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This paper is devoted to the geometry of transformations which have
deep relation with an (m—1)-dimensional distribution D of m-dimensional
Riemannian manifold M. A diffeomorphism @ of M to another m-dimensional
Riemannian manifold N induces a mapping of the tangent space at any point
x of M to that at @¢x of N. Also @ induces a mapping @, of the (m—1)-
dimensional tangent subspace defined by D to that defined by @D. If @, is
conformal for any point x of M, then we call ¢ an (m—1)-conformal trans-
formation of M to N with respect to the distribution D. A conformal trans-
formation in usual sense is of course an (2 —1)-conformal transformation. An
(m—1)-homothetic, or (m—1)-isometric transformation is naturally defined by
its restriction to D. We denote by DL the orthocomplementary distribution
to D. If an (m—1)-conformal transformation @ maps D+ to (@D)L, then it is
called special and denoted by an (m—1)°-conformal transformation. As D+
does not always admit a globally defined unit vector field ¢ such that &, < Dy
at every point x of M, we introduce a symbol ¢ (cf. §1). By this °¢ we can
obtain the equation which characterizes an (7 —1)-conformal transformation.
An (m—1)-conformal transformation of M onto itself which preserves D is
denoted by an [ —1]-conformal transformation.

Examples of such transformation appeared already in the theory of almost
contact metric structures. As an almost contact Riemannian manifold admits
a globally defined unit vector field & (see [14], [15] etc.), we can consider the
orthogonal distribution to & And a ¢-preserving transformation of a contact
Riemannian manifold is, in fact, an [7—1]*-homothety ([8, 9], [17~20], etc.).
Further, the existence of such transformations on certain contact Riemannian
manifold characterizes the structure of the manifold itself ([19,20]).

A trivial example is as follows: Let M, N be two Riemannian manifolds
with metrics g, & respectively and denote by R a real line, then we can define
Riemannian metrics on MxR, NxR by g+#%, h+k respectively, where % is
the usual metric on R. If @,: M— N is a conformal transformation and
f:R— R is an arbitrary diffeomorphism, then @: M xR — N xR defined by
oz, t) = (pox, f(£)), t€ R, is an [m—1]*-conformal transformation.
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In §1, we give the equation of an (2 —1)-conformal transformation @ and
the condition of speciality of (m—1)-conformal transformation. In §§4~6,
we calculate @-image of the Christoffel’s symbol, the Riemannian curvature,
the Ricci curvature and scalar curvature. Using these we investigate the
properties of @ under the additional conditions on @ or on manifolds. In §7,
we assume that °¢ is parallel along D and @ is an (m—1)*-homothety, and have
a relation of the sectional curvatures (Theorem 7.5). In §9, we consider the
group II of all [#—1]-conformal transformations and its subgroups. It is known
that the set of all conformal transformations of a Riemannian manifold is a
Lie group ([4]). But generally II is not finite dimensional, so we want to
find out the conditions on the manifold and a subgroup of II so that the
subgroup is a Lie group. And some answers are given in §15 (Theorem 15.9,
15.12).

Chapter II contains some studies of infinitesimal (72— 1)-conformal trans-
formations. The properties of conformal or infinitesimal conformal trans-
formations (or homothetic, or isometric ones) of Riemannian manifolds are
studied by many authors ([1], [3], [10], [16], [22], [23], etc.). In 8§16, we consider
the case where M is compact and the scalar curvature is constant and obtain
analogous results. Other extended investigation will be seen in other papers.

