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Introduction. S. Tachibana ([6], [7])° introduced the notion of covariant
almost analytic vector field in certain almost Hermitian manifold by generaliz-
ing the following fact: "In a compact Kahlerian manifold, the inner product
of a contravariant analytic vector field and a covariant analytic vector field
is constant over the manifold (K. Yano [9])." Further, by several geometors
this notion was generalized in general almost complex manifold and to one
of almost analytic tensor field.

Let (M,J) and (M\J') be almost complex manifolds of class C°° where
J and J are almost complex structures on M and M' respectively. Let / be
a differentiate mapping of M into M the mapping / is called almost
analytic if

dfr ° JP = Jf(P) o dfp for Pz M.

It is well-known that an almost analytic mapping of a complex manifold
into another complex manifold is holomorphic (S. Helgason [1]).

Now, if we adopt a tensor bundle of M a s the second manifold M' and
define a suitable almost complex structure on the tensor bundle of M, then
almost analytic tensor fields on M can be defined by differentiate cross-section
of M in the tensor bundle of M. In the present paper we shall consider
almost analytic vector fields from this point of view and discuss the relation
between the usual almost analytic vector fields and ours. We shall also obtain
the generalization of the usual almost analytic vector fields.

1. Contravariant almost analytic vectors. Let M be a 2w-dimensional
almost complex manifold with structure tensor φ. The set of all tangent
vectors of M constitutes, with a natural topology, the so-called tangent bundle
of M. We denote it by T(M) and the natural projection T(M) -> M by TΓ.
When T(M) admits an almost complex structure Φ, a differentiable cross-section
f is called contravariant almost analytic vector field with recpect to (φ, Φ)
over M if

1) See the bibliography at the end of the paper.
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(1.1) dfp o φP = Φf{P) o dfp for PeM.

Let xi 2 ) be local coordinates in a neighborhood U of a point P of M,

then a tangent vector 3/ at P, which is an element of T(M), is expressible in

the form (x\yι) where y's are components of y with respect to the natural

frame d/dx1. We may consider (x\yί) local coordinates in a neighborhood

τr-ι(U) = UxEn of T(M). To a transformation of local coordinates of M

x1' = xι\x\ x\ - , x2n)

there corresponds in T(M) the coordinate transformation

(1.2) I * " ^
I y ' = (drx

ι')yr.

If we put

then we may write (1. 2) as

(1. 3) x1' - xι\x\ x\ , α:4 π).4 )

Let φ be a tensor field of type (1,1) on M and φ} be its components with

respect to a coordinate neighborhood U{xi). If we put

then we have a tensor field Φ of type (1,1) on T(M) whose components are

Φ./ with respect to the coordinate neighborhood τr~ι(JJ)(xi

9y
i). φ is called the

extension of <p (S. Sasaki [4]). We can easily see that if φ/ is an almost

complex structure, so is also Φ/.

Now, cross-section f can be locally expressed by

namely

2) Indices i,j,k a,b,c; r,s,t r u n over the r a n g e 1,2, •• ,2n.

3) W e put t = ϊ

4) I,J,K= 1,2,-
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!

X X ,

yi'= ui ( χ l ? χ2^ . . . χ2n^ #

By virtue of (1.1), (1.4) and (1.5), locally the condition that / b e almost analytic
is

In the case I—i we get the identity φ} = <p/ and in the case I — i

or

(1.6) S(«)^/ = 0.

As the last equation is nothing but the defining equation of usual contravariant

almost analytic vector field in the almost complex manifold M, our contravariant

almost analytic vector field coincides with the usual one. Consequently, the

usual contravariant almost analytic vector field is regarded as the contravariant

almost analytic vector field with respect to φ and its extension Φ which is

considered from the point of φ only. We denote it by the contravariant

almost analytic vector field with respect to φ.

THEOREM 1.1. In order that an extension ΰ1 = (u\yr 2>r u
ι) of a con-

travariant vector field u% of M be contravariant almost analytic with respect

to Φ on T(M), it is necessary and sufficient that uι itself is contravariant

almost analytic with respect to φ on M.

PROOF. Let uι be contravariant almost analytic on M, i.e. Z{u)φjl — 0.

