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Introduction. S. Tachibana ([6],(7])” introduced the notion of covariant
almost analytic vector field in certain almost Hermitian manifold by generaliz-
ing the following fact: “In a compact Kdhlerian manifold, the inner product
of a contravariant analytic vector field and a covariant analytic vector field
is constant over the manifold (K. Yano [9]).” Further, by several geometors
this notion was generalized in general almost complex manifold and to one
of almost analytic tensor field.

Let (M,J) and (M',J’) be almost complex manifolds of class C* where
J and J' are almost complex structures on M and M’ respectively. Let f be
a differentiable mapping of M into M’'; the mapping f is called almost
analytic if

dfpodp=Jpw o dfs for PeM.

It is well-known that an almost analytic mapping of a complex manifold
into another complex manifold is holomorphic (S. Helgason [1]).

Now, if we adopt a tensor bundle of M as the second manifold M’ and
define a suitable almost complex structure on the tensor bundle of M, then
almost analytic tensor fields on M can be defined by differentiable cross-section
of M in the tensor bundle of M. In the present paper we shall consider
almost analytic vector fields from this point of view and discuss the relation
between the usual almost analytic vector fields and ours. We shall also obtain
the generalization of the usual almost analytic vector fields.

1. Contravariant almost analytic vectors. Let M be a 2n-dimensional
almost complex manifold with structure tensor @. The set of all tangent
vectors of M constitutes, with a natural topology, the so-called tangent bundle
of M. We denote it by T(M) and the natural projection 7(M)— M by =
When T(M) admits an almost complex structure ®, a differentiable cross-section

f is called contravariant almost analytic vector field with recpect to (@, ®)
over M if

1) See the bibliography at the end of the paper.
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(11) dprQI):(bf(p)odfp for PGM.

Let x'» be local coordinates in a neighborhood U of a point P of M,
then a tangent vector y at P, which is an element of 7(M), is expressible in
the form (x',y') where y'’s are components of y with respect to the natural
frame 9/0x!. We may consider (z!,y') local coordinates in a neighborhood
7 U)=Ux E" of T(M). To a transformation of local coordinates of M

xi’ — xi’(xl’ xZ’ e, x?n)
there corresponds in 7(M) the coordinate transformation

¥ = 2V (x, a2,
1.2) . .
y o= (arxl)y’ .
If we put
o= yi xi’:yi’ , 3)
then we may write (1.2) as

(1.3) SR ol € S AR A

Let @ be a tensor field of type (1,1) on M and @,* be its components with
respect to a coordinate neighborhood U(x!). If we put

q)ji:(pji, ‘I)in =y o,p),
(1.4) A § '
(I)jl — R @] [ — ¢jl’

then we have a tensor field ® of type (1,1) on 7(M) whose components are
®," with respect to the coordinate neighborhood =~'(U)(x!,»"). @ is called the
extension of @ (S. Sasaki [4]). We can easily see that if @' is an almost
complex structure, so is also ®,.

Now, cross-section f can be locally expressed by

=z (2,2, ..., 2,

namely

>2) Indices 2,j,k; a,b,c; r,s,t run over the range 1,2,+..,2n,
3) We put 1=2n+1, ' =2n+7,
4) ILJLLK=1,2,-+-, 4n,
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(1.5)

By virtue of (1.1), (1.4) and (1.5), locally the condition that f be almost analytic
is

@70, x' = DI, x* .
In the case /=i we get the identity @,/ = @,' and in the case I =7

@ 0,u' = w0, @' + @,'0;u’,
or

(1.6) Q) @) =0.

As the last equation is nothing but the defining equation of usual contravariant
almost analytic vector field in the almost complex manifold M, our contravariant
almost analytic vector field coincides with the usual one. Consequently, the
usual contravariant almost analytic vector field is regarded as the contravariant
almost analytic vector field with respect to @ and its extension @ which is

considered from the point of @ only. We denote it by the contravariant
almost analytic vector field with respect to @.

THEOREM 1.1. In order that an extension #' = (u',y" 0,u') of a con-
travariant vector jfield u' of M be contravariant almost analytic with respect
to ® on T(M), it is necessary and sufficient that u' itself is contravariant
almost analytic with respect to @ on M.

PROOF. Let «' be contravariant almost analytic on M, i.e. &) ;' = 0.
After some calculations we get

@) @, = @) b;' = w) @,' = 0,
L@)P;' = 0, L@)P,' = y" 2, (w) @) = O,

from which we have {(%)®,/=0 i.e. # is contravariant almost analytic on
T(M). Converse is evident.