Contents are as follows:
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Supplementary results
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Chapter II

12. Infinitesimal (#2—1)-conformal and [ —1]-conformal transformations

13. Lie derivative of the Christoffel’s symbols by an infinitesimal (m—1)-
conformal transformation and relations with an infinitesimal affine
transformation and projective transformation

14. Lie derivative of the Riemannian curvature by an infinitesimal (72 —1)-
conformal transformation
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15. Lie algebras of infinitesimal [7—1]-conformal transformations and Lie
transformation groups
16. The case where M is compact and the scalar curvature R is constant

Chapter 1

1. Definition of an (m—1)-conformal transformation. Let M, N be two
connected m-dimensional Riemannian manifolds (m = 3) of class C~ and g,k
two Riemannian metrics of M, N respectively. First we assume that M
admits an (7z—1)-dimensional distribution D, and we fix D throughout the
paper. Then we also have an orthocomplementary 1-dimensional distribution.
Now we consider a diffeomorphism @: M — N, and denote by ¢@* the dual
map of @.

DEFINITION. If a diffeomorphism @ : M— N satisfies the following relation

(1 1) (¢*h)x(u, ‘Z)) = d(x) gz(u’ ‘U)

for any point x €M and vector fields », v on M such that #, ve D, where
a is a differentiable function on M, then we call @ an (m—1)-conformal
transformation of M to N with respect to D. If a is constant,  is an (m—1)-
homothety. Furthermore if a=1, @ is an (m—1)-isometry.

In order to express an (m—1)-conformal transformation by a tensor
equation, let £ be an arbitrary point of M. Then we can find an open
neighborhood U of x and a vector field ¢, on U, such that ¢y is ortho-
complementary to D and a unit vector field i.e., g({v, {v) = 1. For some open
covering {U} of M we can define {{;} corresponding &, to each U in such
a way that &y = &, or —¢&; holds on the intersection UNV, if it is not empty.
{¢€s} or its subfamily does not always define a vector field on M, so we use
the symbol ¢ = {¢{;}. We refer frequently this fixed covering {U} in the
sequel.

On each neighborhood U, we define a 1-form wy by

1.2) ' wy(w) = g&v, %)

for any vector field # on M. Then we have

.3 wi(€v) =1

and wy = 0 is the equation of the distribution D. Similarly we use the

notation *w = {wy]}.
We put E = ¢*h—ayg, clearly E(@,v) =0 if “w() = *w() =0. Next
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we put E(¢,°%¢) =8, then 8 is a globally defined scalar field because it
contains two €&’s, and we define °¢ by

(1.4 () = Ew,t) — B w(w)

for any vector field #« on M. ¢ is determined as follows: Let x be any point
of M then we have some open neighborhood U ¢ {U} of x and &y, wy on U.
These &y, wy determine ¢y of %6 on U. From the definition of E and %, we
see that

1.5) B(¢) = 0.

Then we can verify
1.6) P*h=ag+ w9 + b Q w+ Bw R w,

where @ means the tensor product. To see this, it is enough to compare both
sides substituting the pairs (°¢,°¢), (°¢,%) and (¥, v) where # and v are vector
fields which belong to the distribution D. Though ¢, *w and @ are not tensor
fields, restricting ourselves to some neighborhood we consider (1.6) as a tensor
equation. Of course, for U,V € {U}, the expressions (1.6); in U and (1.6), in
V are equivalent, because &s appear twice in the last three terms. It is
evident that the decomposition of @*h given by (1.6) is unique in the sense
that (1.5) holds. From the definition of 8 it follows that

.7 a+B = h(@%, 909,

where we have used, and shall use @ to denote also the differential of .
As for the distribution @D induced by @ on N, one has % and % on N
similar to %¢ and °w on M, satisfying

1.8) P =1, WX)=~hC¢X)
for any vector field X on N. We also fix a covering {'V} of N.

LEMMA 1.1. For any (m—1)-conformal transformation @, we have o> 0
and a+B>0. And the following conditions are eqivalent : '

(i) 4=0.

(ii) @€ = Pu’, for some .

In the above lemma, ®u is a symbol of {uyr}, and uyy is a differentiable
function on U N V. Namely for < M, if y=¢uzx, we take some neighborhoods
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U of £ and 'V of y, then @y = pprér on gUN'V. In this case by (1.7), we
see that uh@p) = a(P)+B(p) for pc UNe (V).

