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1. Introduction. It is the object of this paper to consider some of the
properties of a λ-type generalization (C, λ, K) of Cesaro summability, which
reduces to (C, K) when \n — n. We shall be concerned mainly with the relations
between (C, λ, K) and other summability methods, notably the Riesz method
(R, λ, K) and a more general method (G, λ) defined by means of a function g.
Except in this introductory section, we shall deal almost entirely with methods
of integral order (we draw attention to this by writing p in place of /c), and
we suppose throughout that X = {Xn} is a sequence satisfying

0 < λ0 <λj < <Xn -+ oo .

Given any series2) Σa»> a n d a n v #^0> denote

A"(ω)= Σ, (co-\Yav;
λv<ω

if ω~κA\ω) —• s as ω —> + oo

then we say that Σa» ι s Riesz summable (i?, λ, K) to s. When ω-^oo through

the sequence [λn], we obtain the definition of 'discontinuous' Riesz summability

(R*,X, /c), and we may then relax the restriction on K to κ> — l; thus Y^aυ is

summable (R*9\9κ) to s if \-n

κA\Xn) -> s.
It is of course trivial that3), for any [λn] and any /e

1) This paper was written while the author was a Fellow at the Summer Research Institute
of the Canadian Mathematical Congress, Vancouver, 1965.

2) Unless otherwise specified, limits of summation or integration are assumed throughout to
be 0, oo.

3) Given two summability methods A,B, we say that A is included in B (written A^B)
if every series summable-A is also summable-5 (to the same value) A and B are equivalent

(written A~B) if each includes the other.
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The converse inclusion, that

(2?*, λ,*)C(f l , >,,*),

is trivial for κ = 0 and for κ = l (in the case κ = l this follows since A^ω) is
linear in Xn^(o^Xn+1), and has been proved by Jurkat [7] to hold for 0 < J C < 1 ,

without restriction on [Xn}. Results for κ>l have been obtained by Kuttner
[11]—[15] and Peyerimhoff [27], and although the problem has not yet been
completely disposed of, certain restrictions on {Xn} have been shown to be
either necessary or sufficient for the inclusion to hold when K > 1.

In the special case Xn = n, it is well-known (see, for example, the references
given by Kuttner [11]), that (R, λ, K) is equivalent to Cesaro summability (C, κ)9

for any tc J> 0 that is,

Riesz [22] has shown that the equivalence

holds when — l<κ<l; Kuttner [11] has extended this to — Kκ<2, and has
shown also that equivalence fails for # ^ 2 .

In problems (particularly on inclusion relations or summability factors)
involving the 'continuous' Riesz method (R9 n, κ)9 the equivalence with the
Cesaro method (C, κ)9 which has a discrete matrix with an easily calculated
inverse, often enables a treatment to be simplified by using (C, /c)-means. A
corresponding simplification would occur in problems on the general Riesz
method (R9 λ, K) if we could obtain a generalized Cesaro method (C, λ, κ)9 which
would reduce to the (C9κ) method for \ n = n, and for which

Such a method (C, λ, K) has been denned by Jurkat [8]; in his definition, (C,λ, K)
coincides with (C,κ) when Xn = n and K is a non-negative integer, and is
equivalent to (but does not coincide with) (C,/c) when \ n = n and K is non-
integral. An almost identical definition4) of (C,X,tc) has been given, for
integral K only, by Burkill [3]; this is equivalent to Jurkat's method, for any
{λ,,}, and also coincides with (C9/c) when \ n = n. Both Jurkat and Burkill

4) See §3, where this definition is given. The two definitions coincide when λo = O; but a
difference in λ3 (or in any finite number of the λΛ) cannot affect the summability pro-
perties of the method.
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obtained different sufficient conditions (in the form of restrictions on {λ^}) in
order that (R,X,κ) should be equivalent to (C, λ, #), but Jurkat imposed
additional restrictions on {λn} in the case of non-integral tc and I propose to
deal in this paper with an attempt to lighten the restrictions only in the
integral case; it may be that an alternative definition of (C, λ,V) would be
desirable for non-integral tc. I shall deal separately (§§4, 5) with the inclusions

and

where tc is a non-negative integer, showing that the first of these is true
without restriction on {λ^}, and that the second is true (i) when tc=O,1,2,
without restriction on {λ^}, and (ii) when tc^3, under a restriction on {Xn}
which is weaker than either Jurkat's or BurkilΓs. It will be useful for our
purpose (and also of independent interest) to examine (§3) the relation between
(C, λ, /e)-means of different integral orders tc, mainly in the form of limitation
theorems, though it follows almost at once that

Though we shall not be concerned here with (C, λ, /c)-means of negative order,
it should be noted that Maddox [19] has given a definition of (C,λ, —1) summa-
bility (which coincides with the definition of (C, —1) summability when Xn = n)
and has established inclusion and summability factor properties of the method.
Some related methods are discussed in [26].

The problem of finding necessary and/or sufficient conditions in order
that a general summability method A should satisfy

has been considered by Maddox [18]. With (R,X,κ) replaced by (C,λ, tc),
Jurkat [8] had previously given a result in this direction in the case where tc
is an integer and A is a normal method (i.e. its matrix is triangular with
non-zero diagonal elements). Kuttner [10] has considered the problem when
A is a generalized Abel method (A, λ, #')• I n [23] I have given necessary and
sufficient conditions in order that B^A, where B is a normal method satisfying
a certain 'mean-value theorem' introduced by Jurkat and Peyerimhoff [9] and
in particular, B can be taken to be (R*, λ, K), 0 < tc ^ 1 (which is equivalent
to {R, λ, K) in this range of value of K). I have dealt [24,25] with the case
where A is a generalized Riemann method (9ΐ,λ,μ,) (Burkill and Petersen [4]
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and Burkill [3] had considered this with κ = l, K an integer, respectively), and
also [25] with sufficient conditions when A is a method (G, λ) defined as
follows:

Σav 1S summable-(G,λ) to s if

as

where g is a function having certain properties which will be specified later
(the Riesz, Riemann, Abel methods are special cases). In this last case, the
question of finding easily applicable necessary conditions for inclusion
appears to be more difficult, especially for non-integral κ\ however, when re is
an integer we can use the relation between (R, λ, K) and (C, λ, tc) given in
this paper, and hence examine necessary conditions in order that

(C, λ, K) <= (G, λ) , fc an integer

a result of this form is given in §6.
It will be apparent from the above discussion (and also from comments

of Kuttner [12, 13] and Maddox [16]) that the significance of many of these
results depends upon the extent to which the restrictions on [Xn] can be
lightened. Since we refer later to a number of different such restrictions, it
will be useful to state quite clearly which of then have relations of implication
between them, and which of them are mutually independent this is done
in the following section.