Next, we shall introduce an almost complex structure on 7'(M) different

from ®,.. Let I} be an affine connection on M. If we define @, by

1.7)
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where I'}i=17'y", then it is an almost complex structure on T(M) (C. T. Hsu
[2]). By virtue of ®, we can find the contravariant almost analytic vector field

with respect to (g, (5)‘ In the same way as before, by (1.1), (1.5) and (1.7),
we have

47),47'8, :i" == (I)HIBJ' .’l‘” .
Putting I =7 and I = i, we have

(1.8) @' = V;u
and
¢j7‘ a,ui = _(8]‘1"‘{"11‘77. Fri+1‘ri a]‘ur),

where V¥, denotes the operator of covariant derivative with respect to the
affine connection I';*. However, the last equation is identically satisfied by
(1.8). In fact, we have the following

@;"o,ut + &+ 1y 1 + IN'ou”

— ¢jr(¢r‘i, — ["ri) + Bji, + ler l‘ri. _'_ ]-1ri(¢j1' _ l1jr) — O X

Thus contravariant almost analytic vector field with respect to (g, E)) is given
by (1.8). In general, contravariant almost analytic vector field satisfying (1.8)
does not satisfy (1.6) i.e. not contravariant almost analytic in the sense of
the usual one. Therefore, we shall call the contravariant almost analytic

vector field with respect to (@, ®) and (e, 5) as the contravariant almost
analytic vector fields of the first kind and the second kind of M respectively.
In particular, if M is almost Hermitian, (1.8) may be written as

P = V,u
or
(1.9 Vi = @5 (@ji = @i’ 9ri) »

where V; denotes the operator of covariant derivative with respect to the
Christoffel’s symbols {]hl 2- From (1.9) we see that contravariant almost

analytic vector field of the second kind #' is a Killing vector field since @
is skew-symmetric. Therefore almost Hermitian manifolds admitting con-
travariant almost analytic vector field of the second kind coincides with certain
almost Kidhlerian manifolds introduced by Y. Mut6 (Y. Muté [3]). Thus almost
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Hermitian manifold with contravariant almost analytic vector field of the second
kind becomes necessarily almost Kihlerian one and contravariant almost
analytic vector field of the second kind the one of the first kind (Y. Muto [3]).

THEOREM 1.2. In a compact almost Hermitian manifold M there does
not exist any contravariant almost analytic vector field of the second kind.

PROOF. Let #' be contravariant almost analytic vector field of the second
kind. Then we get

(V') Viu = NV (V) w) = (V; Vi )w = V,(Vw)uw)
because V;V’u' = V;@’" = 0.

By integration it follows that

f(vjui')Vjuidd - fvj((vjui)ui)do' =0,
M M

where do is the volume element of M. From the last equation we have
V;u; =0 i.e. @;; = 0. This is a contradiction. Q.E.D.

THEOREM 1.3. In an almost Hermitian manifold with parallel Rcici

tensor field R; (R;i #0), there does not exist any contravariant almost
analytic vector field of the second kind.

PROOF. Let #' be contravariant almost analytic vector field of the second
kind. As #' is a Killing vector field we get

V'V.,u'+ Riu =0.
By virtue of (1.9) and V"@,'=0 we have R;,#"=0. Operating YV, to R, z"=0
and making use of V;R;,=0, we have R;,V,u"=0. Again by (1.9), we get
R, 9,"=0 ie. R;=0. This is a contradiction.

THEOREM 14. If an almost Hermitian manifold admitting a conira-
avriant almost analytic vector field of the second kind is flat, then the
almost complex structure is integrable.

PrROOF. It follows immediately by

N]_L_n =2¢; Ry, u' .
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2. Cotangent bundles. Let M be an #n-dimensional differentiable mani-
fold of class C~. The set of all non-zero covectors of M constitutes, with
natural topology, the so-called cotangent bundle of M. We denote it by
“I'(M) and the natural projection “TI(M)— M by =. Let x' be local coordi-
nates in a neighborhood U of a point of M, then a cotangent vector y at P
which is an element of °T(M) is expressible in the form (%, y,)® where Yy,
are components of y with respect to the natural coframe dz'. We may
consider (&%, y,) local coordinates in a neighborhood = '(U)=U x E" of “T(M).

To a transformation of local coordinates of M

¥ =t (x!, 2., a")

there corresponds in °7(M) the coordinate transformation

T =2 (x, 2., a")

2.1) o
Vi = (0p ) y; .