PROOF. Following the above notation, we show (i) — (ii). By the defini-
tion of @D, we have @*3, = v.,;ywy for some differentiable function 7., on
Un@ (V). In the following we write this relation by

1.9) P*n = *ytw.

Let # be any vector field on M such that *w(x) = 0. If ¥ =0 holds in
(1.6), then we have

h(¢ sé’> m) = (¢*h)(s§: u) =0.

Thus @°¢ is orthocomplementary to @D). This means that @ is proportional
to °%. And by (1.9), we have ¢°¢ = (*v-@~")°%. That is, we get

Pt = “pl,
where
(110) ssluzse,y.¢—1’ 8572:—‘0!4—3.
In the next place we prove (ii)—(i). (1.4) means that
Yw) = hipu, pt) - p—ag, ¢) — B wk)
= h(pu, Pu’%)-@
=0
for any vector field ve D. This completes the proof.

PROPOSITION 1.2. Let @ be an (m—1)-conformal transformations of M
to N, and let *Ky, ¥*Ky be angles determined by @°t and °%,°¢ and ¢ '%
respectively. Then we have

seyy .

ey
(1.11) cos *Ky = M&T;B_¢ ,

1
a >
(1.12) cos Ky = sgn(*y) (_—_—Za T+ R—ouy ) "L
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PrROOF. In the formula

i} Wt )
1.13 KN’ == ———
(1.13) cos Jhe%. 9D

we substitute (@*h)(¢,¢) = a+ 8 and
@, %) = *n(@%)
= (@)@ = -7,

then we get (1.11). Similarly e have the formula

¢, @' %)
1.14 L QAN 12 . Y
) R

First we have

gC¢, @1 °E) = "w(p™%)

= (P w)(p) - @ = .

363

And in order to estimate g(@p~'%, " '%), we decompose @ '% into orthogonal

components as follows:

(1.15) P = wlp Y + (97— wleT B .

Then we have

9@ %8, @71 %) = Cw(@p™ %))’ + glo™" % — “we ' %)¢, 9% — “w(p ' %)%),

where

Calp™ )" = (9 *w)(E) = ()",

and

ay(p™ % = wle L, 97 — WD)

= hCE— pCv' -0, — pC¥ ' %)) - @

since the 2nd term of the right hand side of (1.15) belongs to the distribution

D. Then we have
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h(C&, %) - p—2C) ' hCE %) - @+ ) h(@, ) - @
= 1-2C)" (@)@ + (*¥)"*(a+8)
= —1+Cy) Y a+h).

Therefore, subsituting these into (1.14), we get (1.12). qg.ed.

It is geometrically obvious that @' is also an (m—1)-conformal trans-
formation of N to M with respect to the distribution @D, applying @™ '* to
(1.6) we have

h — (d . ¢—1) ¢—17‘€g + ¢—l*sw ® ¢—1*50 + (p—l*sa ® q,—-l*ew
+ (B . ¢—1) ¢-1*sw ® ¢—1*5w .

Hence

(1.16) ¢—1*9=(i -qp“)h+8n®37\.+57\,®5n+p8¢7®577,

where we have put
(1.17) N = (et o) — ) ),
(1.18) p=—(@'B¥ @) — 2a ¥y - )P 'E) - p7" .

The right hand side of (1.17) contains & and so °A may be written
formally as ®». However & appears twice in each term. Thus ®A does not
depend on the choice of the neighborhood U< {U}. Therefore we can omit
& from ®\. Similarly the right hand side of (1.18) contains & and & twice in
each term respectively. So p does not depend on the choice of neighborhoods.

DEFINITION. The most standard (7z—1)-conformal transformation of M
to N is one which satisfies ¢ = 0, we call such an (sn—1)-conformal trans-
formation a special (m—1)-conformal transformation and we denote it by an
(m—1)*-conformal transformation.

