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1. Introduction. As a homology analogue of the Postnikov decomposition,
the homology decomposition of a 1l-connected polyhedron was introduced by
B. Eckmann and P.J. Hilton ([3], [5]). Moreover, as a generalization of this
notion, B. Eckmann and P.J. Hilton ([4], [5]) and J.C.Moore ([6]) introduced
the notion of the homology decomposition of a map. However, the homology
decomposition of a map seems to be inconvenient for the actual applications.

Now as an intermediate notion of the above two decompositions, we

p

introduce a notion of the homology decomposition for a cofibration B g»X >
F. This notion corresponds with a homology analogue of the Moore-Postnikov
decomposition ([1]) and seems to have many applications in the algebraic
topology.

In §3, we shall give a definition of the homology decomposition for a

cofibration BngF and its actual construction. If B reduces to a point, then
such decomposition reduces to the usual homology decomposition for X.
The decomposition for the cofibre F in such decomposition gives the usual
one for F.

In §4 we introduce the notion of weak H'-cofibration as a generalization
of the induced cofibration. The weak H'-cofibration weakens the notion of
H'-cofibration defined in [7]. In §4, we explain the relations between the
weak H'-cofibration and the homology decomposition for a cofibration.

2. Preliminaries. All spaces have base points denoted by % and respected
by maps f, ¢,-++ and their homotopies f, g,---. Let m(X,Y) denote the
set of all homotopy classes of maps X —Y. The homotopy class of a map
f:X—>Y is denoted by [f]. Let K'(G,n) be a polyhedron with abelian
fundamental group such that H.(K'(G,n))=0 for » #n and H,(K'(G,n)=G.
The homotopy type of the polyhedron K'(G,n) is uniquely determined for
n>=2. K(G,n) (n>2) has an H'-structure and we define the n-th homotopy
group of X with coefficients in G by =, (G,X) = 7(K'(G,n),X) and the n-th
homotopy group of a map f: X —Y with coefficients in G by =,(G,f)

=7 (K'(G,n—1),f) ((2],[5]). Let Bg»XgF be a cofibration and let f: Y—X
be a map. Let C; (resp. C,;) denotes the space obtained by attaching the
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reduced cone over Y to X (resp. F) by means of f (resp. pf), i.e. C,=CY U X
(resp. C,;=CY U, F). Then FS C,; = 2Y is an inclusion cofibration and the

following diagram is commutative :

_,XP

L F
$L$L5

where ¢ £, and s are inclusion maps and 7 is defined by

Py, t)=t) (¥,t) € CY and p(x) = pxr x < X

Since 3(y,1) = (y,1) = pf(y) and 3(fy) = p(fy), P is well defined. "Then the

following lemma is an obvious consequence of these considerations.

; _
LEMMA 2.1 B—q*Cf—g—» s 1S a coftbration.

3. The homology decomposition for an (inclusion) cofibration. In this
section we only consider 1-connected polyhedra.

DEFINITION 3.1 The homology decomposition for an (inclusion) cofibration

B kA X£> F consists of a sequence of spaces and maps (X, F,, 20, Jus Qs Pr)a=1,s,...
subject to the following conditions;

(I) X,=B j,=9 q=1id.
q" P‘Il

(II) B—— X, -—F, is an inclusion cofibration.
)  g=ju-g. @ B--X, X
av) X1 ln, X,— K'(H,(F),n) is an inclusion cofibration (n>=2)
(where 7, =4q,).
(V) maps ¢.,,J. induce the following ;
Q) jus s H(X,)) —or H(X) for r <n,

(2) in the sequence H,,(B)%» H,(X,) ELLR H,(X),

¢.« is a monomorphism, 7, is an epimorphism and Im. g,. D Ker. j, ..

3) qur: HAB)—— H(X,) for r> n.
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(VD) (1) a map j,: F, — F induced by j induces
Fow: H(F,) — H(F) for r<n,
2) H(F)=0for r>n.