If we put

then we may write (2.1) as

(2.2) ' =z (x, 2%, 2).
.
So we may define tensors of “T(M) by making use of a matrix (%;) ie.
ox”
0
ox'
2.3)
o (22)y 2|
oxt \ox" /7" ox”

its transposed matrix and their Kronecker products. Making use of (2.3), we
have after some complicated calculations, the following lemmas.

LEMMA 1. Let t be a tensor field of type (1,1) on M and t;"s are its
components with respect to a coordinate neighborhood U(x'). If we put

5) In this section, the indices run over as follows,

i,j,k=1,2,002,m; i=n+i, ' =n+i'; I, J, K=1,2,-++, 2n.
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g T/ =t Tj=Ot'—0,t,")y,
(2.4) _ _ ‘
Lryi=0, 7TF=1t/,

then we get a tensor field T of type (1,1) on “T(M) whose components are
T," with respect to the coordinate neighborhood = '(U)(x,y;).

LEMMA 2. Let M be an almost complex manifold with the structure
tensor @ and @,’s are its components with respect to a coordinate neighbor-

hood U(x'). If we put

i i i 1 r r b n .S r r
[ F'=9¢/, F'= N Cip" =0/ + @9’ @@ =)}y,
(2.5)

lei:()y Fj7:¢ij’
then we get a tensor field F of type (1,1) on “T(M) whose components are

F/ with respect to the coordinate neighborhood = \(U)(a',y;). Moreover it
is an almost complex structure on “T(M).

Next, take a homogeneous contact form n=2y,dx’ of M which is a global

1-form over “T(M) and consider the exterior differential dn of the contact
form 2 (S. Sasaki [5]). In every neighborhood, it is given by

(2.6) dy=-L Fyda' A da'
where we have put

Fyy = 9y — Oumy =0,y .
We can easily see that (I~7,,) has the following numerical components:

2.7 7';,, =0 7';;,‘ = -8/ FL, =9 Fi? =0.
which is called the fundamental null system of “T(M).

Now, let ¢ be the fundamental metric tensor of M and ¢;’s are the
components of ¢ with respect to a coordinate neighborhood U(x') in M. We

shall define a line element in a coordinate neighborhood = '(U)(&',y;) of
“T(M) by

(2.8) do® = g;(x) da’ dx* + ¢(x) Dy; Dy,
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where Dy; means the covariant differential of y,, i.e.

_ [ !
Dy; = dy; {] k}yi dz*,
{jik} being Christoffel’s symbols. It is clear that the right hand side of (2.8)

is invariant under transformations of °7(M) and positive definite. In the
following we shall consider the cotangent bunble °T(M) as a Riemannian
manifold endowed with the metric (2.8).

The components of the fundamental metric tensor of “T(M) with respect
to the coordinate neighborhood 7~!(U)(x,y;) can be obtained by putting (2.8)
in the form

@.9) de® = Guedz’dz® (dd7 = dy,).

We can easily see that
(2.10) G = gu+ V'Y, Gu=—7%, Gi=g",

where we have put

'Yf":{jik}yi'

We can explicitly give the contravariant components of the fundamental metric
tensor of “T(M). This is easily done by solving the equation

2.11) G G* = 8/

thinking G*' as unknown variables. The results is as follows:
(2.12) Gt=g*, GE=vw/, G*=gp+ 7.
Thus we have

THEOREM 2.1. Let “T(M) be a cotangent bundle of Riemannian manifold
M and F, and G, the components of the fundamental null-system and the
fundamental metric tensor of “T(M) respzctively. If we define ol by

(2 13) Fj}l = EKGK[ 5

then it is an almost complex structure on “T(M). Moreover G, is an almost



ALMOST ANALYTIC VECTOR FIELDS 193

Hermitian metric with respect to the almost complex structure F;' and the

almost Hermitian manifold with the structure tensors E’ and G becomes
necessarily an almost Kéihlerian manifold. (P. Tondeur [8]).

We can easily see that Ff has the following components:

~

(2.14) Fi=—v}, F'=g4" F'=—(g;+%"",), Fif=n/.
THEOREM 2.2. In order that an infinitesimal transformation of Riemann-

ian manifold M is an infinitesimal isometry, it is necessary and sufficient
that its extension in “T(M) is a contravariant almost analytic vector field of

the first kind.

PROOF. By extension &' in “T(M) of a vector field & on M we under-
stand a vector field whose components are (—&,y,0,£). In fact, we can easily
verify that the extension is a vector field in T'(M). After some complicated
calculations we have the following equations:

LB = (V. VR~ | T (e vy,

LEE = VE+ VY,

SEE = (1Y, V. + Ry 8) + VAV Vo + Rul )},
— YV N(TTEHVE) + (Vo ViE),

BEE = (—(V.VE RS E) +{ [ e+ ey,

From these equations the theorem follows.