DEFINITION. If we consider an (7 —1)-conformal transformation @ of M
onto itself, we sometimes assume that @ preserves the distribution. And we
denote such @ by an [m— 1]-conformal transformation. Namely by an [m—1]-
conformal transformation of M onto M we understand an (m—1)-conformal
transformation such that @D=D.
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ABBREVIATION. In the subsequent sections, we abbreviate & or & in
¢, %,%%, .-+, frequently in the case where there is no confusion.

2. Commutability of an (m—1)*-homothety and the parallel trans-
lations. In this section, we study some properties of the (m—1)-homothety
of M to N satisfying some additional conditions, concerning the parallel
translations with respect to the Riemannian connections. We denote by =
and V, ‘T and 'V the parallel translations along certain curves and covariant
differentiations with respect to the Riemannian connections for g, & respectively.
We utilize the fundamental formula :

2.1) 29(VxZ,Y) = X~ oY, Z) + Z+ oY, X) =Y - ¢(Z, X)

for any vector fields X,Y and Z.

THEOREM 2.1. Let @ be an (m—1)-homothety of M to N and suppose
that the distribution D in M is completely integrable. If a curve [ = {I,:
0=t =1} in M, joining two points l, and l,, is a segment of an integral
curve of the distribution D. And if w, is a tangent vector at l, which
belongs to Di, and miyu, € Dy, for any t: 0=t =1, [(t)={1,:0 =5 = ¢}, then
we have

PLTith, = TaPLly, -

PROOF. We can assume that / does not have any self-intersecting point.
Let # be a vector field on M such that « coincides with #, = 7w, on I, :
0=t¢=1, and belongs to D. And let v be a vector field on M such that v
is tangential to the curve / and belongs to D.

Of course, such u, v exist. In fact, let Z be any vector field on M which
coincides with u;, on [,, then u = z—°w(#%)°¢ satisfies the required property.
In this case “w(®)% is a globally defined vector field, since it has two é&’s.

Now, in (2.1) we set X=¢v, Z=@u and replace g by &, then we have

(2.2) 2hW(Vpwou,Y) = @u-h(Y,pu) + ou-h(Y, pv) — Y - h(pu, pv)
+ h(pv, [Y, pul) + hlou, [Y, pv]) — A(Y, [pu, pv])

for any vector field Y on N. By the assumption %4 =0 and w(u) =0, and by
(1.6), we have



366 S. TANNO
pv-h(Y,pu) = v-(p*h) @'Y, u)- @™
=v-(agle™'Y,w)-97".
And we have
v, [Y, pul) = (@*h)(v, [p™'Y,u]) - @7
=agv,lp7'Y,ul)- 97",

2.3) A, lpu, pv]) = agle™'Y, [u,v]) - @' + Bw(ep™'Y)w((u,v]) - @7" .
As the distribution D is completely integrable, w([«,v]) = 0 holds good, and so
(2 4) h(’vm Pu, Y) = ag(vvu, q)-—lY) '¢_l .

If % is parallel along I, V,# = 0 holds on / and we have 'V, ,,pu =0 on @I.
q.ed.

As a natural consequence, we see that, under the assumption in Theorem
2.1, if / is not only an integral curve of D, but also a geodesic, then @/ is
also geodesic. However this holds without the asumption of the complete
integrability of D.

THEOREM 2.2. Let @ be an (m—1)-homothety. If [ is an integral curve
of D and geodesic with respect to g, then @l is an integral curve of @D and
geodesic with respect to h.

PrOOF. If [ is a geodesic, in the above proof we may assume that z=v.
In (2.2), we replace pu by @v, then (2.4) replaced « by v holds good, since
the 2nd term of the right hand side of (2.3) is zero. And hence V,v=0 on
[ means 'Vy@v =0 on @l.

THEOREM 2.3. Suppose that the distribution D is completely integrable
and each trajectory of °¢ is a geodesic. If an (m—1)-homothetic trans-
formation @ satisfies B=constant. Then, denoting by [ = {I,:0=t=1} a
segment of the trajectory of °¢, we have

’
?’1 Ty ulo = T¢l ¢lo ulo

Sfor any tangent vector w, at l, which belongs to D,.

