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1. Introduction. As a homology analogue of the Postnikov decomposition,
the homology decomposition of a 1-connected polyhedron was introduced by
B. Eckmann and P. J. Hilton ([3], [5]). Moreover, as a generalization of this
notion, B. Eckmann and P. J. Hilton ([4], [5]) and J. C. Moore ([6]) introduced
the notion of the homology decomposition of a map. However, the homology
decomposition of a map seems to be inconvenient for the actual applications.

Now as an intermediate notion of the above two decompositions, we

introduce a notion of the homology decomposition for a cofibration B —>X—>
F. This notion corresponds with a homology analogue of the Moore-Postnikov
decomposition ([1]) and seems to have many applications in the algebraic
topology.

In §3, we shall give a definition of the homology decomposition for a
q p

cofibration B—+X-+F and its actual construction. If B reduces to a point, then
such decomposition reduces to the usual homology decomposition for X.
The decomposition for the cofibre F in such decomposition gives the usual
one for F.

In §4 we introduce the notion of weak iϊ'-cofibration as a generalization
of the induced cofibration. The weak H-cofibration weakens the notion of
if-cofibration defined in [7]. In §4, we explain the relations between the
weak H-cofibration and the homology decomposition for a cofibration.

2. Preliminaries. All spaces have base points denoted by •* and respected
by maps /, g9 and their homotopies /, g, . Let 7r(X, Y) denote the
set of all homotopy classes of maps X —-> Y. The homotopy class of a map
f:X—>Y is denoted by [/]. Let K'(G,ή) be a polyhedron with abelian
fundamental group such that Hr(K'(G,n)) = 0 for rΦn and Hn(K'(G,ri)) = G.
The homotopy type of the polyhedron K'(G, n) is uniquely determined for
n ^ 2. K'(G,n) (n ̂  2) has an //-structure and we define the /2-th homotopy
group of X with coefficients in G by 7rw(G, X) = ττ(K'{G,ri),X) and the n-th.
homotopy group of a map f:X—>Y with coefficients in G by 7rn(G,f)

([2], [5]). Let B^X^F be a cofibration and l e t / : Y->X
be εi map. Let C/ (resp. Cvf) denotes the space obtained by attaching the
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reduced cone over Y to X (resp. F) by means of /(resp. pf), i.e. Cf = CY\j fX

(resp. Cpf = CY{j pfF). Then F—>Cpf-+ΣY is an inclusion cofibration and the

following diagram is commutative:

Y — X — F

CY^ί^ί
where L k,i and s are inclusion maps and p is defined by

?(y> 0 = (y, 0 (y, 0 €
 C F and K ̂ ) = p* x ̂  x

Since ^(3 ,̂ 1) = (3;, 1) = ̂ /(j') and p(fy) = p(fy), P is well defined. Then the
following lemma is an obvious consequence of these considerations.

ίq p
LEMMA 2.1 B -Cf ^ Cpf is a cofibration.

3. The homology decomposition for an (inclusion) cofibration. In this

section we only consider 1-connected polyhedra.

DEFINITION 3.1 The homology decomposition for an (inclusion) cofibration
q p

B ~> X—• F consists of a sequence of spaces and maps (Xn, Fn, in,jn, Qn> Pn)n=i,2,. .

subject to the following conditions

( I ) X, = B j, = g q ι = id.

( II ) B —-^ Xn *- Fn is an inclusion cofibration.

(III) g.=jn gn • B-^Xn^X

(IV) Xn-ι—-+Xn *K'(Hn(F),ri) is an inclusion cofibration (n ̂  2)
(where i2 = q2) .

( V ) maps qn,jn induce the following

(1) jn* : Hr(Xn) ^L Hr(X) for r<n,

(2) in the sequence Hn{B)^ Hn(Xn) ^ Hn(X),
qn* is a monomorphism, _/'„# is an epimorphism and Im. qn* D Ker.yn*.

(3) <?„* : H r(5) -^» H r (XJ for r > n .
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(VI) (1) a map j n :Fn-^F induced by j induces

./„• : Hr(Fn) — H(F) for r < n ,

(2) Hr(F) = 0 for r > n .