CONSTRUCTION. We will construct the homology decomposition for an

(inclusion) cofibration BiXﬁF inductively. From the homology exact
sequence for a map ¢ (cf. [2], [5])

— H(B) - H/(X) -+ H/(q) —H,(B) —~

and the homology exact sequence for an inclusion cofibration ¢
LA Y a
e H(B) T 1) -2 () -2 H,_(B) — |
we have H,(9)=H.F) for all r. (1)

We first describe the case #=2. By the universal coefficient theorem for the
homotopy group of a map ([5]), we have an exact sequence

o Hy(F), §) —— Hom (Hy(F), my(g)) — 0 .

F is 1l-connected and so H(g) =0. Hence by the generalized Hurewicz
theorem ([5]), 7y(¢) = Hy(q). Thus we have an isomorphism 6, : m,(¢) =~ H,(F)

and [(«,,v,)] € mo(Hy(F),q) such that p[(u,v,)] =6*. Hence we have the
following commutative diagram :

K(H,(F),1) — . B
Ll q
CK (Hy(F),1) — > X

Let X,=CK'(Hy(F),1) U B and F, = K'(Hy(F),2); then, B3 X, 5 F, is an
inclusion cofibration, where ¢ is an inclusion and p a projection. Next we
define j,: X,— X by j,|B=gq and j,|CK'(Hy(F),1) = v,. Evidently j, is
well defined and j,g, = ¢, if we denotes the injection B — X, by q..

Now we consider the commutative diagram :

0 — HB) L% Hyx,) P H(F) — 0

L, b e |

Hy(F) - Hy(B) -2 H,X) L5 H(F) — 0
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where the upper sequence is a part of the homology exact sequence for an
inclusion cofibration ¢, and the lower sequence is that of an (inclusion)
cofibration ¢. Then it is evident that g¢,, is a monomorphism, j,x is an
epimorphism and Im.gq,. D Ker. j,». Also obviously we have j,.: H.(X,)
~ H/(X) for r <2 and H(B)~ H.(X,) for > 2.

Thus a sequence of spaces and maps (X, Fs, js, p5, q.) Was constructed so
as to satisfy the conditions in Definition 3. 1.

Now we assume that spaces and maps (X, Fu, Zm> Jm> Pm> @m) for m <n
were constructed so as to satisfy the conditions in Definition 3.1.

From the homology exact sequence for a map j,_, and the condition (V),
(1),(2) in 3.1.

H.(j,.)=0 for r<n—1. (2)

Since ¢ = j,_,¢,~; (the condition (III) for n — 1), the following homology
sequence is exact (cf. [5]).

— }Ir(qn—l) - Hr(q) — Hr(jn—l) - Hr—l(qn—l) — .

Using the condition (II) in 3.1. and the observation done in the beginning of
the construction, H.(¢,_,)~H(E,_,) for all r. (3)
Combining these facts and the condition (VI) in 3.1, we have

HI'(jn-—l) =~ Hr(q) for r=n. (4 )

Let M be the mapping cylinder of j,_,. Then j,_; can be factorized into

.- a
the compcsite map X, _, 2L M—>X, where /,_, is an inclusicn cofibration

and @ a homotopy equivalence. Then it is clear that
H,(jn) = H,(,-,) for all r. (5)

Now by the universal coefficient theorem for the homotopy group of a
map, we see that

(o (F), L)) —> Hom(H,(F), m,(1,_1)) —= 0 is exact.

By (2) and (6), H,({,-;) = 0 for » <n—1. Hence by the generalized Hurewicz
theorem, =,(l,_,) =~ H,(,_,). Combining (1), (4) and (5), we have an isomor-
phism =,(,.)=~H,(, )=~H,(j...) =H,(q9) =~ H,(F). Let 6,_, be such an
isomorphism. Then there exists [(«#,-,,v.-)) € 7, (H,(F),l,_,) such that
9l (sy—i, vuer)] = 671, . Hence we have the following commutative diagram :
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_ 'd
K(H(F),n—1) —=% X,_, —~, X,_,
[ l ln—1 ljn—'l

Un-1 a

CK'(H,(F),n—1) —"% M —~.X.

We set X,=CK'(H,(F),n—1)U,,,X,-, and define j, : X, — X by 7,|CK'(H,(F),
n—1)=av,_, and j,|X,-; = j.-y. Obviously j, is well defined.