PROOF. As { is autoparallel and u, is orthogonal to &, Tigu, is also
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orthogonal to §,. Let # be a vector field on M such that u, = 7 ¢u, and
w(w)=0. Using (2.1) for @¢ and ou, we get

Zh(,v(vé’W’ Y) P = ng(v{ua 7)_1 Y) + 6” ° w(¢—1 Y)
+ Bw([@™'Y,ul) — Bw(e™'Y) w(lx, £)

for any vector field Y on N. If we put Y = @v, where v belongs to D, as
D is integrable, we have

(2.5) (Ve pu, pv) = ag(Vau,v) - 7' .
Next we put Y=, and notice that
w(ul) = -LOw-u,
where L({;) means the operator of the Lie derivation with respect to §y. It is

known that L({,)wy =0 if and only if each trajectory of ¢, is a geodesic,
since w(§)=1. And so we have

(2.6) (Ve pu, pf) = ag(Viu ) - @7" .
By (2.5) and (2.6), V.« = 0 on [ means that 'V,,pu = 0 on @l.

THEOREM 2.4. Suppose that the distribution D is completely integrable
and l1={l,: 0 =t <1} is a segment of an integral curve of D. If an (m—1)-
homothetic transformation ¢ satisfies S=constant and ‘¢ is parallel along I,

then °¢ is parallel along @l.

PROOF. Let v be a vector field stated in the proof of Theorem 2.1. By
(2.1) we get

2W( V@l Y) @ = 2a9(V £, 7' Y) + v - Bw(p™'Y)
+ Bw([p™'Y,v]) — Bw(e™'Y) w([¢,v]) .

By the similar argument to the proof of Theorem 2.3 we have

2.7 M Vpugt,Y) = ag(V, {97 Y) - 07"

This completes the proof.
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3. The case where each trajectory of °¢ is a geodesic. In this section
we do not necessarily assume that @ is constant.

THEOREM 3.1. We assume that M and N admit an (m—1)*-conformal
transformation @ such that a+B is constant. If each trajectory of °¢ is
a geodesic, each trajectory of °¢ is also geodesic.

PROOF. In (2.1), putting @¢ and Y, we get

3.1) 2h( Ve @l,Y) @ =28 - (@+B) w(ep™'Y)—@ 'Y - (@+R)

+ 2(a+8) w(e™'Y, £]).
By the assumption that @+@ is constant and that each trajectory of ¢ is a
geodesic, we see that the right hand side vanishes when we put Y = @ and

Y = @u respectively, # denoting a vector field which belongs to D. So we
have 'Vy@t = 0. As @f = p&, |u|? = a+B, we see that V&= 0.

THEOREM 3.2. Suppose that each trajectory of °¢ and % is a geodesic.
Let @ be an (m—1)*-conformal transformation of M to N, and u be a vector
Sield on M which belongs to D. Then we have L(u)a+B)=0.

PROOF. We utilize (3.1) and putting Y = @u, we have
(3.2) 2h( Vo b, pu) - @ = —u - (a+8).
On the other hand, as (@8)ps = HpzEps, oo = (A +B)s, x€ M, we get
(3.3 Vot = (V) €,
where we have used 'V:&£ = 0. By (3.2) and (3.3), we have u-(a+8) = 0.

PROPOSITION 3.3. Suppose that each trajectory of °¢ and °€ is a geodesic.
Let @ be an (m—1)’-conformal transformation of M to N such that &-(a+B)
= 0. Then a+B is constant.

PROOF. Any tangent vector v, at x< M is written as

Uy = (vx - w(v)gz) + 'LU(‘Z)) g:c )

where v,—w(v) ¢, € D,. By Theorem 3.2 we have (v, — w(v) {;)(@+8) = 0.
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Thus we see that a¢+8 is constant.
From Theorem 3.2 we see geometrically the following

PROPOSITION 3.4. Suppose that each trajectory of °¢ and %€ is a geodesic.
Let @ be an (m—1)-conformal transformation of M to N and let |l be a
trajectory of °¢. If, for each I and for any points x,y<cl, we can join x
and y by a piecewise differentiable integral curve of D. Then a+RB is
constant.