After some calculations we get

S(ά) Φ/ = 2(ΰ) Φ/ = £(«) φ} - 0,

SφΦ,-4 - 0, 2(tί)Φ? = yr-dr(Z(u) φ*) - 0,

from which we have 2(z£)Φ/=0 i.e. ΰ is contravariant almost analytic on

T(M). Converse is evident.
Next, we shall introduce an almost complex structure on T(M) different

from Φ/. Let Γ/ be an affine connection on M. If we define Φ/ by

( Φ/ = I7, Φ / = -(8/
(1.7) _

( Φτ

t - δ/, Φ^ - - Γ /
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where Γj

i = Vjr

ιyr, then it is an almost complex structure on T(M) (C.T.Hsu

[2]). By virtue of Φ, we can find the contravariant almost analytic vector field

with respect to (φ, Φ). In the same way as before, by (1.1), (1.5) and (1.7),

we have

Putting I — i and / = i, we have

(1.8) 0>/=V,«'

and

φ/dru* = - ( δ / + r / τ / + i V 3 ^ r ) >

where Vj denotes the operator of covariant derivative with respect to the

affine connection Γ,Λ However, the last equation is identically satisfied by

(1.8). In fact, we have the following

^ / 3 r ί *
i + δ/ + Γ/IV + r djW

= φ/(φ/ - Γ/) + 8/ + Γ/Γ/ + T/(φ/ - Γ/) - 0 .

Thus contravariant almost analytic vector field with respect to (φ, Φ) is given

by (1.8). In general, contravariant almost analytic vector field satisfying (1.8)

does not satisfy (1.6) i.e. not contravariant almost analytic in the sense of

the usual one. Therefore, we shall call the contravariant almost analytic

vector field with respect to (φ, Φ) and (φ, Φ) as the contravariant almost

analytic vector fields of the first kind and the second kind of M respectively.

In particular, if M is almost Hermitian, (1.8) may be written as

or

(1. 9) \7jUi = <pμ (φjt = φ/grt) ,

where Vj denotes the operator of covariant derivative with respect to the

ChristoffeΓs symbols j - . [. From (1.9) we see that contravariant almost

analytic vector field of the second kind uι is a Killing vector field since φμ

is skew-symmetric. Therefore almost Hermitian manifolds admitting con-

travariant almost analytic vector field of the second kind coincides with certain

almost Kahlerian manifolds introduced by Y. Mutό (Y. Mutό [3]). Thus almost
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Hermitian manifold with contravariant almost analytic vector field of the second
kind becomes necessarily almost Kahlerian one and contrava riant almost
analytic vector field of the second kind the one of the first kind (Y. Muto [3]).

THEOREM 1.2. In a compact almost Hermitian manifold M there does
not exist any contravariant almost analytic vector field of the second kind.

PROOF. Let uι be contravariant almost analytic vector field of the second
kind. Then we get

because V, Vjuι = Vj(pH = 0.

By integration it follows that

J3L JM
^ ' = 0,

where dσ is the volume element of M. From the last equation we have
y j W . = 0 i.e. φμ — 0. This is a contradiction. Q.E.D.

THEOREM 1.3. In an almost Hermitian manifold -with parallel Rcici
tensor field Rμ (Rμ Φ 0), there does not exist any contravariant almost
analytic vector field of the second kind.

PROOF. Let uι be contravariant almost analytic vector field of the second
kind. As uι is a Killing vector field we get

V rV rα* + Rr

ιur = 0.

By virtue of (1.9) and V > / = 0 we have Riru
r = 0. Operating V* to Rίru

r = 0
and making use of VkRίr = Q, we have RίrVku

r = Q. Again by (1.9), we get
Rirφk

r — 0 i.e. Rij = 0. This is a contradiction.

THEOREM 1.4. If an almost Hermitian manifold admitting a contra-
avriant almost analytic vector field of the second kind is flat, then the
almost complex structure is integrable.

PROOF. It follows immediately by
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2. Cotangent bundles. Let M be an ^-dimensional differentiable mani-

fold of class C\ The set of all non-zero covectors of M constitutes, with

natural topology, the so-called cotangent bundle of M. We denote it by
('Ί\M) and the natural projection CΊ\M) —> M by IT. Let xι be local coordi-

nates in a neighborhood U of a point of M, then a cotangent vector y at P

which is an element of CT(M) is expressible in the form (x\y^ where yt

are components of y with respect to the natural coframe dχ\ We may

consider (xi

9yi) local coordinates in a neighborhood 7r~ι(U) = UxEn of °T(M).