2. Relations between Different Conditions on λ. The following con-
ditions o n λ = {λw}, which is assumed always to be a sequence of non-negative
numbers strictly increasing to 00 9 are among those which have occurred from
time to time in work on Riesz means; most of them are referred to later in
this paper. (1) and (5) appear to have been first used by Jurkat [6], (2) by
Kuttner [12], (4) by Burkill and Petersen [4], (9) (with \n on the right in place
of λn+1) by Russell [25] aud Rangachari [21]; condition (8), which appears for
the first time in this paper, was suggested to me by Professor D. Borwein in
place of a more restrictive condition, similar to (7a), which I had assumed
at first.

In the usual notation, we write

Δ6./t = bu - bnVU ΛM = λ / ι f l /(λ r t M -λ Λ ) ,



414 D C. RUSSELL

and / or \ for monotonicity (in the wide sense). Note that we always have

Δλn < 0, λn+,Λ» > 1, AB > 1.

(1) (a) 0 < « < ^ - (b) -#*-<*<<*>.

(2) A,., = O(ΛB) .

(3) ^ * -

(4) (a) 0<α'<|ΔλJ (b) |ΔλJ<6'<oo.

(5) (a) An /, equivalent to (b) - ^ - V

(6) (a) An = O(1), equivalent to (b) lim inf ̂ - > 1.

(7) (a) lim - ί - max | Δ λ ^ | = 0 , equivalent to (b) lim -^ ± L - = 1.

(8) lim inf - — max | AXu_i | = 0.

(9) K = O(λS+1)

for some pair of numbers μ, p with μ ̂  p > 0.

For the sake of clarity, we omit the parentheses in referring to conditions
1 to 9, and use the logical symbols:

—> (implies), Λ (and), V (inclusive or), — (negation).

There are 110 possible relations of implication between the 11 conditions on
λ which are listed (counting la, lb, 4a, 4b separately). 15 of these are true —
that is, of the form p-> q where any sequence λ satisfying p must necessarily
also satisfy q; however, most of these can be verified immediate^, and it
seems enough to mention in more detail only the following:

Relations betτveen 1, 2, 3. Note that

_ Δ λ « _ _ AΛ-i λ n + 1 AΛ-.Ί J ^ m
^ A ^ > A >

Λ.Λ Xn A.n
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then the equation shows that 2/\3 —• 1£, the central inequality that lb —• 2,
and the inequality between the extremes that 6 —> la. Also, if lb then

,,—λn_i) < bλn , whence Xn+Ί/Xn < b + 1,

so that lb->3 (and since lb -> 2 it follows that 16

Relation between 6 α?z<i 8. If 6 then λn+i/λn ^ c> 1 for every n, and
then

max 0

hence 6 -* 8 (and 8 —» 6).

Equivalence of Ίa and 7b. Suppose 7b. Then, by the first of the in-
equalities just employed above,

^ m a x 0 ,

so that 7b—>7a. Suppose 7a. Now max j A\-Ί \ = \ ΔλyB_i |, where [vn], which

is clearly non-decreasing or can be chosen to be so, satisfies 1 <Ξ vn <^ n.
Either [vn] is bounded, in which case |ΔλyB_i| is bounded and hence λ^11 Δλyn_i |
—>0; or else {vn} is unbounded, in which case (since it is non-decreasing) it
tends to + oo 9 and then

λ-11 Δλ,n_! I < λ"1! Δλ^_! | = 1 - (X^-AJ - ^ 1 - 1 = 0;

hence 7a -> 7b.

Condition 9. If p=0 then 9 always holds, trivially, for any μ^O. Also
if 9 holds for some pair μ, p then, since λ n / , it clearly holds for any pair
μ, p with μ>μ. It is obvious that, since An=Xn+ι/\ΔXn\, 4α -^ 9 for μ~^p\
but note that we do not require 9 to hold for every pair μ, p with μ ^ p > 0
— for, it we did, then in particular it would have to hold for μ = p, and 9
would then be equivalent to the simple condition Aa.

Each of the 15 valid implications (together with those arising from the

additional results 2/\3—>lb, 4 —• 1, 5 ^ 6 V 7 , 8—>6, where 4 means 4a/\4b,

and 1 means lα/\l£) can be traced out on the following diagram:
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4b

\ / \

2 Λ 3

6v 7

The other 95 of the 110 possible implications are false, that is they are
of the form — (p—*q); in other words, there exists a sequence λ satisfying
p/\^. 95 counter-examples of such sequences λ can be selected from the
illustrations which follow (\n = n is not needed for this purpose, but is included
since it is an important special case); for example, to show that 2 and 8 are
independent of each other, we note that 2/\8 is satisfied by (12), or by (13),
and 2Λ8 by (15), (16), (18). In the first six of the illustrations, {\n} is defined
and its behaviour relative to the conditions 1 to 9 stated concisely the
verifications are left to the reader. In the other three illustrations some of
the salient features are briefly indicated.

(10) λn - n: 1Λ2Λ3Λ4Λ5Λ6Λ7Λ8Λ9.

(11) λn = log(7i + l ) : 1Λ2Λ3Λ^Λ4£Λ5Λ6Λ7Λ8Λ9.

(12) λ7i = 2n: 1Λ2Λ3Λ4ΛΛ4&Λ5Λ6Λ7Λ8Λ9.

(13) λn = 2»2: iαΛΪδΛ2Λ3Λ4αΛ4&Λ5Λ6Λ7Λ8Λ9

(14) λ2 n = n, λ2n+1 = n + θn, where 0 < cx < θn < c2 < - | - :

1Λ2Λ3Λ4Λ5Λ6Λ7Λ8Λ9.

(15) λ 2 n = n, λ2w+1 = n + θn, where 0 < θn / 1 (or θn -+ 0 ) :

The truth of 9 in this case depends on θn and on the relative values
of μ and p; thus in the respective cases
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φn)~ι = (i) log(fl+ 3), (ii) n + 2 , (iii) 2n+1,

condition 9 is : ( i ) true if μ> p> 0,
(ii) true if μ^2p> 0,
(iii) false for every positive μ and p.