4. Transformation of the Christoffel’s symbols. Let @ be an (m—1)-
conformal transformation of M to N and x be an arbitrary point of M and
vy =@x. On some coordinate neighborhoods U of £ and 'V of y, we have
wy, &, Ov, & and we write them simply w, ¢, 60,8 We write their components
w', &, etc. with respect to the local coordinates ', y*: i, ¢ =1,2,-++,m.
For convienience, we write w' for ¢ sometimes. Let

v oy* OyP
G = hes e G

then (1.6) is written as follows:
(4. 1) Gij = agij + ‘Z,U,-ﬂj + 0,;w]' -+ ﬁwiw]' .

We put v = 8,0'—a(a+B), where #'=¢"0; and g% is the inverse matrix of g¢,;.
Then the inverse matrix (G™')** of G;; is given by

1 1 : 1 1 r .
-1\jk — = k — i Jank — = Qifk — - k
4.2) (G YH* = 9%+ (w’t*+ ' w*) ” 96% + ” (,8 a>w’w ,

where r = 6,6°. If =0, (4.2) reduces to

(4.3) (Gy* = —— g —

B8 ok
aatB) O

Denoting by VJ{;/@}’ lek" the Christoffel’s symbols with respect to Gij, ¢i;

respectively, generally we see that

@0 Vueh = @I == {5 @t (TG k= {5 e

holds good, where ¥V and 'V are covariant differentiation with respect to g
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and A. The second term of the left hand side of (4.4) vanishes. Making up
(4.4) in the simplified form, we get

(4.5) 2("{;.,6} - {JkaGH = V,Gu+ V:Giy— VG .

We calculate ‘ by (4.1), (4.2) and (4.5) and we have
jk

4.6) 2Lt =2l + @+ - @
~ L sww, + P it -y
- e - L) €argn+ (8- L) €O wse,
—2(8— 1) aguon, + 28wy + 20 (8 — L) wisn
+28(8— L) witwn, | + (),

where we have used the notations V,w; = w;;, a; = oa/ox', a* = ¢"a;, B*
= ¢"B;, ta = w'a;, and () for indices means half of the sum of two terms
interchanged two indices, for example

2wen' ;) = wew'; + wyw' s,
and finally we have put

4.7 ([01) = 2a7" g"* {w@n1,n— 1) + Galwin,n— wi,n)}
+ v ! 2048 — (0a) g — (08)w;w,— 208 .1
— 2Bw(wi,s— Wisi,0) 0
— 2w(l,s— b1s1,00) 0°
— 20 (wi,s— wWis), 1) 6°
= 2(B—ra=") O ywi,sw’ + w(B,s—0s;1)) w*)}
+ v 0 {(a ba—Ea) g, + (@ 10B—ER) wjw,

-+ 20(]‘,)5) — Za‘w(,;k) + Za(jwk) + ZB(jIUA;)
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— 2a7ta by — 2Bwiwry,s w'
= 2(wOn,s — Ols1,0) W* + Oy, w°)
+ 227 Bw(wi,s — Wisi k) 6°

+ 207w (Or,s — O151,1) 0 + O(wiy,s— Wis;1) )} .

Contracting with respect to 7 and %, we have
(4.8) z"{J’fk} - fok} + (ma + Bt — 2ra v e, — av 1By + v, .

THEOREM 4.1. Let ¢ be an (m—1)-conformal transformation of M to
N. If @ is an affine transformation, we have

(1) a and B are constant.

And as a necessary condition that M and N admit such ¢ satisfying 80,
we have

(2) ¢ is a parallel field.