3. Covariant almost analytic vectors. Let M be a 2n-dimensional almost
complex manifold with the structure tensor @. When the cotangent bundle
“T(M) of M admits an almost complex structure F, a differentiable cross-

section f is called covariant almost analytic vector field with respect to
(@, F) over M, if

(3. 1) dfp °c@p = E(p) o dfp fOI‘ PE M.
Now, a cross-section f can be locally expressed by

=7 (xl,xﬂ’ e ’xgn)
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or

(3.2)
{ yi = w; (', 2+, 2™).

Since @ and F defined in Lemma 2 in §2 are both almost complex structure
on M and “T'(M) respectively, by the same way as the contravariant case,

the condition that the vector field w; is covariant almost analytic with respect
to (@, F) is given by

7 1 7 7 a i ” 7
(3.3) @0 wi = 5 9,9/ =019,/ + 9,9 (0, P — 0. p,)} ¥+ @:"0; w0,
which is equivalent to the following equation
(3.4) i@ w,) = w,0,p,” + @, 0, w,; + ; NP @, w,,

where N, is Nijenhuis’ tensor of the structure tensor .
If M is almost Hermitian, then (3.4) may be written as

(3.5 Vile' w,) = w, Vi@, + @/ V,w; + % N’ @ w,.
From (3.4) we have

(3.6)  @pi-ap)w, =9 dwi—@ 0w, + - N g/ w,.
Making use of (3.6), we get

N;i*w, = {@,@.p" — O, ?") — @'Cap" — 95 P} wy
= —2*05{(95 W, — a,- w3> + N“h wy,
ie.

*O5 (0w, — S, w;) = 0.
Thus we have the following

THEOREM 3.1. In an almost complex manifold M with the structure
tensor @ the tensor field O;w; is pure for a covariant almost analytic vector

Sleld w.
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REMARK. In the equation (3.4) if we take away the third term in the
right hand side, then we get the equation defining the usual covariant almost
analytic vector field in M. (S. Tachibana [6], [7]).

If in the Lemma 1 of §2 we use an almost complex structure ¢,’ instead
of general tensor field ¢, then we have the tensor E,’ defined by

§ Ei =9}, E'=0©@® ~29")y,
1 E;'=0, Ej'=g/.

As we have
R I i R i RIS T 1 R0
Ej EZ - _8;'1, Ej Enl — Y EfERl - Nji‘yh, Ej ERL - "BJL .

the tensor field E, is not always an almost complex structure of “T(M).
However, if we use the tensor field E,” in the place of the almost complex
structure F)’ in (3.1), then we have

(3 7) aj(¢ir 'ZU,-) = W, ai ¢j7- + ¢j1‘ a,- wy

which is the equation defining the usual covariant almost analytic vector field.
Although this shows that the usual covariant almost analytic vector field is
not appropriate to call covariant almost analytic in the sense of our standpoint,
we can easily find, by comparing the equations (3.4) and (3.7), that the usual
one is a special covariant almost analytic one with the property N;;"w, = 0,
since it is well-known that the usual covariant almost analytic vector field has
the identity N;;"w, = 0. (K. Yano and M. Ako [10]).

Next, since we have seen that the tensor field F,’ is an almost complex
structure in “I'(M), we can define covariant almost analytic vector field with
respect to (@, F). In the same way as before, we get, in an almost Hermitian
manifold with the structure tensor (G, F), the relation

(3. 8) Vj Wiy = Py

by (2.14), (3.1) and (3.2). From (3.8) we can see that

(1) w is a Killing vector field,

(ii) w satisfying (3.8) does not satisfy (3.4),

(iii) w is also contravariant almost analytic vector field of the second

kind by virtue of (1.9).

Because of the property (ii) above, we shall call the covariant almost analytic
vector fields with respect to (@, F) and (e, F ) as the covariant almost analytic
vector fields of the first kind and the second kind of M respectively.
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THEOREM 3.2. In an almost Hermitian manifold, let u' be a contrava-
riant almost analytic vector field of the second kind. Then g u' is covariant
almost analytic one of the second kind.

4. Properties of covariant almost analytic vectors in *Q-space. By
*(O-space we mean a 2n-dimensional differentiable manifold M with a fixed
almost Hermitian structure (@, g;;) such that

(4.1) *OE Ny @an = 0,

where @;; = @, ¢g,i. It is well-known that an almost Kihlerian manifold and

a K-space are *O-spaces. In the present section by covariant almost analytic

vector field we shall mean covariant almost analytic one of the first kind.
In an *O-space, the following identities

(4 2) vr¢r1: =0
and
(4.3) Njih =29 (V, @ — Vi?’m)

hold good. On the other hand, in a general almost Hermitian manifold
(4.4) *Oi N ;@pa = 0
is always valid.