(16) λy = £i + i/ for w, < v < ni+ι (i = 0,1,2, •),

where {wt} is an increasing sequence of positive integers, ki+1 — kt is positive
and increasing, and njk% —> 0, ni+-ί/ki —> +oo. It follows from these conditions
that ki/ki+1—>0, ki+i — ki->-\-oo, Πi/nt+ι-^0 (a suitable choice for [n^, {£t} would
be Λ1 = 2 t i, * i = i 2 | I)L Then X,,—λ ,,-ij= 1 (i/ Φ wt), λ ^ - λ ^ - ^ - ^ _ x + l,
so that 4α (hence 9), Ab> la (hence 6), \b (hence 5). Now if we let n —> oo
through the values n = nί+ί — 1, we have:

( i ) ^ = ^i + Wj+i — 1 . _^L+Wi+i_ _^ Q .

thus 3̂  (hence 16, 46, 5, 7).

(ii) A B = / < + 1 + / l < : 1

Ί

^ — Λ + 1
thus 2 (hence 16, 5, 6).

(m) •— max (λy-λy_x) = * z < — * > 0

thus 8 (hence 6).

Combining the results, we see that {λn} satisfies

(17) λy = i+(v — nt)/(ni+1 — nt) for wt < v < wi+1 (ί = 0,1,2, •) ,

where ni+1—Πi is positive and increasing, with nί+1/ni—> +oo (for example,
Λ4 = 2tf). Here

so that Aa (hence 6), 46 (hence 3, 6, Ί7 8); and, since | Δ λ y | \ , we have
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so that 5 (hence 16, 2, 3). Also, for v = ni, ^ v = ni~ni~1 ->o, so that ία
Δλy-i nί+1—nι

(hence 6). Finally, the condition on {nt} ensures that ni+1—ni> c*2ι (c > 0),

and hence

for any positive μ and py so that 9 (hence 4α, 6). Combining the results,

{λn} satisfies

(18) \v = ni+{{y-niXni+ι-ni)V for nt < y < Λί+1 (ί= 0,1,2 , •) ,

where wi+1—^έ —>+oo? but such that ni+1—ni = o(nf) (a suitable choice is

ni = 2ι). An easy calculation shows that, for ni^v <?2 i+1,

"+ 1 y ~ V C ^ + i w O + V ^ W i ) 2 '

so that 4α (hence 9); but |Δλnt | =*J(ni+l — n,^)->oo, so that Ab. So long as the

suffixes all remain within \nu ni+1], we also see that

|Δλ/;| \ , hence AV// , hence \v+1/\\

thus 1 < % ^ < - ^ (τi t <i;</ι i + 1 >

so that 7 (hence 3, (f, 8). It then follows that

Aμ-l _ λ,,

and by taking v = nt and noting that |ΔλΛt_i|<Ξl, I ΔλΛt | —> oo9 we obtain

2 (hence lδ, 5, 6). Finally, it is easily verified that (for any increasing {rii})

(Δλy)/(Δλy_1) > 1/(1 + V2) for every v, so that la holds, and {λn} therefore

satisfies
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3. Relations between (C, λ, p)-Means of Different Orders. Given a
non-negative integer p, a sequence {λn} of non-negative numbers strictly
increasing to oo? and any series Σav> w e define, for n = 0,1, 2, ,

(19)

the (C, λ, ^?)-means ίj of ^ α y are defined by

j ;t°n = CZ, « = (λn+1 λn+J,)-1Cj;

and we say that ^ α , , is summable (C, λ, />) to 5 if

Denoting convergence by / (the identity transformation) we have trivially,
for any {λn},

(C, λ, 0) = {B*, λ, 0) = (R, λ, 0) = I,
(20)

( C l ) ( Λ * ) ( * )

Note that, for n = 0,1,2, (and defining Cϋι = 0) ,

n

cι+x-σnt\ = £ (λn + 1 - x,,) (λn + ί ) + 1 - >») α, -
(21)

= V^n+p + 1 ^»wj ^ n 9

and it follows directly that5)

v=0

THEOREM 1. // C» = o(ηn\ where 0<Vn/, then Cp

n

+1 = o{Xn+p+lVn),
We may replace o by O throughout.

5) Although the definition of Cv is slightly different, this is the formula following 1(13) of
Jurkat [8]. Most of the results of this section are elementary consequences of (21) and (22),
but are given for the sake of completeness.
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PROOF. Under the hypothesis of the theorem, it follows at once from
(22) that

1 — 'Kυ) = θ(Xn+p+1ηn).

COROLLARY l A (C,λ,p) c (C,λ,ρ+1) (/>=0,l,2, •)•

PROOF. We may suppose, without loss of generality, that Σav ι s summable

(C, λ, p) to zero, and the corollary follows from Theorem 1 on taking ηn = 1

0 = 0 ) , ^ = λn+1 Xn+P

COROLLARY IB. (C,λ,/>) zs regular for every non-negative integer p.

If C* denotes the (C, λ, p)-matrix then (22) (when expressed in terms of
the means tξ and tζ+1) defines a matrix Lp such that CP+1 = LPC

P, and Corollary
\A is equvalent to the statement that, for p=0,1,2, •••, Lj, is regular (a
T-matrix) — Lo is the sequence-to-sequence matrix of (C, λ, 1). Since Lp is
normal, it has an inverse L"1 (which, in fact, is easily calculated — see (28))
and Maddox [19] defines the (C,λ, — l)-matrix as LQ1. Some further properties
of Lp and Lp

λ also appear in a forthcoming note [26].
To proceed from a (C,λ, ̂ )-mean to a (C,λ, r)-mean of lower order, we

have the following limitation theorems.

THEOREM 2. Let Cp = o(ηn) (ηn>0), and denote ηn>r = max 77* then,

for r=0,1, ,p,

(23)

may replace o by O throughout.

PROOF. (23) is certainly true for r = p, since it then reduces so the
hypothesis. Suppose that (23) holds for some r in 0 <r<^p\ then, by (21),

(24) Cr~l = Cn—Cn-! __ 1 f θ(Vn,p-r) , Pfow-l.p-r) I

since ηn,p-r^Vn,p-r+i> ^ -

that (23) holds for r = 0,1,
. It now follows by induction

, p.
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COROLLARY 2. If C£ = o(ηn), where 0 <ηnf, then

n\*-r} (r = 0,1, •••,/>).