CONSTRUCTION. We will construct the homology decomposition for an
q p

fusion) cofibration JB—>X—>i
sequence for a map q (cf. [2], [5])

q p
(inclusion) cofibration B —>X —> JF1 inductively. From the homology exact

H r(β) - ^ H r(X) — Hr(g) - ^ / /

and the homology exact sequence for an inclusion cofibration q

we have Hr(q) ̂  Hr(F) for all r. ( 1 )
We first describe the case n — 2. By the universal coefficient theorem for the
homotopy group of a map ([5|), we have an exact sequence

τr2(//2(F), q) ̂ U Horn (H2(F), τr2(g)) * 0 .

JF is 1-connected and so Hλ(q) = 0. Hence by the generalized Hurewicz
theorem ([5]), τr2{q) ̂  H2(q). Thus we have an isomorphism θί : 7Γ2(q)^H2(F)
and [(ul9vι)] € 7r2(H2(F),q) such that η[(ul9 v^] = θϊι. Hence we have the
following commutative diagram :

), 1) '-+ B

g

CK\H,{F\1)-1L- X

Let X2 = CK'(H,(F),l) U«,B and Fϊ = K'(H2(F),2); then, B^X2^F2 is an
inclusion cofibration, where q is an inclusion and p a projection. Next we
define J2:X2-*X by j2\B = q and jt\CK\Ht(F), 1) = vu Evidently j t is
well defined and j2q2 — q, if we denotes the injection B —»X2 by g2-
Now we consider the commutative diagram :

^ H2(F) •
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where the upper sequence is a part of the homology exact sequence for an

inclusion cofibration q2 and the lower sequence is that of an (inclusion)

cofibration q. Then it is evident that #2* is a monomorphism, j2* is an

epimorphism and Im. #2* ^ Ker. j 2 * Also obviously we have j2* " Hr(X2)

* Hr(X) for r < 2 and Hr(B) ** Hr(X2) for r > 2.

Thus a sequence of spaces and maps {X^F2,j2,p2,q2^) was constructed so

as to satisfy the conditions in Definition 3.1.

Now we assume that spaces and maps (Xm, Fm, tm,jm9 pm, qm) for m <n

were constructed so as to satisfy the conditions in Definition 3.1.

From the homology exact sequence for a map jn-x and the condition (V),

(1), (2) in 3.1.

Hr(jn-ι) = 0 for r < * - l . (2)

Since q = jn-ιqn-i (the condition (III) for n — 1), the following homology
sequence is exact (cf. |5j).

• Hτ{qn-,) Hr{q) Hr(/»-l) • HrMn-x) "

Using the condition (II) in 3.1. and the observation done in the beginning of

the construction, Hr(qn-^)^H(En-x) for all r. (3)

Combining these facts and the condition (VI) in 3.1, we have

HXj^^Hriq) for r > « . (4)

Let Mbe the mapping cylinder of jn-χ. Then </n_1 can be factorized into

the composite map Xn-\ * M *-X, where ln-λ is an inclusion cofibration

and ci a homotopy equivalence. Then it is clear that

Hr(in_,)^Hr{ln^) for all r . ( 5 )

Now by the universal coefficient theorem for the homotopy group of a

map, we see that

^ F ) 9 7 r n ( l n ^ ) ) -0 is exact.

By (2) and (5), Hr(ln-ΐ) — 0 for r<^n—l. Hence by the generalized Hurewicz

theorem, 7rw(Zw_i) ̂  Hn(ln_^). Combining (1), (4) and (5), we have an isomor-

phism τrn(ln_x) ^ Hniln-^ ^ Hnijn-x) ^ Hn(q) ^ Hn(F). Let θn-1 he such an

isomorphism. Then there exists [(ww-i,^w-i) <= 7r.,,(H.n(F)9ln-ι) such that

η[(uμ-l9vn-ι)] = θήii. Henςe we have the following commutative diagram :



THE HOMOLOGY DECOMPOSITION FOR A COFIBRATION 121

K'(Hn(F),n-l) -ίί^i> Xn_, -tL^ χn_χ

CK\Hn(F\n-l) - ^ ί > M —^-> X .

We set Xn = CiC/(Hn(F),Λ-l)u«11.IXn-i and define jn:Xn-+X by jn\CK\Hn(F),

n—Y) = oίvn^ι and jn|XTO-i — jn-ι Obviously j w is well defined.

