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§1. Introduction. Let fix) be integrable in (—ir, if) and periodic with
period 2τr, and let its Fourier series be

+ ]P ( c o s n x + ^ sin
n - l

The Poisson integral of /(.£)

(2 ) /(r, a:) = -~ff(x+t) Pr(t) dt

satisfies the Laplace equation

inside the unit circle. Moreover if fix) is continuous over (a, b\ then f(r, x)
tends uniformly to f(x) as r—>1 over (a'9b') situated inside (a,b). What can
we say about fix), when the rapidity of approximation of fix) by fir, x) is
given ? If (α, b) is (—ir9 if) and

uniformly if and only if fix) is a constant and

f{r,x)-f{x) =

uniformly if and only if fix) satisfies the Lipschitz condition, see G. Sunouchi
and C. Watari [5j. This is a saturation theorem.

We shall investigate this problem over an interval (α, b) situated inside
(—7Γ, if) in §2 of this note. In §3 and §4, we consider such problem about
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Cesaro means (C, oί) and Riesz means (R, nλ, k) of Fourier series (1). The

cases a — \ and X = k= an integer have been solved in the previous notes [7].

However the treatment of this paper is simpler and more systematic than the

former notes.

For the sake of simplicity, we consider only uniform approximation and

norm means uniform norm over (a, b). But another norm may be treated

by the same method.

Throughout this paper, (a, b) means an interval situated in (—7Γ, 7r) and

(a, b') is any interval totally interior in (α, b).

§2. Poisson integral. For the local saturation of Poisson integral, we

show the following theorem.

THEOREM 1. (1°) / /

(3) I / ( r , * ) - / ( * ) | = o ( l - r ) , as r - > l

over (a,b), then f(x) is a constant over (a',&'). Conversely, if f{x) is a con-

stant over (α, b), then (3) holds good over (a, b').

(2°) / /

( 4 ) || /(r, x) - f{x)\\ = O(l-r) as r-> 1,

over (a, b), then f\x) e L°°(a\ b'). Conversely if f(x) € L°°(α, b)y then (4) holds

good over (a, b').

PROOF. Since

oo

(1 - r)"1 {f(x) - fir, x)} ~ Σ. A»(x)(l ~ r")0- - r)"1

72 = 0

and the Fourier coefficients

An(x)a-rn)(l-ryι (0 < r < 1)

are of order o(n). We have, by the localization theorem [9, p. 367], for any

£ > 0 ,

i l^[(l-r)- 1 {/(^)-/(r,^)}] | |^2θ, for l > r ^ r 0 , N^ No over (a\b')9

provided that (3) is true, where σN(f) denotes the arithmetic means of the

Fourier series of f{x). Letting r —> 1, we get
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where S'(f) denotes the derived conjugate series of fix). Hence, <τN{S\f)}

converges uniformly to zero over (a, b') and we get fix) is a constant over
(α',6'), see G. Sunouchi [6, Theorem 1].

Conversely, if fix) is a constant in (α, b), then ^ kAk(x) is (C, l)-summable

to zero over (ά,b') uniformly by the above cited theorem. So ^2kAk(x) is

Abel summable to zero over (a, b') uniformly. Taylor expansion yields

f(r, x) = f{x) + (1 - r)fr(ξ, x), r < £ < 1

where

k=l

tends to zero uniformly over (ά,b') as ξ—•>1. Hence

f(r, x) — f{x) — oil — r) as r —> 1.

uniformly over (a, b').

(2°) If

f(r,x)-f(x) = O(l-r) as r-> 1

uniformly over (a, b), then the same device to the above yields

( =O(1)

uniformly over ia9b') and fix) £ LΓiά 9h).

Conversely, if fix) € L°°ia,b), then

σN (S'if)} = OH)

over ia9b') (see G. Sunouchi [6]) and the proof is the same to (1°).

By the same method, we may prove the following more general theorem.

T H E O R E M 2. (1°) / /

k\
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/ 3 \k

over (a,b), then ί-̂ —\ f is zero over {a ,b'), where

( 3 \k

-~—\f is zero over (a,b)f then (5) holds good over (ά,b').