Jurkat [8, Satz 7] gives this result, where p and r need not be integers, subject
to the restrictions

neither of these restrictions is needed when p and r are integers.
There is an alternative form of Theorem 2 in which we replace ηn by

Xn+ι Ά>n+pηn and express the result in terms of the (C, λ, r)-means tr

n = (λn + 1

•••λjj+p)"1^. Since the two forms are not completely equivalent we give a
short separate proof.

THEOREM 3. Let p be a non-negative integer, ηn> 0, and denote

(25) Λn,r = λ n + r + 1 / ( λ n + r + 1 - λ n ) (r = 0 , 1 , 2 , . . . ) ,

and ηnjr = max ηl.

If tl = θ(ηn)

then

(26) tl = o(^;,p_rΛΓrr) (r=0,l,-",p).

We may replace o by O throughout.

PROOF. It is easily verified that, since Xn/',

(27) K,r<K,r-ι and An- l ι r <An, r-1

and also

(27)' ηntr ^ ^w,r+l and ηn-i,r ^ ^ή.r+l

The proof is now similar to that of Theorem 2, except that it is convenient
to express (24) in terms of the fn, namely
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(OQ\ fT-1 λ>n + rtn λn t

Now the formula in (26) is true for r = p, by hypothesis; and if it holds for

some integer r in 0 <r<^p then, substituting in (28) and using λn <\n+r,

n,r-i ηn-1)P-rK~-l,r

by (27) and (27)'. The required result now follows by induction.

C O R O L L A R Y 3A. Denote An = λ n + 1 /(λ n + 1 —λ n ). /f ί j = o(l)

PROOF. By (27), Λnfr<ΞΛnι0 = Λn (r = 0,1, ), and using this inequality in
Theorem 3, with ηn = l, we get the result.

Note, incidentally, that Corollary 3A is directly analogous to one form of

the limitation theorem for Riesz means (see Borwein [1], Lemma 2; or for

κ = p, a non-negative integer, see Bosanquet [2], Lemma 3; we write o in place

of O); thus denoting the Riesz mean of order /c by Rκ(ω) = ω~κAκ(ω), the result

is:

R<(ω) = o(l) implies R\ω) = o(Aκ

n'
r) (Xn<ω< λ»n+1, r = 0,1, , M).

COROLLARY 3B. If Λn = O(l) or, ic Λαί w the same thing, if

[(6)] I i m i n f ( λ n + 1 / λ n ) > l

then (C, λ, />) Z5 equivalent to convergence for any integer p.

PROOF. If (6) holds then, by Corollary 3A, tp

n = o(l) implies t°n = o(l).

4. The Inclusion (C, λ, p) c (/J? χ? p). In considering an inclusion relation

of the form C <ΞL A, it is desirable to be able to express the A-means of a

series Σaυ in terms of its C-means, and then to consider conditions under

which the resulting transformation is regular. This problem is simplified

when the matrix of C has a readily calculated inverse, as is the case with the

(C,λ,/>) method, where the inverse can be expressed in terms of divided

differences; both Jurkat [8] and Burkill [3] make use of this, though in the

former case the notation is somewhat different from that adopted here. Thus,
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given a function f defined in an interval [a, b], and distinct points xt in this
interval, we denote f[x] = f(x) and

(29) f[Xo, g , ,
Q JLn

for an exposition of the properties of divided diffrences see, for example,
Milne-Thomson [20, Chapter I]. Since f[x0, , xn] is independent of the
order of the arguments, we may suppose that a = x0 < x1 < < xn — b.
If the derivative f{n)(x) exists in (xQ,xn), and fkn~ι\x) is continuous also at
the endpoints xQ, xn, then [see 20, p. 6]

(30) f[x09 ,x n ] = -^y-/(n)(|), for some ξ in x0 <ξ <xn.

Thus in the special case where, in the interval [χ0, xn], f is a polynomial of
degree less than n, f[x0, , : r j = 0. Any divided difference is expressible
in terms of the functional values at the points x% as follows [see 20, p. 7] :

(31) f[x0, . . . , * „ ] = £ : ^ , where Pi = Π ' fe~^),

and Π' indicates omission of the zero factor given by j — i.

LEMMA 1. Let g(x) be defined for x^0. Then

(32) £ g(Xv)aυ - έ (-l)rflf[λn+1, ,λw +r+i]C;
υ=0 r=0

n

.λp+p+JOw+i-λ*) c * .

PROOF. The proof is by induction on p. First, using

C°v - CS-i = αy and jf[λI,,λl,+i](λy+1—λy) = ^(λy+1) - g(\) ,

we easily verify that (32) is true for p=0 (and any n ^ 0).
Now for any non-negative integer p we have, using in succession (21),

partial summation, and (29),
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= Σ ^ > . W i K c r » - c?_+ί)

and by substituting this in (32) we see that the right hand side of (32) has
the same value for any non-negative integer p since for p = 0 it is equal to
the left hand side (which is independent of p), the result follows.

Now define

l(ω-x)p ( 0 < α : < ω ) ,
cω(x) =

1 0 Or > ω) .

Given ω > 0, let n be the integer such that Xn <ω<Ξλ n + 1 then the Riesz
sum is

A"(ω) = Σ («-λ»)pα. = Σ
λv<ω v=0

and the Riesz mean is

R*(ω) = ω-pAp(ω) .

We now employ Lemma 1 with g(x) = cω(x). First, since cω(x) = 0 for
x ^ ω , and each of the points Xt (i = w + 1, , w + r+1) satisfies X4 ^ ω , we
have

cω[λw+1, , λn + r + 1] = 0 (r = 0,1,2, ) •

Further, if 0 ^ i> ̂  n— />— 1 then Xv+p+i ^ λ n < ω and rω(^:) is then a polynomial
of degree >̂ throughout the range λy < x <Ξ λy+p+i — any divided difference of
order greater than p, taken at points x% in this range, will then vanish; in
particular,

cω[λ>v, , λy + p + 1] = 0 for 0 <Ξ v ^ n—
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In case n <p, define Cζ = 0 for v < 0 . Then, by Lemma 1,

n

(33) A>(») = (-I)"* 1 Σ, cJK,' ' ,

This is the same as the expression for T(ω) given half-way down p. 58 of
Burkill [3]; it is stated there as being obtained from [3, Lemma 1], which
assumes the restriction on λ stated in this paper as (4). In terms of the Riesz
mean Rp(ω) and the (C,λ, ̂ >)-mean tζ, (33) may be written

(34) R'(ω)= £ ctξ(ω)t> ( λ w < α > < λ w + 1 )
v=n-p

where

(35) Uξ(ω) = (-iy+1ω-pcω[\, ,\+P+ιX\+p+ι-\)Xυ+1 \v+p .

