known that the distributions M' : $x \rightarrow M'_x$ and M'' : $x \rightarrow M''_x$ are involutive if and only if $P''[P'X, P'Y]=0$, $P'[P''X, P''Y]=0$ for any complex vector fields X and Y. Similarly *G* is integrable if and only if $Q''[Q'X, Q'Y]=0$, $Q'[Q''X, Q''Y]=0$ for any complex fields X and Y. $x \rightarrow M'_x \cap N'_x \oplus M'_x \cap N'_x$ and $x \rightarrow M'_x \cap N''_x \oplus M'_x \cap N'_x$ are involutive if and only if $(P'Q''+P''Q')[(P'Q'+P''Q'')X, (P'Q'+P''Q'')Y]=0$ and $(P'Q' + P''Q'')[(P'Q'' + P''Q)X, (P'Q'' + P''Q)Y] = 0$ for any complex fields X and Y. Assuming that $P''[P'X, P'Y]=0$, $P'[P''X, P''Y]=0$, $Q''[Q'X, Q'Y]=0$ and $Q'[Q''X, Q''Y]=0$, these two conditions are equivalent to

(4)
$$
\begin{cases} (P'Q'' + P''Q')([P'Q'X, P''Q''Y] + [P''Q''X, P'Q'Y]) = 0, \\ (P'Q' + P''Q'')([P'Q''X, P''Q'Y] + [P''Q'X, P'Q''Y]) = 0. \end{cases}
$$

To prove the distributions

$$
x \to M'_x \cap N'_x, \ x \to M'_x \cap N''_x, \ x \to M''_x \cap N'_x, \ x \to M''_x \cap N''_x
$$

are all involutive , we want to show

$$
(P'Q'' + P''Q' + P''Q'') [P'Q'X, P'Q'Y] = 0
$$

for any complex vector fields *X* and Y. This result implies that one of the above distributions is involutive.

F and *G* being integrable, $P''[P'(Q'X), P'(Q'Y)] = 0$ and $Q''[Q'(P'X),$

 $Q'(P'Y)$]=0 for any vector fields X and Y. These imply $(P'Q'' + P''Q' + P''Q'')$ $[P'Q'X, P'Q'Y] = 0$ since $P'Q' = Q'P'$ and $P''Q'' = Q''P''$.

Similarly we can prove the other distributions are involutive.

Finally, to prove the distributions

$$
x\,{\to}\, M'_x\cap N'_x\oplus M''_x\cap N''_x\,,\ \ x\,{\to}\, M'_x\cap N''_x\oplus M''_x\cap N'_x
$$

are involutive, substituting *P'Q'X* and *P'QΎ* in X and *Y* of (1) and making use of the relations (2), (3) we can easily show that

$$
(P'Q' + P'Q')[P'Q'X, P''Q''Y] = 0
$$

for any complex fields *X* and *Y.* Similarly we can prove

$$
(P'Q' + P''Q')[P'Q''X, P''Q'Y] = 0
$$

for any complex fields *X* and *Y.* Hence the relations (4) follow. Thus we complete the proof of our theorem.

REFERENCES

- [1] C.J. Hsu, Note on the integrability of a certain structure on differentiable manifold, Tohoku Math. Journ., 12(1960), 349-360.
- [2] \sim , On some structure which are similar to the quaternion structure, Tôhoku Math. Journ., 12(1960), 403-428.
- [3] P. LlBERMANN, Sur le probleme d'equivalence de certaines structures infmitesimales, These (1953).
- [4] M. OBATA, Affine connections on manifolds with almost complex, quaternion or Hermitian structure, Journ. Math. Soc. Japan, 26(1956), 43-77.
- [5] K. YANO, Affine connections in an almost product space, Kodai Math. Seminar Report, 11(1959), 1-24.

UNIVERSITY OF FLORIDA.