To a transformation of local coordinates of M

χif = χif (χ\ χ\ . . . ? χ
n) 9

there corresponds in °T(M) the coordinate transformation

(2.1)

If we put

then we may write (2.1) as

(2.2) xr = xv (x\x\

So we may define tensors of σT(M) by making use of a matrix ( ~^-) i.
\ ox )

oxv

(2.3)

e.

its transposed matrix and their Kronecker products. Making use of (2.3), we

have after some complicated calculations, the following lemmas.

LEMMA 1. Let t be a tensor field of type (1,1) on M and t/'s are its

components with respect to a coordinate neighborhood U(xί). If we put

5) In this section, the indices run over as follows,

i,j,k - 1,2, , n ϊ = n + i, ϊ' = n + V\ I, J, K=l, 2, , 2n.
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(2. 4)

we g eί α tensor field T of type (1,1) o« rT(M) whose components are

T / zϋiίA respect to the coordinate neighborhood •τr'l(U){xi,yι).

LEMMA 2. Lei .M &e an almost complex manifold with the structure

tensor φ and φ/'s are its components with respect to a coordinate neighbor-

hood U(xι). If we put

(2.5)
F/ = Ψi\ Fj = -±- {diφir-diφ/+φ/φι

s(dιφ/-dsφι

r)}yr,

then we get a tensor field F of type (1,1) on σT(M) whose components are

F/ zvith respect to the coordinate neighborhood ir'λ(U){x\y). Moreover it

is an almost complex structure on ('T(M).

Next, take a homogeneous contact form η^yidx1 of M which is a global

1-form over ϋT(M) and consider the exterior differential dη of the contact

form η (S. Sasaki [5]). In every neighborhood, it is given by

(2.6) dη = -±-FrJdxτ f\dxJ ,

where we have put

Fu = dTηj - djηr ηr = (0,^0 .

We can easily see that (FrJ) has the following numerical components:

(2. 7) % = 0 Fu = -V FLj = B; Άj = O.

which is called the fundamental null system of °T(A1).

Now, let g be the fundamental metric tensor of M and f/jts are the

components of g with respect to a coordinate neighborhood U(xί) in M. We

shall define a line element in a coordinate neighborhood τr~ι(U)(x\ yt) of
CT(M) by

(2. 8) dσ* = gjk(x) dxj dxk 4- g>\x) Dyό Dyk,
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where Dyό means the covariant differential of yh i.e.

Λ I being ChristoffeΓs symbols. It is clear that the right hand side of (2.8)

is invariant under transformations of CT(M) and positive definite. In the

following we shall consider the cotangent bunble GT(M) as a Riemannian

manifold endowed with the metric (2.8).

The components of the fundamental metric tensor of CT(M) with respect

to the coordinate neighborhood π~ι(U)(x\yi) can be obtained by putting (2.8)

in the form

(2. 9) dσ2 = GjK dxJdxκ (dxJ = dy3) .

We can easily see that

(2.10) Gjk = (Jjk+ y/yik, G}S = - γ / , G1E = g*,

where we have put

We can explicitly give the contravariant components of the fundamental metric

tensor of CT(M). This is easily done by solving the equation

(2.11) G J J C G * ' = δ /

thinking Gκτ as unknown variables. The results is as follows:

(n A r>\ (~*jk rJk fiyk ry j Γli k — „ i w i r y

\£. l^; IJ — g , L J — rk , KJΓ — gjk -t- 15 rik .

Thus we have

THEOREM 2.1. Let °T{M) be a cotangent bundle of Riemannian manifold

M and FTJ and GI3 the components of the fundamental null-system and the

fundamental metric tensor of °T(M) respectively. If we define F/ by

(2.13) F/=FJKGκr,

then it is an almost complex structure on CT(M). Moreover GL1 is an almost
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Hermitian metric with i~espect to the almost complex structure FJ and the

almost Hermitian manifold with the structure tensors F/ and G7J becomes

necessarily an almost Kdhlerian manifold. (P. Tondeur [8]).

We can easily see that Ff has the following components :

(2.14) F/=-Ύ/, W = f , F/=-(glj + Jt*VkJ), FT

X=V.

THEOREM 2.2. In order that an infinitesimal transformation of Riemann-

ian manifold M is an infinitesimal isometry, it is necessary and sufficient

that its extension in °T(M) is a contravariant almost analytic vector field of

the first kind.

PROOF. By extension ψ in CT(M) of a vector field ξι on M we under-

stand a vector field whose components are (—£*,3v3i£0 In fact, we can easily

verify that the extension is a vector field in CT(M). After some complicated

calculations we have the following equations:

From these equations the theorem follows.