THEOREM 4. (C, λ, p) c (R9 \9p) (p = o, 1,2, ).

PROOF. Denote Λ,(̂ ) = -7 r x ~ / Λ r- where 0 < n- p < v

<Ξ n and λv <Ξ x <Ξ λw < ω ̂  λw+1 < < \+p+i. By the expansion formula
(31) for divided differences, we then have

v+p+l r S\\ v+p+l

Cωΐλ>v9 * * 9^v+p+i\ — Σ —^Ξ^— 9 w h e r e βυi = JJ (Λ»i—Xj)

= 2^ " ~ o — > since cω(λt) = 0 for λέ ^ λn + 1 ^ ω

and also

hv[\> " >̂ w] — Σ —o^ * 9 where β'vi = J[ (λi—λj) .

But, by definition of hv(x),

(ω—λt)
p (ω—λt)

p

β'vi O^i—^n + l) # * 'Q^t — ̂ v+P+dβ'vi βυi

and hence

(36) cJ\V9 , λy+p+1] = Jφ.V9 , λ J (0 < n- p < v < n).
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Also, by property (30) for divided differences,

(37) A, IX, , λ J = 4~~$- for some ξ in λ, < ξ < Xn .

Now the denominator of hυ{x) contains v + p— n + 1 factors, all negative,

so that

Further, logarithmic differentiation of hv(x) gives

K(x) n-v-1 v+^

Σhυ(x) ω-x .j^

and since λ4 ^ ω for i ^ n + l we have

3>(.r)<;0 for λ ^ ^ ^ ^ λ , , , v^n — 1.

Then, since j>(.r) alternates in sign on successive differentiations, we can

differentiate h'υ(x) any number of times using Leibniz' theorem and prove

easily by induction that

(38) (-l)v+p-n+r+1hir\x)^0 (K<

for n—p^ v <Ξ ̂  r = 0 ; or for n~p^ v <Ξ n — 1, r=0,1,2,

A combination of (36), (37), (38) (with r = n — v) now yields

(-l) p + 1cjλ,, , \v+p+1] > 0 (/!-/><* < n)

and since the other factors on the right of (35) are also positive, it now follows

that

so that (34) is a positive transformation. Now we clearly have

lim a»(ω) = 0 (i/ = 0,1, 2, )

since oίv

v(ω) = 0 for ^ <Cn — p. Hence (by the Toeplitz theorem) in order that

tζ —> 5 always implies Rp(ω) —> 5 it is necessary and sufficient that
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n

(39) lim Σ aXω) = 1
(0—»oo

Since, for n> p, the transformation (34) is independent of λ0, let

λ0 = 0 , a0 = 1, α* = 0 (i > 0)

then £?=1 for every *>, and Rp(ω)=l for every α>> 0, and substitution in (34)

gives at once

n

Σ ap

v(ω) = 1 (λn < ω < λn+1, n> p).

Thus (39) holds and we conclude that, for any sequence (λ^) of non-negative

numbers increasing to infinity, and for any non-negative integer p, (C, λ, p)

COROLLARY 4. L<?£ £5 = o(ηv) (η'v> 0) α ^ J denote ηnιP = max 77p. Then

R*(ω) - o(τ;;)P) (λn

PROOF. This follows at once from the theorem on putting tS = (η'vY1 tp

= o(l) and noting that

n

\R"(ω)\ <»,;,„ Σ, «S(ω)|ίϋl
v = n-p

REMARK 1. If we put ηv = \v+ι \υ+vηυ in Corollary 4, the result can

be put in the form

Cζ = o(ηv) implies Ap(ω) = o\ωp max — ^ — [ ,

but, writing ηUiP = max ηV9 it is possible to obtain an alternative result (which

in some cases may be better than Corollary 4 — compare with the forms of

Theorems 2 and 3), namely:

(40) Ci = o{η}) implies Ap(ω) = o(ηn,p) (λn < ω < λΛ + 1) .

To prove this, we note that the transformation (33) contains only p + 1 terms,

so that (40) will follow if we can show that, for λu <ω<^λ/i + 1 and n — A
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cω[λ>v, * * >\+P+i](\+p+i—λy) = 0(1) independently of n .

But

and it is therefore enough to show that

(41) cω[\v, ,\v+p] = O(l) for ?z-

Now although ^ ( Λ : ) may not exist at x = ω, c^~Ύ){x) exists everywhere (and
is continuous); thus, by (29) and (30),

CωlΛ>υ, * * * , Λ>v+p] — Λ _ \
Λ Λ

where ξγ ^ λy, ^2 ^ λy+1 > λυ. Calculation of the derivative then shows that,
for ξ^\,

\cίp'ιKξ) I < P\ max(0, ω-ξ) < >̂! (λw + 1-λ y) < pl(\v+p-\)y

provided that v^n—p-\-l; and (41) therefore holds for these values of v.
In the excluded case v = n—p, we have cω(x) = (ω—x)v for x^λn<ω, and hence

thus (41) holds in any case, and (40) follows.
This proof of (40) provides a simpler proof of Theorem 4 if we know

that

[(3)] λn + 1 = O(λn) .

For, if ηn = λw+i Xn+P and (3) holds, then, for \ n < ω,

(40) then shows that:

If (3) Ao/ds then (C, λ, />) c (i?, x, p).

However, the more delicate analysis in the proof of Theorem 4 shows that (3)
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can be dispensed with entirely.

REMARK 2. It is well-known (see, for example, [5], Corollary 1.62) that if

[(6)] I i m m f ( λ n + 1 Λ » ) > 1

then (R,X,κ) is equivalent to convergence for any κ^0. This fact, together
with Theorem 4 and Corollary IB, shows that if (6) holds then

and we get an alternative proof of Corollary 3.

5. The Inclusion (R, λ, p) <Ξ. (C, λ, p). In this section we deduce informa-
tion about (C,λ,/>)-means from knowledge of the (R,X, f>)-means (i.e. in the
opposite direction to the results of §4). In order to obtain an inclusion
theorem we shall impose a restriction on λ when p^ 3, namely that given
in (2). Some lemmas are required.