Let zw : Xn_i —>Xn be an inclusion map. Then we see immediately that

ίn is an inclusion cofibration with cofibre K'(Hn(F),n) and

Hr(in) = 0 for rΦn and Hn{in)^Hn{F). (6)

Next we define #n : B—>Xn to be a composite map gw = in ^n-i. Then

gw is an inclusion cofibration. We denote its cofibre Fn. From the definition

of jn, it is evident that jnqn = q and jn^ = jnin . From the homology exact

sequence for the composite map jn-γ = jnin,

-> Hr(in) -> Hr(jn-i) -> Hr(jn) -> Hr-ι(in) -> is exact.

Hence by (2), (4), and (6),

Hr(jn) = 0 for r<n and Hr(jn)^Hr(q) for r >/ι. (7)

Moreover -> Hr+1(jn) *- Hr(Xn) ^ Hr(X) >- Hr(Jn) —> is exact, and hence

by (7), jn+ : Hr(Xw) ^ Hr(X) for r < w.

On the other hand, from the homology exact sequence for the composite

map qn = in qn-u

-> Hr+1(in) -> Hr(gn-i) -> H r (g n ) -> H r ( ί n ) -> is exact. ( 8 )

But Hr(qn^)^Hr(Fn^) for all r (Hr(qn)^ Hr{Fn) for all r).

Hence by (VI) in 3.1. and (6),

Hr(Fn) = 0 for r > n . (9)

Since —> Hr+1(Fn)-+Hr(B)—^ Hr(Xn)—^ Hr(Fn)-+ is exact, it follows from

(9) that qn* : Hr(B)^Hr(Xn) for r > «.

Applying the five lemma to the commutative diagram :

H i T? \ XSΓ (D\ n * HJ" λ V \ ^ 7 Z * TIT / 77» \ . TIT / 7)\ _. T_T
r + i ( < r <

r l j ^ rir\JD) *- JrLr\Λ.n) *- rτ.r\r n) —•> rir-ι\i5) —> r i r

id JΛ. [j.* \id \jn,
^ HriX) — ^
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where the upper sequence is the homology exact sequence for an inclusion

cofibration qn and the lower is that of an inclusion cofibration q, we obtain

Hr(Fn)^Hr(F) for r <n .

If we apply condition (6), (9) and (11) to the sequence (8) with r = n, we

have

Hn(Fn)^Hn(F). (11)

Finally we consider again the above commutative diagram (10) with r — n.

Then, by (9) and (11), we easily see that qn¥ is a monomorphism and jn* is

an epimorphism and Im. qn* D

REMARK 1. If Hm(F) = 0 for some m, then Xm = Xm-X and Fm = FOT_i.

REMARK 2. If F is (g-^-connected (q>2), Fm = * and Xm = B for

m^q—1 and Fm (m^q) is (q— l)-connected. In addition for p^q, if B

is (p— l)-connected, then each Xm is (p— l)-connected.

REMARK 3. If Hr(F) = 0 for r > m> then sequences {X*} and {F*]

terminate with Xm and Fm respectively. Then maps jm : Xm—>X and jm: Fm

—> F are homotopy equivalences.

As the assertion on jm is obvious and we prove only about jm. By (V)

in 3.1, ywι* : Hr(Xm) ^ Hr(X) for r<m. As for r^m, we consider the

preceding commutative diagram (10) and apply the five lemma to obtain the

isomorphism jm* : Hr(Xm) ^ Hr(X) for r^m. Thus jm induces the singular

homotopy equivalence. In the construction of each Xi9 we may choose Ui-i

to be cellular and we may arrange so that Xt is itself a polyhedron. Hence

jm is an actual homotopy equivalence.

REMARK 4. Generally we may form Xoo^ U Xn and Fco= uFny and give

them the weak topology. We define j^ : X^ —>X by joo\Xn — jn> and j^ : Foo

—> F by 7'co I F n = jn. Then ; M and j^ are homotopy equivalences. Also two

cofibration B -^ X^ —> F* and β —> X —> F are equivalent in the sense of [7

Definition 2.5]. The assertion on j^ is obvious (cf. [4]) and the assertion on

joo follows from the similar argument as in Remark 3.

q p
REMARK 5. If an (inclusion) cofibration B-^>X-> F is obtained by apply-

q ρr

ing the suspension functor Σ to an (inclusion) cofibration B—> X' —> F' with

all spaces 1-cσnnected polyhedra, then the homology decomposition (X?ί, F ? p



THE HOMOLOGY DECOMPOSITION FOR A COFIBRATION 123

q p
injn, Pn> <in)n=2,3, •• f ° r B —> X—> F may be obtained by applying the suspension

functor to the homology decomposition (X'n-l9 Fή-i, ϊn-i,jn-ι, p'n-i, gή-i)n=2,3f for

B^X'^F; i.e.