Now, we shall deform the equation (3.5) which gives the definition of
a covariant almost analytic vector field. From (3.5), we have

4.5) w'Vip; — w ;@ + - Niip/ w, + @/ V,w,—@,V,w, =0.

On taking account of (4.1), (4.3) and (4.4), (4.5) becomes the following form
P’ V,w, — @ Vw, =0.
Hence, we have the following

THEOREM 4.1. A necessary and sufficient condition for a vector field
w,; in an *O-space to be a covariant almost analytic one of the first kind
is that

(4.6) P V,w — @/ V;w, =0.
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We notice that the equation (4.6) is the same form as the one in Kihlerian
manifold (K. Yano [9]).

Next, applying @'V’ to (4.6), we have
(4 7) vjijk - R%kr w" — ¢ki(v]‘¢i7‘) ijr =0 s

where we have put

R%kr - _;— ¢paRzﬂlsr¢ks

and
P =@yt

Let w, be a vector field and define N(w), by the equation
(4.8) Nw)i = @' (V;9i,) V70!,
where V'w' = ¢” V,w'. On taking account of (4.8), (4.7) may be written as
(4.9) VI s — R¥gw 4+ Naw) = 0.

Now, let w, be a vector field and introduce a tensor field
(4. 10) Hw)se = T(w)si g Pk »

where
T(w); = @' Vrwi — @/ V;w; .
For simplicity, we shall denote ¢;; instead of #(w);; in the following. ¢, =0
is equivalent to the fact that the vector field w; is a covariant almost analytic
one. Applying V’ to (4.10), we obtain
vjtjk‘ = (vj¢jr)(vrwl)¢lk + ¢jr(vj vrwl)¢lk+¢jr(vrwl> vj¢lk_ Vj ijlc .

Making use of (4.1) and (4.3), the last equation becomes
(4 11) vjtjk - - {vr Vr‘wk - R*kr‘wT + N(w)]c} .

In the next place, we shall compute

vj(tjkwk) == (Vjtjk) wk + tjlc v]’wk .
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Substituting (4.10) and (4.11) into the equation above, we have
(4.12) Viltpw?) = —{V"'V,w, — R, w" + Nw)}wk
+ @Y @ (Vwi) Vi wi + (Vws) Viw' .
Now, if we put t3(w) = t,.¢’*, then
(4.13) 12 = 2{(V,;wi) V'wk + @Y @M (V wy) Vwi} .
Consequently, from (4.12) and (4.13), we have

1

Vit wt) + - 1’ = —{V'"V,w; — R*,w" + Nw),} w*.

If M is compact, by integration of the last equation, we have the following

THEOREM 4.2. In a compact *O-space M, the integral formula
(4. 14) f [(V"\/_; w; — R¥*,w" + Nw)) w' + —{— | do =0
ML &

is valid for any vector field w;.

We have seen that a covariant almost analytic vector field w; satisfies
the equation (4.9). Conversely, consider a vector field w,; satisfying (4.9).
Then if M is compact, we have =0 i.e. ¢;,=0 by virtue of (4.14), so w;, is
covariant almost analytic. Thus we have

THEOREM 4.3. A necessary and sufficient condition for a vector field
w; in a compact ¥*O-space to be a covariant almost analytic vector field of
the first kind is that the equation (4.9) is satisfied.

In general, @' = @,'w’ is not necessarily a contravariant almost analytic
vector field even though w' is a contravariant almost analytic one, but about
covariant almost analytic vector fields we have the following

THEOREM 4.4. In an *O-space, if a vector field w; is a covariant almost
analytic vector field of the first kind, then w,=®;" w, is also covariant almost
analytic one of the same kind.

PROOF,
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PV wi — @ VW, = {9 (Vi) — @/ (Vip)lw' + @ @f Vw, + Vi w;
= @;'(*OF YV @rs) W’ + *O0F YV, w; .

From (4.6), we have
(4.15) Viw: + ¢/ 9V, w; =0 ie. *OpV,w;=0.

By (4.1) and (4.15), we have

@) Vrw — @/ V,w, =0,

from which the Theorem follows.

Moreover we can easily see that in an *O-space a covariant almost analytic
vector field w; is an imcompressible vector field. In fact, transvecting ¢“ to
(4.15), we get Viw, =0.
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