3. Covariant almost analytic vectors. Let Mbe a 2n-dimensional almost

complex manifold with the structure tensor φ. When the cotangent bundle
CT(M) of M admits an almost complex structure F, a differentiate cross-

section f is called covariant almost analytic vector field with respect to

(φ,F) over M, if

(3.1) dfP oφP= FfiP) o dfP for PzM.

Now, a cross-section / can be locally expressed by

x1 = x1 (x\ x\---, x2v)
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or

(3.2)
I yt = wt (x\ x2, , x2n).

Since φ and ^defined in Lemma 2 in §2 are both almost complex structure
on M and CT(M) respectively, by the same way as the contravariant case,
the condition that the vector field w% is covariant almost analytic with respect
to (φ, F) is given by

(3. 3) φf dr Wi = — {3, φf -dtφf + φ/φιa(dbφj-daφb

r)} yr + φb

 rdj Wr

which is equivalent to the following equation

(3. 4) 3/cp/ wr) - Wr dt φf + φf 3r Wi + I - NjS φ/ wr ,

where Ny* is Nijenhuis' tensor of the structure tensor φ.
If M is almost Hermitian, then (3.4) may be written as

(3. 5) S7j(ψtr Wr) = Wr Viφ/ + Ψί Vr Wi + \ Nμ

S φs

r Wr .

From (3.4) we have

(3. 6) (d, <pir — dt φf) Wr - φf dr Wt — φf ds Wr + - r̂- Nμ' φf wr .
Δ

Making use of (3.6), we get

Nit

hWh = {φja(βa<Pih - ^i<Pah) ~ φfΦaψf ~ ^jψ^)} Wh

= -2*Ojr(3,w r - θ rw.) + N}i

hwh

i.e.

*O%(dswr - drws) = 0.

Thus we have the following

THEOREM 3.1. In an almost complex manifold M with the structure
tensor φ the tensor field duWii is pure for a covariant almost analytic vector
field w.
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REMARK. In the equation (3.4) if we take away the third term in the

right hand side, then we get the equation defining the usual covariant almost

analytic vector field in M. (S. Tachibana [6], [7]).

If in the Lemma 1 of §2 we use an almost complex structure φ/ instead

of general tensor field tf, then we have the tensor E/ defined by

As we have

PR pi __ S> i P R P i __ (\ pR p ϊ _ AT h Λ, p R p ~ϊ •__ £ 1

the tensor field E/ is not always an almost complex structure of CT(M).

However, if we use the tensor field E/ in the place of the almost complex

structure Ff in (3.1), then we have

(3. 7) dj(<PirWr) = Wrdi<pjr + φ/dr'Wi

which is the equation defining the usual covariant almost analytic vector field.

Although this shows that the usual covariant almost analytic vector field is

not appropriate to call covariant almost analytic in the sense of our standpoint,

we can easily find, by comparing the equations (3.4) and (3.7), that the usual

one is a special covariant almost analytic one with the property Njih %vh = 0,

since it is well-known that the usual covariant almost analytic vector field has

the identity N^Wn, = 0. (K. Yano and M. Ako [10]).

Next, since we have seen that the tensor field F/ is an almost complex

structure in CT(M), we can define covariant almost analytic vector field with

respect to (<p, F). In the same way as before, we get, in an almost Hermitian

manifold with the structure tensor (G, F)9 the relation

(3. 8) Vj wι = ψμ

by (2.14), (3.1) and (3.2). From (3.8) we can see that

( i ) zv is a Killing vector field,

(ii) zv satisfying (3.8) does not satisfy (3.4),

(iii) zv is also contravariant almost analytic vector field of the second

kind by virtue of (1.9).

Because of the property (ii) above, we shall call the covariant almost analytic

vector fields with respect to (φ, F) and (φ, F) as the covariant almost analytic

vector fields of the first kind and the second kind of M respectively.
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THEOREM 3.2. In an almost Ίrlermitian manifold, let uι be a contrava-

riant almost analytic vector field of the second kind. Then g^υ} is covariant

almost analytic one of the second kind.

4. Properties of covariant almost analytic vectors in *O-space. By

~x~O-space we mean a 2 ̂ -dimensional differ en ti able manifold M with a fixed

almost Hermitian structure (<£>/, gjt) such that

(4 D *OfVhφah = 0,

where φyι — <p/' grί. It is well-known that an almost Kahlerian manifold and

a K-space are *O-spaces. In the present section by covariant almost analytic

vector field we shall mean covariant almost analytic one of the first kind.