Xn = ΣXw-i, Fn = SF»-i, 4 = 2 4 - i , jn = Σjn-D Pn — Σpn-i and gw = Σ<7w-i

REMARK 6. In the preceding construction, each Fn was defined by Fn

= Xn/B. However we may also construct Fn in the usual way (cf. [3]). We

consider the composite map p2u2 : K'(HZ(F),2) —2-* X2—
2->~ F2 where F2

= K'(H2(F),2) and maps u2, p2 are those defined in the peeceding construction.
By Lemma 2.1, B->CU2->CPiU2 is a cofibration. But CU2 = X3. Hence we

have Hr(CP2U2) ^ Hr(F3) for all r. Consider the homology exact sequence of
the cofibration F2 -> CPiU2 -> K\H3(F), 3), then H2(F2) ^ H2(CP2Uί) and i/ s(F)
ί=& H3(CP2u2). It follows from [3: Proposition 4'] that >̂2w2 is homologically
trivial. Thus CP2U2 = CK'(H3(F),2) \JP2U2F obtained by attaching the cone
CK'(H3(F), 2) to F by a homologically trivial map p2u2 has the homotopy
type of F3. The same considerations are done for Fn (n > 3).

Thus we may also built up the homotopy type F^ of F by an usual
process of successively attaching cones CK'(Hn(F),n—ϊ) by homologically
trivial maps.

DEFINITION 3.2. The 1-connected polyhedron X is said to be normal if
it admits a filtration into 1-connected subcomplexes

X2 C X3 C C Xn C U Xn = X

with Hr(Xn) - 0 for r > n and /* : Hr(Xw) * i/(X) for r < * .

REMARK 7. FL = uF« in Remark 3 is a normal polyhedron. Now we

Q P
consider an inclusion cofibration B —> X —• F with a normal polyhedron F.
Let [F2C Fs C C Fn(Z u Fn = F] be a normalization of F and we set

Xn = p~l{F^. Then Xx — B and B —>Xn—+ Fn is an inclusion cofibration where
qn is an inclusion map and pn = p\X.

Since -> Hr+ι(Fn) -> H r(B) -> Hr(Xn) -» Hr(Fn) — is exact and H r(Fn) = 0
for r>n, it follows that gn* : Hr(B) ^ Hr(Xn) for r > rc.

Next we consider the commutative diagram (10). Then by the values of
the homology groups of Fn and five lemma, we have Hr(Xn)^ H(X) for r<n.
Moreover, for r=n, we easily see that qn¥r is a monomorphism, j n ¥ r is an
epimorphism and Im. qn^ D Ker.///5l,.
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4. Weak H -cofibration and the homology decomposition for a cofib-
ration. In this section we assume that the cofibrations whose homology

decompositions are considered constitute 1-connected polyhedra.

DEFINITION 4.1. ([7]) A cofibration B-^X^F is called weak //'-cofibra-

tion if there exists a map φ : X —• F\JX and a homotopy Ht : X —> FxX such

that

B — ^ F\JB

(a) q\ I \\jq is homotopy-commutative

X —^-> FVX

where z2 is the injection into the second factor.

(b) HQ =jφ (where j: F\/X-+FxX is the injection) and Hγ = (px 1)ΔT.

q p
Let y be an //-space with comultiplication μ and let J5 —>X —> F be a

weak //'-cofibration.

DEFINITION 4.2. ([7]) A map / : y -> X is said to be coprimitive if the

diagram :

X —?—

X ~^—

is homotopy-commutative.

EXAMPLE. Let f:A->B be a map. Then the induced cofibration B—>Cf

—> 2A via / is a weak //'-cofibration. In fact, following to [7], we define

a map φ: Cf->%A\/Cf by

φφ) = (*,b) b z B c C
f

( , , ) 0 < ί < l / 2
φ(a,t)= (a,t)eCA<zCf.