LEMMA 2. Let Q(t) be a polynomial in t, of degree p, and define
coefficients θ%(ω) by

(42) Q(ω-x) = Σ,θ?(ω)χr.

Then

(43) Σ Ω 0 v K = Σ^OM r(*>)
λv<ω T=Q

PROOF. Put x = ω—Xv in (42), multiply by aV9 and sum over all values
of v such that λu < ω then

Σ ΩOO a. = Σ βp Σ θ%ω)(ω-\vy = Σ θ%ω)A\ω) ,
λv<ω \ < ω 7"=0 r =0

on interchanging the order of summation and using the basic definition of

LEMMA 2'. If μn>r = λ n + r + 1 — Xn+ί and coefficients θ?tP are defined by

V

(42)'
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then

(43)' C; = Σ Θ^Ar(Xn+1) (p = l, 2,3, •).

PROOF. Let Q(t) = (λB + i-ί) (K+P~t) then, by (19),

also

w+i — x) = [λ n + 1 — (λ n + i — ̂ ) ] [ λ n + 2 — ( λ n + 1 — x)]

The result follows Lemma 2 on taking ω=Xn+1.

LEMMA 3. Let p be a positive integer and 0 < ζnf. If

(44) Ap(ω) = o(ζn) (λn < ω < λn + 1)

then

We ?nay replace o by O throughout.

PROOF. We first recall the limitation theorem for Riesz means in the
form corresponding to Corollary 2 (see, for example, [5], Theorem 1.61) that
(44) implies

(46) Ar(ω) = o(ξj I AXn I p~r) (λn < ω < Xn+1 r - 0,1, v , p).

From the definition of θ?'p given in (42)' we see that, for fixed n, θfv is the
sum of all the products of p—r different μnΛ\ since μnΛ — Xn+i+1 — Xn+1

increases with i (for each fixed n), it follows that

(47) 0 < θ™ < Kpμn,rμn,r+1 /V,-i

Substitution of (46) and (47) in the result (43)' of Lemma 2' now yields

V

(48) Cn — θ(ζn)2Z μn)rμn,r + \ * 'f*n,i>-l/(Xn + l~Xn)P~r
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But μ,nΛ/Xn+i+ι increases with i, and hence

^π._* ^ H'n.P-l ^ Λ>n + p~Λ>n (:____ A o +. i \ .

^ ^ ^ ^ ^ ^ > > * " " >P λ' '
^ π + i + l ^n + p Λ>n + p

substitution of this inequality into (48) now gives

p r \ —\ Ίp~r

C p ~/5* \ V^ Λ Λ . . "X ^n + P ^n
n — u\bnJ 7, ^n + r + 1 ^>n + r + 2 Λ>n + p -v /Λ ^ Λ

r = 1 L Λln + p{λ,n + 1 — h,n) J

P

= o(ξn)Σbn,r, say.
7 = 1

Now ^ ) r =

λ ^ W i λn+, ( / B | > ) P - , > w h e r e

/λ(\\ 7 __ Λ>n + l\λ'n + P~Λ>n) .

and, since lnfP^ 1, bn>r\ as r/71. Hence CS = o(fn6nt l), and this is the required
result (45).

REMARK 3. Writing £w = λ£+1£^ and with lUtP as denned in (49), we can

deduce from Lemma 3 a result in terms of the means thus: Let λ£+i ζn/

and λn < ω <^ λw+1 then

(50) i?*(α>) = o{ζ'n) implies « = ©{^(Z,,,^-1} .

A slight improvement might apparently be effected by avoiding the use of

the inequality μn,p-.1 <Xn+p—\n which appears just after (48), and concluding

the proof of Lemma 3 very nearly as before. Thus write

then (50) can be modified to

(50)' Rp(ω) = o(ζ<n) implies t* = o{ζn) max {1, (l'n,pγ-1}

however, we see that Γn>p <lniP <Γn,p+l, so that (50) and (50)' are in fact

equivalent statements.

Before deducing an inclusion theorem, it is worth noting that if we

sacrifice some of the generality of hypothesis (44) we can use, in place of (46),

the improved limitation theorem of Bosanquet (already mentioned after our
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Corollary 3A) to yield the following result:

LEMMA 3'. Let p be a positive integer, p-\-<x^0, and ln+i,P-i be defined
as in (49), with (ln+i,o)° interpreted as 1. If

(44)' Rp(ω) = o{ωa)

then

We may replace o by O throughout.

PROOF. Bosanquet's result [2, Lemma 3, with o in place of O] can be
stated as follows: if (44)' holds then

Ar(ω) = o(ωrKΛ*Γr) for Xn < ω < λ n + 1 , r = 0,1, , p.

Now Ar(ω) is a continuous function of ω, if r > 0; and hence the order con-
dition on Ar(ω) if valid also for ω = Xn and r = l , 2 , ,/>. Thus, putting
ω=λ w and then replacing n by n + 1 , we get

(46X Ar(Xn+1) = o(K+

+ΐApn-+ΐ), r=l,29.. ,p.

Since the summation in (43)' starts at r = l , we can now follow through the
proof of Lemma 3, using (46)' in place of (46) and omitting the inequality
/VP-I <^n+p—^7i which follows (48). We thus arrive at

where b'ntr — Xr

n+i\n+r+1 Xn+p(ln+liP-1)
p~r , and conclude, by the same method

as in Lemma 3, that C%=o(\%+Ib'ntl). When expressed in terms of the means
££, this is the required result (45)'.

When the hypothesis is (C, λ,/>)-summability, the case in which ln>p or
h+i,P-i is bounded is clearly of interest in deducing an inclusion theorem;
and then, since lnΛ = l and ln>r increases with r, Lemma 3' will be more
effective than Lemma 3 for this purpose. We first draw attention to the
condition

[(2)] AM_1 = O(Λn),

and then prove:
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Let q be a fixed positive integer greater then 1 then

(51) Zn,β = O(l) if and only if (2) holds.

F o r : ln,r/ &sr/*, so that ln>q^ ln,2> A.n/An+ι for q^2, and (2) is therefore

necessary for boundedness of ln>q. Conversely, if (2) holds, then

and hence ln>q =

THEOREM 5. Let p be a non-negative integer if / > ^ 3 assume that

[(2)]

PROOF. We may suppose, without loss of generality, that ^av = 0 (R,X, p);

the result now follows from (51) and Lemma 3' (with <2 = 0).