(2°) //

(6)

(1-r)*

r (α, &), ίAέfw f-^—j / € L~(α', b'). Conversely if ί-^—j / € L^Cα, 6), ίήen

(6) holds good over (a, b').

The whole interval case has been investigated by R. Leis [4] and P. L.

Butzer and G. Sunouchi [1].

§3. (C, a) means of Fourier series. Let

and denote the (C, a) sums and the (C, a) means of the series (1) by

Si(x,f) = S%x) =

σl{x,f) = σa

n(x) = S"n(x)/A«n .

respectively. In this case

for fixed v. Hence we may expect that the order of saturation is w ! . How-

ever, if

/)-/! =
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over (α, b), then by the limitation theorem of (C, α)-means, we have an=o(na~ι).

When 0 < ci < 1, no local condition yields an = ofji"'1). So we have to
consider oί^il for local saturation problem.

THEOREM 3. (1°) / /

(7) \\<(x)-f(x)\\=o(n-1), Λ ^ l ,

over (a, b), then f(x) is constant over (a, b'). Conversely if f(x) is constant

over (a, b), then (7) holds good over (a', b').

(2°)

( 8 ) σtx)-f{x)\\ =O(n~1), a^

over (α, b), then fix) € L°°(a, b'). Conversely if f\x) e L°°(a, b), then (8) holds
good over (a, b').

PROOF. (1°) If (7) holds then

N-l I
I

AS

over (a',b')9 for large n and iVg: No. Letting n—>oo, we have

o v e r \a yb).
~o\ i V ) ' ' ' '

Hence 11/̂ (̂ )11 =€, and 8 is arbitrary, we get

f(x) = 0 over (a, b').

Conversely f'(x)=0 over (a,b), then the derived conjugate series

is (C, Λ) summable (Λ ̂  1) to zero over (a, b'), by the localization theorem.
By a theorem of L. Jesmanowicz [3], we get

\\σ%x)-f(x)\\ =O(Λ- 1 )

over (a, b').

The proof of part (2°) is almost the same to the case (1°).
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§4. Riesz means of Fourier series. When infinite series ^an is given,

we set the following definition and notation, see K. Chandrasekharan and

S. Minakshisundaram [2].

We set

( 9 )

(10) Ak(t) = Σ (f~\Y av = k\ (t-τf-1 A(τ) dτ , (k> 0)

then

(11) - | - [ ^

If

Ck(t) = t-kAk(t)

tends to s as t —> oo, then we say that Σa" ^s (R^n, k) summable to s.

Further we set

(12) bn = \nan, B{t) = y \}aυ

(13)

then we have the relation

(14) t Ak(t) - Ak+\t) = B\t).

For the later use, we need the following lemma.

LEMMA. If k>0 and

t~k B\i) = o(l) as t ->oo, then

Ckif) - s = o(t~ι) as t -> oo ,

and if hypothesis is O(l), then conclusion is also O(t~ι).

PROOF. From (11) and (14) we have
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t d +1(*)} - A^{t) = B\t)

and from this

Ak+ι{i) =
Jo

If we set

Ck+ι(t) = r (*+1)A*+I(ί) and D%t) = Γk B\t)

then

The relation

becomes

From the hypothesis, we have

as t -> oo, and

i mt)

as t—>oo. Hence

If we put

then
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as ί-^oo.
The Oil) case is proved similarly.

We denote (R, nλ, k) means of S(f) by

If we have

over (a,b), then by the limitation theorem

an = o(n~λnk) — o{nk~x).

Hence we have to restrict k^X.

THEOREM 4. (1°) If λ is a positive integer and

(14) || Rl'\xJ) - f(x) II = o{n~λ), k ^ λ

over (a,b), then

f(x) (λ, even)
(15)

fix) (λ, odd),

is at most a (X—l)-th algebraic polynomial over (a', b'). Conversely if (15)
is true over (a, b), then (14) holds good over (a ,b').