( ( ) ) / <

Then the condition (a) in 4.1 holds evidently. Now we define a homotopy

H,: Q - x ξ A x C r by

H,(b) = (*,b) b € JS c Cf,
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( α , 2 ί l ) ) <^<1
Δ

Then // s is well-defined and satisfies the condition (b) in 4.1.

q p
PROPOSITION 4.1. Let an {inclusion) cofibration B-^ X—> F be obtained

q
by applying the suspension functor Σ to an {inclusion) cofibration B' —• X'

—>F. TA^Λ there is the homology decomposition {Xn,Fn,in,jn,pnyqn}for

B —> X —> F such that B —> Xn —? Fn is a weak H -cofibration for each n.

q p
PROOF. From §3 Remark 5, the homology decomposition for 5—>X^

F may be obtained by applying the suspension functor 2 to the homology

Q ,P
decomposition for B' —>X'—>F', i.e. Xw = ΣXή-i, Fn = ΣFή-u Qn = Σgή-i and

pn = 2/>ή-i
Now we define a map φ: Xn-^Fn\/Xn to be the composite

i — ^ ΣXή-iVΣXή-i >•

where μ is a comultiplication in

Then we can show that the conditions (a) and (b) in 4.1 are satisfied for

a cofibration B — ^ Xn — ^ Fn.

First we consider the following diagram :

i

From the definition of φ, for <x, t> € ΣB' = B

*, * ) for 0 < K 1/2,
(φ ? ) t

( ; ) for

On the other hand,

(lVΣςr»-i) h <*, t> = (*, <^;_i Λ:, ί>) for 0
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Thus the above diagram is homotopy-commutative and condition (a) in 4.1
is satisfied.

Next we consider the diagram :

^ Σ X n - l ^ Σ-Fn-1 * ΣXrz

Since j μ — Δ , we have j φ = j (Σ/>ή-i V1)/* — (Σ/>ή-i x 1) Δ = (/>n_i x 1) Δ .
Thus condition (b) in 4.1 is satisfied. Q.E.D.

<7 />
THEOREM 4.2. Lei B—>X->Fbe a weak H-cofibration, Y an H-space

i TT
with comultiplication μ,f: Y —> X coprimitive, and X—• C/ —> ΣY a;? induced

iq p
cofibration via f. Then B-+Cf->Cpf is a weak H-cofibration.

iq p
PROOF. By Lemma 2.1, B —> Cf—> Cpf is a cofibration and so it suffices

to show that conditions (a) and (b) in 4.1 are satisfied. By the hypothesis

q p
JB—>X—>F is a weak iϊ-cofibration and hence there exists a map φ: X

—>F\JX satisfying the conditions (a) and (b) in 4.1. First we consider a

composite map (s\/i)mφ> X—*F\/X ^Cpf\jCf where s and i are inclusion

maps. Since

{sVi)φf^(s\Ji)(pf \Jf)μ (by the coprimitivity of/)

= (pkc\/kι)μ~0 (see §2)

and ι:Y—>CY is a cofibration, there exists a homotopy ω, : CY —>Cvf\/Cf

such that ωλu = (s\/i) φ f and ω0 — *-.
Now we define a map λ: Cf —>Cpf\/Cf by

λ(:r) = (Λ/O φ φ ^ € X .

Since λ(^, 1) = ωγ(y, 1) = ωγί{y) = (sVi)φ f(y) = Mfy), λ is well defined.
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Next we consider the following diagram :
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where the top square is homotopy commutative and all other squares except
the bottom square are strict commutative.
Then jλi=j (sVι)φ = (sxi)-j-φ ~ (sxi)(pxl) Δx (by (b) in 4.1)

= (p X 1) (z X i) Δ x (by the definition of p)
= (p x 1) Δ i .

Since X —> Cf —> Έ,Y is an induced cofibration ([7]), it follows from [7 Lemma
2.2] that there exists a map w : ΣF —> Cpf xCf such that (wVjλ)-ψ ^(px 1)Δ,

Cwhere ψ : Cz-^Si^VC/ is a cooperation in the induced cofibration X /
^•ΣY and V denotes the wedge product of maps (see [7]).