Let 7,: X,_,— X, be an inclusion map. Then we see immediately that
i, is an inclusion cofibration with cofibre K'(H,(F'),n) and

H.(i,) =0 for r#n and H,(i,)~ H,F). (6)

Next we define ¢,: B— X, to be a composite map ¢, = ¢, *q,-,. Then
¢, is an inclusion cofibration. We denote its cofibre F,. From the definition
of j,, it is evident that j.¢, = ¢ and j,_., = j,i,. From the homology exact
sequence for the composite map j,—; = j, .,

— H.(i,) - H(j,..) —» H(j.) — H,_,(i,) — is exact.
Hence by (2), (4), and (6),

H,(j,) =0 for r<n and H,/(j,)=~HJ(q) for r>n. (7)

o Iy J
Moreover — H,,,(j,) — H.(X,) ELLA H.(X) — H,(j,) — is exact,and hence
by (7), jaux : H(X,) =~ H/(X) for r <n.

On the other hand, from the homology exact sequence for the composite
map ¢, = in *dn-1,

- H,.(,) > H(gn—1) — H,(g.,) — Hr<ln) — 1s exact. (8)

But H.(q,.,)=~ H,(F,,) for all » (H,(q,) =~ H,(F,) for all r).
Hence by (VI) in 3.1. and (6),

H(F,) =0 for r>n. (9)
Since — H,.,(F,)— H,(B)h H/(X,) ibl*» H.(F,) — is exact, it follows from
(9) that g, : H,(B)~ H/(X,) for r> n.
Applying the five lemma to the commutative diagram :

H, (5 H.B) L% 1) P H(F) S H,(B) — H,_(X,)
|G i | 7o i L (10)
9« Px

o
H, .(F) — H(B)— H/(X) — H/(F) — H,_\(B)— H,.\(X),
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where the upper sequence is the homology exact sequence for an inclusion
cofibration ¢, and the lower is that of an inclusion cofibration ¢, we obtain

H.(F)=~HJ(F) for r<n.

If we apply condition (6), (9) and (11) to the sequence (8) with »=n, we
have

H,(F.)~ H,(F). (11)

Finally we consider again the above commutative diagram (10) with r=n.
Then, by (9) and (11), we easily see that ¢,. is a monomorphism and j,. is
an epimorphism and Im. g, D Ker.j.«.

REMARK 1. If H,(F) =0 for some m, then X,, = X,,_; and F,, = F,,_..

REMARK 2. If F is (¢—1)-connected (¢ >=2), F, = and X, = B for
m < qg—1 and F,, (m=>¢q) is (g—1)-connected. In addition for p<lgq, if B
is (p—1)-connected, then each X, is (p—1)-connected.

REMARK 3. If H(F)=0 for »>m, then sequences {X;} and {Fi}
terminate with X,, and F,, respectively. Then maps j,: X,—X and j,: F,
— F are homotopy equivalences. .

As the assertion on j, is obvious and we prove only about j,. By (V)
in 3.1, jux : H/(X,)= H/(X) for r<<m. As for »r>m, we consider the
preceding commutative diagram (10) and apply the five lemma to obtain the
isomorphism j,.: H(X,)= H.(X) for r—=m. Thus j, induces the singular
homotopy equivalence. In the construction of each X, we may choose #;_,
to be cellular and we may arrange so that X, is itself a polyhedron. Hence
Jjm is an actual homotopy equivalence.

REMARK 4. Generally we may form X.=uU X, and F.= UF,, and give
them the weak topology. We define j.:X.— X by j.|X, = j., and j.:F.
—F by ju|F,=7, Then j. and j. are homotopy equivalences. Also two
cofibration B— X, — F, and B— X — F are equivalent in the sense of [7;

Definition 2.5]. The assertion on j.. is obvious (cf. [4]) and the assertion on
Jj~ follows from the similar argument as in Remark 3.