It would, incidentally, be of interest to know whether (2) is a necessary

condition for the inclusion (i?,λ, p) <Ξ.(C,λ, p) when p^3, but I have been

unable to prove this, or to find a counter-example. (Added in proof: see [28])

REMARK 4. Sin e, by Theorem 4, the reverse inclusion to that of

Theorem 5 is true unrestrictedly, it follows that if (when p^ 3) (2) holds, then

(52) (C9\p)^(R9\p) (/>= 0,1,2,...).

We note that (see §2) (2) is implied by either of the conditions

[(4)] 0 < a<Xn+1 - K < b'< oo

[(5)] A n / .

Hence we have:

COROLLARY 5A. [Burkill 3, Theorem 1] (4) implies (52).

COROLLARY 55. [Jurkat 8, Satz 1] (5) implies (52).
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As remarked in §1, Jurkat has given a definition of (C, λ, K) for non-
integral K. He has shown in [8], Satz 1, that (C, λ, K) and (R, λ, tc) are equivalent
for all positive K if

A B / , I Δλ w I is monotonic, rc | A\n \ *-w/ .

This result has been used by Maddox [17, Theorem A] to show that (subject
to these restrictions on λ) a necessary and sufficient condition that

^2\avβv\ converges whenever Y^av is summable (R,X,κ)

is £^Λn|£j <°o. For any κ> 0, it is enough to assume our condition (2) for

the sufficiency part of the proof (as is clear from Maddox' proof). Conversely,

when κ=p, a. positive integer, use of our Theorem 4 and Maddox' method

(using his key Lemma 4) shows that a necessary condition for the result

(without restriction on λ) is ΣΛS,p-i|θn | <°o, where ΛniP_! is given by (25);

and if (2) holds then this implies Σ]Λ£|θn | <oo.

We drew attention in §1 to the problem of finding necessary or sufficient
conditions for the inclusion relation (i?*% λ, K) <Ξ. (R, λ, K). Kuttner [15] has
shown that if tc—2, then a necessary condition for this relation is that An

= O(l) (both methods then being equivalent to convergence), and conjectures
that the same result holds for K > 2. Now it is not difficult to show that, for
any K > 1, (2) is a necessary condition for this inclusion relation; consequently,
if p is a positive integer we have, by Theorems 4 and 5,

(R*9 λ, p) c (R9 λ , p) if and only if (R*9 λ, p) c (C, λ, p).

Although the second inclusion appears to be as difficult to deal with as the
first, at least this may provide, for integral #, an alternative line of attack on
the problem.

6. Relation of (G,λ) to (Λ,λ, p) and (C,X,p). We consider here the
summability method (G, λ) referred to in the Introduction. Suppose that g(x)
is defined for x ^ 0; given a series "^av, denote

(h>0)

whenever this last series converges. We say that Σav is summable (G, λ)
to 5 if Gλ(h) exists in some interval (0, h0) and Gλ(h)-*s as h —>0+. The
conditions to be imposed on g will be
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(53) 0(0+) = 0(0) = 1,

(54) grCP) exists and is of bounded variation in [0, X] for any X > 0 ,

(55) gir\x) = OC2ΓΌ as ^ ~> + 00 ( r = 0,1, . . . , / > ) ,

where p is a non-negative integer and μ ^ 0. The first condition is necessary

for regularity of (G, λ); we impose the second since we shall be making use

of Stieltjes integrals and this will ensure their existence the third condition

anticipates possible application to generalized Riemann summability (see [24]

and [25]), since it is satisfied by g(x) = (sin x/'xf (with the restriction μ > p

if μ is not an integer).

A theorem dealing with sufficient conditions for (i?, λ, K) Ξ̂. (G, λ) (where

K need not be an integer) is given in a forthcoming paper [Russell, 25]; the

result for κ=p, a non-negative integer, is as follows :

THEOREM 6. Let p be a non-negative integer, μ~^ p, and A.ξ = o(λ£);

and let g denote a function with the properties (53), (54), (55). If

(56) ί
Jo

< o o

then

(57) (i?,λ,/>)c(G,λ).

Since (by Theorem 4) (57) implies

(58) (C,λ,#)£(G,λ),

Theorem 6 also provides sufficient conditions for (58). Conversely, necessary

conditions for (58) are also necessary conditions for (57) (of course, if we

postulate condition (2) on λ then, by Remark 4, (57) and (58) are equivalent

statements). The main result of this section will show that, subject to some

reasonable restrictions on λ (in fact, we assume (3), (8), (9)), (56) is a necessary

condition for (58). Since we shall make use of Lemma 1, we first need a

lemma giving conditions under which the first sum on the right of (32) tends

to zero as n—>°°.

LEMMA 4. Suppose that p is a non-negative integer, μ^O, g^{x) exists

for x^O, and (55) holds. Let Cl = o(ηn), -where 0 <ηn/S, and

(59) ηn = O(λ£ + 1 ) , ηn = O(λ£+ 11 AXn I»).
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Then

(60) Σ,(-l)rg[K+u- ,K+r+i]Cr

n = o(l) as n->oo.
r=o

PROOF. By (30) and (55) we have, for r = 0,1, ,p and for some ξr

i n λ>n+ι ^ ζr ^ λ ι n + r + 1 ,

where K is independent of n and r also, by Corollary 2, C£ = £>(?;„) implies

On = o(ηJ\ΔXn\»-η ( r = 0 , 1 , " - , / » ) •

Using these estimates, together with (59), we obtain

LEMMA 4'. Let g satisfy (55), μ^ p, and Yjιv — 0(C,λ,/>). If

assume that (9) holds, and if p~^2 assume in addition that (3) holds. Then

(60) follows.

PROOF. Take ^ = 1 (/> = 0), ^ = λw+1 λw+p (/>>1). Then (3) implies

?„ = O(λ5+0 = O(λ,5+1) for / x > ^ ;

while (3) and (9) together imply

Thus the hypotheses of Lemma 4 hold, and the conclusion follows.

THEOREM 7. Let p be a non-negative integer, μ~^ p, and g denote a

function with the properties (53), (54), (55). Assume that

[(8)] lim inf -^- max (λ, - λ,_0 = 0
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if p^\ assume also that

[(9)] Λ* = O(λ£+1)

if P^^ assume in addition that

[(3)] λ n + 1 = O(λ n ) .