Let px: Cp/ x C/ —> Q/, p2: Cp / xCf—>Cf be the projection and μ,: ΣY
be the comultiplication for ΣY, then we have

μ ^ te; .

If we set K = (piWVp2w)μ and define a map φ\ Cf—>Cpf\jCf to be the

composite map φ = (/cVλ)ψ , then

^ (?x 1)Δ .

Thus the condition (b) in 4.1 holds.
Also, for b z B,

φi q(b) = (KVλ) . ψ . z'. g(b)

-- (/tVλ) (1 Vz)

= (^Vλ) (1V z") (*,

(since z* is an weak / ί - cofibration)

- («Vλ) (*, z

(by the definition of V)
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Hence the condition (a) in 4.1 holds. Q.E.D.

q p
THEOREM 4.3. Let £ - > X - > F be an (inclusion) cofibration with B:

(?—ϊ)-connected and F: (5—1)-connected ( 2 < J r < ! s ) . Then there is the
q p

homology decomposition (Xn, Fu,in,jn9 pn,qn) for B —> X —» F such that B —»
Xn-+Fn is a weak H-cofibration for n<^r+s—2.

PROOF. If ?z<s, then Fn^ = * and Xn-λ=B. Hence B^Xnh Fn is an
induced cofibration and so a weak H-cofibration. Thus we may take n>s.

Inductively we assume that B — ^ Xn-λ -^—^ Fn_λ is a weak //'-cofibration

and we shall show that B—^Xn—^ Fn is a weak //-cofibration for n ^
r + s—2. From Theorem 4.2, it suffices to show that un-.x: K'(Hn(F), n— 1)
-^X^! is co-primitive.

Now we consider the following diagram :

K\Hn(F)9n-V) —?-* K'(Hn(F\n-ϊ)VK\Hn(F\n-l)

Un-ι \ pn-lUn-iV Un-χ

Φ

where μ is a comultiplication for K'(Hn(F),n — l) and φ is a map defined for

the weak //-cofibration B ^-^ Xn_1-^ Fn-}.
Then j ipn-iUn-iVUn-J μ^lίpn^Un^XUn-J'ΔK, ,

ln_i)JUK'(Hn(F)9n-l)V K(Hn(F\ n-1) ̂ ^λ\"-> Fn_

J [J
KXHn(F\n-l)xK'(Hn(F),n-l) A - . V ^ ^ - i ^

On the other hand, we have (pn-xun.xXun-.^)Δκ> — ( ^
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Also, by (b) in 4.1, (/>n-i x 1)Δ ~jφ. Thus we have j{pn-iUn^\jΉn-i)μ~jφun-x.
Now we consider the homotopy exact sequence for a map j:Fn^x\/Xn-x

,-, (cf. [2], [5]).

Since B is (7—l)-connected and F is (s—1)-connected (r<Is), it follows from
Remark 2 that each Xm is (r—l)-connected and Fm(m^s) is (5—reconnected.
Hence F^X/X^-i is (r-l)-connected and ft.! # X n _ 1 = ί 1 ^ x X ^ ^ j V X n - i
is (r+s— reconnected. By using the generalized Blakers-Massey theorem ([5])
for an inclusion cofibration Fn-ι\/Xn-ι->Fn-ιxXn-ι-*Fn-.ι φtXn_u we have

)***πi(Hn(F),Fn-1#Xn-1) for i < 2 r + 5 - 2 .

By the universal coefficient theorem ([5]) for the homotopy group,

0 -> Ext(Hn(F), ^ ( i ^ # Xn_0) - πn(Hn(F), F n . x # Xn_0

->Hom(HB(F;, ^ ( F n - ^ X n ^ - ^ O is exact.

Since Fw_i#Xw«i is (r+5—l)-connected, then we have

τrn(Hn(F\ F n -! # X n - 0 = 0 for TZ < r + 5 - 2 .

Hence j V irn^{Hn{F)9 Fn-1VXn-.1)-*irn-1(Hn(F), Fn>iXXn_i) is a monomorph-
ism for 72^r+5—2.

Thus, for 72<Jr + s — 2, it can be deduced from j (pn-ι un-ι V«n-i) /*
^j φ-Un-! that (/>n-i«n-iV«Λ-i)^φ «n-l. Q.E.D.
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