(2°) If λ is a positive integer and

(16) II2&*ix,f) - f(x)II = O(n-λ), k^X

over (a,b), then

( βλ\x) (λ, even)
(17)

i fλ\x) (λ,

belongs to the class L°° over (a, &'), α^<i conversely if (17) is ίrw<? over (a, Z?),
(16) holds good over (a, b).
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P R O O F . (1°) We suppose

\\Rλnk{xJ)-J\x)\\ =o(n~λ)

over (a, b). The Fourier series of

v=0

nλ {f(x) - RλΛxJ)} ~ »*£ 11 - (l - ~r]\ Av(x) + n'Σ, Av(x)
( \ I )

and its Fourier coefficient is o(nλ). By the above method

\\σλ

N[nλ{f(x)-RλΛx,f)}]\\^2S for n^n0

over (a',b'). Letting 72->oo, we have

2^ (ΛΓ^ No) (λ,

or

II *A&X)<J)} II ̂  2θ ( N ^ No) (λ,

Hence we get the conclusion, see Sunouchi [6], Conversely if we suppose
that (15) is true, then by the localization theorem,

(18) Σ,&Ak(x)

is (C, &)-summable to zero over (a, b') uniformly. From the second theorem
of consistency, (18) is (R, nλ, &)-summable to zero over (a, b') uniformly also.
Hence by the lemma,

|| Rl k(x,f) - f(x)\\ = o(nx)

over (a', b').
(2°) This case is proved almost the same. So we omit the detail.

By the same method, we get the following theorem for fractional λ.

T H E O R E M 5. (1°) If

(19) II Rϊ \x,f) - f(x)\\ = o(n-χ) , k^X

over (a, b), then

(20)

over (a', b'), and vice versa.

= 0(1)
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(2°) //

(21)

over (a, b), then

(22)

R);%x,f) - /(*) | | = O{n~λ) , k^

=Ό(1)

(α\ b'\ and vice versa.

In this case, we can also characterize the class by the original function.
For the whole interval case, see [8].

We write, for any positive integer s,

(23)

then

j=0
g(x,t) = Δ»f(x,2

g(x, i) = {-l)s 22S ΣΛto sin

f )f{x+(s-2j)t]
J /

THEOREM 6. If

(24)

over (a, b), then

(25)
,2f)

= o(l), 0<λ<25

(a\ b') and vice versa. If the hypothesis is O(l), then the conclusion is

also O(l).

PROOF. If (24) is true, then

(26) || R\'\xJ) - f\\ = o(n~λ), k ^ λ

over (a, b'). On the other hand, by (23),

n-l

Rλn\t, g) = (-1) 8 22S T. \l- I -kr I t Aυ(x) sin2s vt

and

Σ J
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J. ~ ^
However we get

If 0 < λ < 2s, the last integral is convergent, and we put this csv\ Hence

converges uniformly to zero over (a, b).

We write

_ f"1 Rl<*(t,g) [S R^(t,g)-g(t) Γ R^jt, g)-g(t)

= 7j + 72 + I3,

say. If we fix a small δ, then

uniformly over t € (0, δ) and x € (a, &'). So

Since gr(ί) belongs to the class L(—7r, 7r), Rn'%t, g) converges in mean to g(t)

on (—7Γ, TΓ). Hence,

|73| ^ lim Γ R^'β}

On the other hand, by (26), g(t) belongs to the class lipλ. By the definition

of Rn'k(t, g) (see the formula following (26)),

= 0 , Z = 0 , l ,2 , . . , [λ], λ < 2 5
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and Taylor expansion yields

Γ α [ λ ] + l " -i

RΪΛt, 9) = ί[λI+1 [̂ ίXjTΓ &*<?, g)\ , (fi<θ<t).

From the approximation order of Rl'k(t, g) and the Bernstein theorem

_

Hence

dt

= o(n^+l~x) [ Γλ+[λ] dt

So

(27)

uniformly over (a, V).

Conversely, we suppose that (27) is true over (a, b). For a fixed n, the
iV-th (C, λ)-means of Fourier series of the left member of (27) is

and this is small for large N over (a\b') uniformly. Letting n-+oo, then

converges to zero uniformly over (a, b'). Thus we can prove the theorem
for oil). Since the case O(l) is treated by the similar method, we omit details.
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