Then in order that (C, λ, p) <Ξ. (G, λ) it is necessary that

[(56)] f **|<fy<*>(*)| < o o .

PROOF. Using Lemma 1 and replacing λy by \υh (h>0) in (32), we obtain

p

v=o r=o v=o

where

(62) 7g,v = (-ί)p+1hp+1 g[\vh, ,λ»,+J,+iA](λφ+p+1-λv)λi,+i •>*+„.

Now the hypotheses of Lemma 4' are included in the hypotheses of this theorem
and hence, for every series summable (C, λ, p) (to zero, without loss of
generality), the first sum on the right of (61) tend to zero as 77—>oo? for any
fixed h. Further, if (C, λ, p) <ΞL (G, λ) then, whenever tζ=o(ϊ), Gλ(h) must exist
for each h in some interval (0,H) (i.e. the series defining it must converge)
and Gλ(h) = o(l) as Λ->0+. It then follows, on letting n->oo in (61), that

and that this transformation must be regular. But then, by the Toeplitz
theorem, it is necessary that, for some ho<^H,

(63) sup Σ, l^.vl =M<oo.
0<h<h0 v=Q

Let us, for the moment, replace Xvh by xv\ let X > 0 be arbitrarily given,
let [xv] denote a partition

0 = X-X < Xo < X\ < ' ' ' < Xn + p = X 9
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with norm δ =
O

and consider the sum

7 1 - 1

(64) SQ-ZTp}, gT, />) = Σ \gίXv, ' , ΛΓi +p+lK^i +jϊ+l —ΛTp) *Wl ' Xv+p\

" " * > Xv+p\ \ Xv+l

ι>=0

π - 1

i n-λ

where ^ < ^ < xv+p (y = 0,1, , n) for p^l. Ideally, we should like this

last sum to be a Riemann-Stieltjes sum for the integral I xv \ dyiP)(x) \, but

we cannot deduce this at once, since {ξυ} is not necessarily monotonic, nor
do xv+l9 , xv+p necessarily lie between ξv and ξv+1. Accordingly, we let
N = N(n) be the integer such that Np < n < (N+ ί)p; then we note that,
when p^ 1,

0 = X-X < Xo < ξ0 < Xp < ξp < X2p < hv < ' ' # < h*P < X{*+1)P ^ Xn + p = X

Now, for (r—1)/> <C v < r/>, we have xv+1 xv+p ^ Λ:J+1 > ^fr-i)2,, and hence

(65)

rp-l

Σ

Since max (^— ^-x) = δ, we have xrp—X(r-i)P<^p& and

Λ?P - ^ _ 1 ) p < px%\xrp-xκr-i)p) < fX*-1* = KB (r = 1,2,..., N)

thus since, by hypothesis, (/(p) is of bounded variation in [0, X], it follows
that, given £ > 0,
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N

(66) Σ, I ΦV\ϊrP) - ί̂ &r-Dp) I {X%~ xfr-l»)

<Kh\ \df\x)\<e for δ< % («).
Jo

Further, X—ξNp < α;w+ί,—xNv < 2/>δ and £0 < xP ^ (^+l)δ, whence

(67) I g^(ξ0) - f\0) I xξ < X" Γ I dg^\x) \

MP+1)8

<X"\ \dg™{x)\ <€ for δ <%(£),

(68) | ^ ( X ) - 0< »(U)l*δ,+i>p<X

<X^ f |^>(^)| <θ for 8 < ^ ) .

Now define | _ p = 0, |(iVr+i)p=X, and note that

f(r-i)p < ^rp < frp, frp"f(r-l)p < 2fi (r = 0, 1, , iV+ 1) .

Then, since I α:271 dgiv^(x) \ exists as a Riemann-Stieltjes integral (gf(p) is of
•/o

bounded variation and xv is continuous), it follows that

(69)
JV+1

Σ
r=0

for 8

Writing η(£) = min^i, 972,773, τ;4), a combination of (65)-(69) now yields at
once, for a positive integer p>

(70) p\S({xv},g,p)^ jx"\dg^\x)\- 48 for B<η(β).

n-l

In the case p = 0, S({xv},g,0) = Σ \g(xυ+ι) - g(xv)\ and (70) follows trivially.
V = 0

We shall reach the required conclusion of the theorem by combining (63) and
(70), with a suitable choice of {xv}.

Employing the hypothesis (8), there is an increasing sequence {wt} such
that
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(71) δ ( i ) = — — max fa-X-J -> 0 as z

With X> 0 arbitrarily fixed, let [hi] be the sequence

then 0 <ht <h0 for z > z0, and Λt -» 0 + . Write

then, for each z, {^£)} forms a partition of [0, X] with norm δ = δ(i)X, where
δ ( i ) is given by (71); and hence, given η(β)> 0, we can find /(£) > z0 such
that δ < ^β) for z > /(£). Then, from (62), (63), (64),

p

>S({xp}9g,p) for any i> z0

(^) I ̂  ̂ ε f o r f

Since M and the integral are independent of z, it now follows that

Γ x'\dg™(x)\ <p\M

for arbitrary X> 0; thus, letting X—> °o? we obtain

<p\M

and this completes the proof of the theorem.

We may choose, from the diagram of implications given in §2, conditions
on λ which imply those postulated in Theorem 7 — for example,

[(7)] λn+1/λn -> 1

implies (3) and (8). Or

[(4)]
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implies (3), (8) and (9) —and, incidentally (Corollary 5A) (C,λ, p) and (i?,λ, p)

are then equivalent. Though (4) is a somewhat restrictive condition, nonetheless

we obtain a non-trivial corollary by using it in Theorems 6 and 7; thus:

COROLLARY 7. Let μ > £ > 0, g satisfy (53), (54), (55), and λ satisfy (4).

i?, λ, p) £ (G, λ) zjf αrcd orcZj; * / J xp \ d g^\x) | < 00 .

A special case of Corollary 7 would be given by λn = ny and we should then

obtain a necessary and sufficient condition in order that (C, />)<ΞΞ.(G, n). The

special case of Theorems 6 and 7 in which (G,λ) is the Riemann method

(9ΐ,λ, μ) has been examined in more detail in [24] and [25].

It would be of interest if some of the results of the present paper could

be extended, at the cost of minimal additional restrictions on λ, to non-integral

values of p; or if some of the results of Jurkat [8] in this direction could be

obtained with lighter restrictions on λ.
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