REMARK 5. If an (inclusion) cofibration B LA X £> F is obtained by apply-

ing the suspension functor 3 to an (inclusion) cofibration B'g X'£> F' with
all spaces 1-connected polyhedra, then the homology decomposition (X,, F,
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Lns Jus Pus Qu)n=s,s, ... for B kA Xﬁ F may be obtained by applying the suspension
functor to the homology decomposition (X1, Fr-y, tn15Jn-1, Pre1s @n-1)n=2,3,.. fOr
BLXLF, e
X, =32X,.,, F, =3F,_,, i, = 3i,,, Jn=3n-t Pn = S puaa and ¢, = Sqn-,
(n = 2’3’-. .)_

REMARK 6. In the preceding construction, each F, was defined by F,
= X,/B. However we may also construct F, in the usual way (cf. [3]). We

consider the composite map pu, : K'(H,(F),2) ——uirX2~£2—> F, where F,

=K'(Hy(F),2) and maps u,, p, are those defined in the peeceding construction.

By Lemma 2.1, B—C,,—C,,, is a cofibration. But C,, = X;. Hence we
have H.(C,.,) = H,(F;) for all . Consider the homology exact sequence of
the cofibration F, — C,., — K'(Hy(F),3), then Hy(F,) ~ H,(C,,,) and H,(F)
=~ H,(C,,,,). It follows from [3: Proposition 4'] that p,u, is homologically
trivial. Thus C,,, = CK'(Hy(F),2) Upu, F' obtained by attaching the cone
CK'(H(F),2) to F by a homologically trivial map p,u, has the homotopy
type of F;. The same considerations are done for F, (n > 3).

Thus we may also built up the homotopy type F. of F by an usual
process of successively attaching cones CK'(H,(F),n—1) by homologically
trivial maps.

DEFINITION 3.2. The 1-connected polyhedron X is said to be normal if
it admits a filtration into l-connected subcomplexes

X, cX,c...cX,c---; UX,=X
with H(X,) =0 for »r > n and iy: H.(X,)=~ H(X) for r<n.

REMARK 7. F. = UF, in Remark 3 is a normal polyhedron. Now we

consider an inclusion cofibration B % x L4 F with a normal polyhedron F.
Let {F,cF,C +--CF,C+++; UF, = F} be a normalization of F and we set

X, = p '(F,). Then X,=B and B Z';Xn& F, is an inclusion cofibration where
g, is an inclusion map and p, = p|X.

Since — H,,(F,)— H,(B)— H,(X,) — H,.(F,) — is exact and H(F,) =0
for » > n, it follows that g,.: H,(B)~ H.(X,) for r > n.

Next we consider the commutative diagram (10). Then by the values of
the homology groups of F, and five lemma, we have H.(X,) =~ H(X) for » <n.
Moreover, for r=n, we easily see that g¢,, is a monomorphism, j,, is an
epimorphism and Im. g,; D Ker. j, .
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4. Weak H'-cofibration and the homology decomposition for a cofib-
ration. In this section we assume that the cofibrations whose homology
decompositions are considered constitute 1-connected polyhedra.

DEFINITION 4.1. ([7]) A cofibration B EA X f, F is called weak H'-cofibra-
tion if there exists a map ¢: X — FV X and a homotopy H,: X — F'xX such
that

B —2 - FVB
(a) ql i 1Vgq is homotopy-commutative

'
X—LF\/X

where 7, is the injection into the second factor.

(b) H,=j¢p (where j: FVX — FxX is the injection) and H, = (px1)A,.

Let Y be an H'-space with comultiplication x and let Bg»Xg F be a
weak H'-cofibration.

DEFINITION 4.2. ([7]) A map f:Y — X is said to be coprimitive if the
diagram :

x £ .vyvy
| 7 | Vf
x —% . Fyx

is homotopy-commutative.

EXAMPLE. Let f: A — B be a map. Then the induced cofibration B—C;
— XA via f is a weak H'-cofibration. In fact, following to [7], we define
a map ¢: C, > SAVC, by

¢b)=(x,b) be BcC,
(<a,2t>,%) 0<{E<<1/2

¢(a,t) = (a,t)e CAcC;, .
(%, (a,2t—-1)) 1/2<et <1

Then the condition (a) in 4.1 holds evidently. Now we define a homotopy
H,: C; —>3AxC; by

Hb)=(xb) b< BcC;,
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2t 9t )) 0 Lts
<<“’ T+s >’<“’ T+s SEST

Hya,t) = ] ‘
(%, (a, 2t — 1)) .1%5_<t<1 (a,t) € CACC,;.

&

Then H, is well-defined and satisfies the condition (b) in 4.1.