In an *O-space, the following identities

(4.2) V > r t = 0

and

(4. 3) Niih = 2φ?(Srψih ~ Vi<Pm)

hold good. On the other hand, in a general almost Hermitian manifold

(4.4) * O S V ^ 4 . = 0

is always valid.

Now, we shall deform the equation (3.5) which gives the definition of

a covariant almost analytic vector field. From (3.5), we have

(4. 5) WrVi<pjr ~ ZVrX7iCPiT + Y N^φ/Wr + φ/VrWl-φSVjWr = 0 .

On taking account of (4.1), (4.3) and (4.4), (4.5) becomes the following form

φ/ V7 Wi - (pS V; wr = 0 .

Hence, we have the following

THEOREM 4.1. A necessary and sufficient condition for a vector field

Wi in an *O-space to be a covariant almost analytic one of the first kind

is that

(4. 6) φf Vr Wi - φir V, Wr = 0.
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We notice that the equation (4.6) is the same form as the one in Kahlerian

manifold (K. Yano [9]).

Next, applying φk

iVi to (4.6), we have

(4. 7) V j Vj wk - R*kr vυr - φk\ V V* r) V, wr = 0 ,

where we have put

and

Let wk be a vector field and define N(w)k by the equation

(4. 8) N(w)k = φ/(Vj φir) V j τv1',

where V 'W — f/jrVriv
i On taking account of (4.8), (4.7) may be written as

(4. 9) V' Vjwk - R*krw
r + N(w), = 0 .

Now, let wk be a vector field and introduce a tensor field

(4.10) t{w)jk =

where

For simplicity, we shall denote t}i instead of t(w)μ in the following. tμ = 0

is equivalent to the fact that the vector field wk is a covariant almost analytic

one. Applying V j to (4.10), we obtain

Vjtjk = (VV/

Making use of (4.1) and (4.3), the last equation becomes

(4.11) Vjtjk = - {Vr Vrwk - R*krw
r + N(w)k] .

In the next place, we shall compute

Vj(tjkw
k) = (Vjtjk)zvk + tjk\7jwk .
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Substituting (4.10) and (4.11) into the equation above, we have

(4.12) Vj(tjkw
k) = - {Vr Vrwk - R*krw

r + N(w)k}w

+ φιjφkί{\7ιWk) VjWt + (

Now, if we put t\w) = ί^ί'*, then

(4. 13) t2 = 2{(VJWA:) V W + φιiφki(VιWk)

Consequently, from (4.12) and (4.13), we have

V\tikW
k) + -~- t2 = - { VΓ VrW* ~ R**rWr + % W ^ '

If M is compact, by integration of the last equation, we have the following

THEOREM 4.2. In a compact *O-space M, the integral formula

(4. 14) / Γ(V ; S/jiv, - R*irw
r + JV(w;),) w* + - i - ί2] ί/σ = 0

J.ifl ' Δ J

is valid for any vector field wL.

We have seen that a covariant almost analytic vector field Wι satisfies
the equation (4.9). Conversely, consider a vector field wt satisfying (4.9).
Then if M is compact, we have t2 — 0 i.e. tH = 0 by virtue of (4.14), so iVi is
covariant almost analytic. Thus we have

THEOREM 4.3. A necessary and sufficient condition for a vector field
u)i in a compact *O-space to be a covariant almost analytic vector field of
the first kind is that the equation (4.9) is satisfied.

In general, wι = φr

ίτvr is not necessarily a contravariant almost analytic
vector field even though zvl is a contravariant almost analytic one, but about
covariant almost analytic vector fields we have the following

THEOREM 4.4. In an *O-space, if a vector field wt is a covariant almost
analytic vector field of the first kind, then zvi — φί

rwr is also covariant almost
analytic one of the same kind.

PROOF.
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φ/ VrWί - ψi VjZVr = [<p/(Vr<Pis) ~ ψi\ V j φrS)} W° + ψίψi V r ^ + Vj Wt

From (4.6), we have

(4. 15) Vjwi + ψ3

rφi VriVs = 0 i.e. *OJ? V r w. = 0 .

By (4.1) and (4.15), we have

φϊ VrWί- £>/ \7jWr = 0 ,

from which the Theorem follows.
Moreover we can easily see that in an *O-space a covariant almost analytic

vector field wt is an imcompressible vector field. In fact, transvecting <fj to
(4.15), we get V* Wt = 0 .
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