PROPOSITION 4.1. Let an (inclusion) cofibration B EA X ﬁ F be obtained

by applying the suspension functor 3 to an (inclusion) cofibration B’ 9 x

£>F'. Then there is the homology decomposition {X,, Fn,in,j,,,p,,,q,,} for

Bg»Xg F such that B&Xn& w is a weak H'-cofibration for each n.
PROOF. From §3 Remark 5, the homology decomposition for Bng

F may be obtained by applying the suspension functor ¥ to the homology

decomposition for B’ iXﬂ F,ie X,=3X,,, F,=3F,_,, q. = 3¢,-, and
b = ZP;H .
Now we define a map ¢: X, — F,VX, to be the composite

Spia V1
sx,, > sxvsx,, 2=V g vsx

where p is a comultiplication in 3X,_,.
Then we can show that the conditions (a) and (b) in 4.1 are satisfied for

a cofibration B =, X, —’l» F,.

First we consider the following diagram :

SB —2 » SF, \VSB
l 2qn- l 1V3q,-,
sX,, -2 sFvsx,,.

From the definition of ¢, for <x,t> ¢ SB = B
(3,3%) for 0 1/2,

(¢ . Zq;_,) <x, t> = 4
(%, <gnox,2t—1>) for 1/2<t <1
On the other hand,

(AVZgn-y) iy <z, t> = (%, <@n_y x,t>) for 0<<t<<L1.
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Thus the above diagram is homotopy-commutative and condition (a) in 4.1
is satisfied.
Next we consider the diagram :

SpVL L ,
sx, ., o osxvex,, 222V se vsx

A\> , lj . Spaxl o lj

EanXEXn-; — EFn«1X2X;z—1 .

Since j-u =~ A, we have j¢ =j-Cp-i V) p = Cpp-1x1)-A = (ppo1x1)-A.
Thus condition (b) in 4.1 is satisfied. Q.ED.

THEOREM 4.2, Let B ZX —a F be a weak H'-coﬁbration Y an H'-space
with comultiplication p, f Y — X coprimitive, and x5 C, T SY an induced

cofibration via f. Then B—»Cf g s 15 a weak H -cofibration.

ProOF. By Lemma 2.1, Bl—q»Cfg C,; is a cofibration and so it suffices
to show that conditions (a) and (b) in 4.1 are satisfied. By the hypothesis

Bg»XgF is a weak H'-cofibration and hence there exists a map ¢: X
— F\V X satisfying the conditions (a) and (b) in 4.1. First we consider a

composite map (sVi)-¢: Xi F\/X%C,,f\/cf where s and ¢ are inclusion

maps. Since
(V) df=(6V)QPRFfVHu (by the coprimitivity of f)
= (spfVif)n = PV k) p =0 (see §2)
and ¢: Y > CY is a cofibration, there exists a homotopy e,: CY - C,,VC,
such that w; = (sVi):¢:f and o, = *.
Now we define a map »: C, —C,,\VC, by
My, t) = o(y,8) (0,8 € CY M) =(sVi)-dlx) zeX.

Since AMy,1) = o,(y,1) = 0,1(y) = sV)P-f(y) = M fy), N is well defined.
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Next we consider the following diagram :

\ %\ Cpf X Cf
/

CpfXCf =

where the top square is homotopy commutative and all other squares except
the bottom square are strict commutative.

Then  jhi=j+(sVi)d = (sxi)j-d = (sxi)(px1) Ay (by (b) in 4.1)
= (px1)-(tx2) Ay (by the definition of ?)
= (Bx1)-A-i.

Since X—1—>Cf —3Y is an induced cofibration ([7]), it follows from [7; Lemma
2.2] that there exists a map w: 3Y — C,,XC; such that (wVjN) -y ~ (P X 1A,

where {: C; > 3YVC, is a cooperation in the induced cofibration X 5 C,
—3Y and ¥ denotes the wedge product of maps (see [7]).

Let p,:C,;XC;, —C,p, po: C,;xC; —>C; be the projection and p: ZY
— 3YV3Y be the comultiplication for 2Y, then we have

VN paw) p ~ (prw X pw) A = w .
If we set « = (pwVp,w)p and define a map g: C,—C,;VC; to be the
composite map $ = (kVN) Y, then

7% =jeVNY ~ eV ~ VNP ~ BXDA .

Thus the condition (b) in 4.1 holds.
Also, for b € B,

$ig(B) = (VN ¥-i-q(b)
~ (©®VA) - AVi) - 2,q(b) (since ¢ is an weak H'-cofibration)
= VN AV)(x,q() = («VA) (%, 1g(b))
= Ag(b) (by the definition of V)
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= (Vi) pqd) ~ (sVi)-(1Vq)(x,b)
= (%,1-qb) = (1Vi-q)-ib).

Hence the condition (a) in 4.1 holds. Q.E.D.

THEOREM 4.3. Let BgXﬁF be an (inclusion) cofibration with B:
(r—1)-connected and F: (s—1)-connected (2<r <s). Then there is the

homology decomposition (X,, Fy, 0, Jns Pns @n) Jor Bg»Xg F such that B —
X, — F, is a weak H'-cofibration for n <r+s—2.

PrOOF. If n< s, then F,_,=% and X,_,=B. Hence Bgern& . 1s an

induced cofibration and so a weak H'-cofibration. Thus we may take n>>s.
Inductively we assume that Bﬂan_lj—)";an_, is a weak H’-cofibration
and we shall show that B ﬂ»Xn—P—"» F, is a weak H'-cofibration for n <C
r+s—2. From Theorem 4.2, it suffices to show that u,_,: K'(H,(F),n—1)
— X,,_, is co-primitive.

Now we consider the following diagram :

K'(H,(F),n—1) —*— KHLF), n—1)\V K'(H,(F), n—1)

l Uy 1 Pn—lun—l\/un—l
X, _* FrV X,
| |
X, xx,, Pl Foox X

where p is a comultiplication for K'(H,(F),n—1) and ¢ is a map defined for

the weak H -cofibration qu;l X, le» F,_..

Then j'(PnAlun‘l\/ull—l)'/l’ = (pnAlun—l X un—])'AK’ >

Pn—lun—l \/un—l
e am—

K (H(F), n—1)-t~ K (H,(F), n— 1)V K'(H,(F), n—1) Fo VX,

O\ |/ |i
AK' Pn—lun—l Up—1

K (H,(F), n—1)x K'(H,(F), n—1) "% X g ox

On the other hand, we have (p,_ %, 1 Xu, )Ax = (Po1X1)Au,_,.
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Also, by (b) in 4.1, (p,—1 X1)A ~ j¢. Thus we have j(p,_ 12,1V tty_1) p ~jduu, ..
Now we consider the homotopy exact sequence for a map j: F, ,\VX,_,

‘)Ez—IXXn—l (Cf [2]’ [5])'

5 .
T HL(F), ) 1 s(HL(F), Fyor NV X o) 25 g (L (F), Fyoy % X

Since B is (r—1)-connected and F is (s—1)-connected (r <s), it follows from
Remark 2 that each X,, is (—1)-connected and F,, (m>>s) is (s—1)-connected.
Hence F,_;VVX,_, is (r—1)-connected and F,_, # X,_,=F,_; X X,/ F,-1\V X, _1
is (r+s—1)-connected. By using the generalized Blakers-Massey theorem ([5])
for an inclusion cofibration F, VX, ,—F,_xX,.,—F,., # X,_,, we have

m(H(F),j) =<7 (H(F), F,_, # X,_;) for i<2r+s—2.
By the universal coefficient theorem ([5]) for the homotopy group,

0 — Ext(H,(F), myi(Fyzy 7 Xi-1)) = mo(H,(F), Fooy #£ Xo1)
— Hom (H(F), m,(F,-1 # X,-))) — 0 is exact.

Since F,_,# X,-, is (r+s—1)-connected, then we have
T (H(F), F,., # X,-.) =0 for n<r+s—2.

Hence jy: 7, (H(F), F,_\\V X,_1) = 7 (H,(F), F,_,x X,,_;) is a monomorph-

ism for n <r+s—2.
Thus, for n<{r+s5—2, it can be deduced from j:(pp_1%p1Vtty_))*p
:j'(b'un—l that (Pn—lun—l\/un—l) ~ ¢' cUp_1. QED
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