PROOF. By the assumption the last term of the right hand side of (4.7)
vanishes and ¢{ ;kf' = {]Zk} holds good. Transvecting (4.6) with w/w,;, we get
(49) ak+/8k=0-

And from (4. 8), it follows that

(4.9) and (4.10) give the following relation
(m—1)(a+B)a, =0.

Thus a is constant and, by (4.9), 8 is also constant.

In the next place we prove (2). Transvecting (4.6) with w/w* and using
the fact that @ and @ are constant, we get

(4.11) B, w =0.

If 80, by (4.11) we get w, ;w’ = 0. Transvecting (4.6) with w;, we have

(4. 12) B(w‘;,k + ‘wm) == O .
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Thus ¢y has a property of a Killing vector field. Transvecting (4.6) with w*
we have

(4.13) Bwi,; — w;:) = 0.

Hence ¢ is a parallel field. q.ed.

REMARK. In (2) of the Theorem 4.1, the assumption 8 > 0 means that
@ is an essentially (7 —1)*-conformal transformation.

As a converse, next theorem follows from (4.6) immediately.

THEOREM 4.2. Suppose that @ is an (m—1)>-homothetic transformation
of M to N such that B is constant. If °¢C is a parallel field. Then ¢ is an
affine transformation.

5. (m—1)-conformal and projective transformation. By definition a
projective transformation @ of M to N is one which transforms the system
of geodesics in M into the same system in N. Namely as a necessary and
sufficient condition that @ is a projective transformation we have

5.1) 2¢{]?k}—2{]?k}=2am + 284,

where Y is a differentiable function on M.
Suppose that @ is an (m—1)*-conformal and at the same time projective

transformation. Contracting with respect to 7 and j in (5.1) and using (4. 8),
we get

, _ m(a+B)—8 1

Thus, if @ and B are constant, Y, = 0 holds good and we see that ¢ is an
affine transformation.

PROPOSITION 5.1. Let @ be an (m—1)*-conformal and at the same time
projective transformation. Then we have

(.3) 2dy = dloga.

PROOF. Transvecting (4.6) with w’w, and utilizing (5.1), we get
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1
(54) ZC\[r-w,c + 21[/‘,c = m(dk-i-ﬁk).

Transvecting (5.2) and (5. 4) with w*, we obtain

_ m(a+B)—RB 1
(5.5) 2m+1)6d = ala+p) fa + a+tpB &8,
5.6) 1ty = g Caris).

Eliminating &y from (5.5) and (5.6), we get
5.7 (a+2B)¢a = afB.

By (5.6) and (5.7), we get 2¢% = ——{a. And so, by virtue of (5.2), (5.4) is
written as

(5.8) (m—-1DB—a)a, — maB; + (m+1)(a+B)¢a-w, =0.
Transvecting (4.6) with ¢*w; and using (5.1), (5.7) and 2afy = {a, we get
(5.9) (m—1)ta = 28w, .

Transvecting (4.6) with w’w”* and g¢’* respectively and using (5.1), (5.2), (6.7)
and (5.9), we have

(5.10) 2@+P)¢a-w, — ala,+8:) + 2aBw, w' =0,

. (m+Da+28, (@+B)2—m—m*)+28

(5.11) T tarwe (a+B)(m+1) ay,
(a+B)(m+1)+2a .

Eliminating w, ;w' from the two above equations
(5.12) (B—mH)(a+pP)+28)a,—2aB; + (m—1)(m+1)a+B)¢a-w; =0.
Eliminating w; from (56.8) and (5.12), as m > 2, we get

(5.13) (a+28)a, — aB, =0.
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From (5.2) and (5.13), we deduce (5. 3).

THEOREM 52. Let @ be an (m—1)*-homothety and at the same time
projective transformation. Then @ is an affine transformation. Further 8
is constant and ¢ is a parallel field.

PROOF. As a is constant, we have . = 0 by Proposition 5.1, hence ¢
is an affine transformation. Then we can apply Theorem 4.1.

THEOREM 5.3. Let @ be an (m—1)-conformal transformation and at
the same time projective transformation such that a-+ B is constant. Then
we see that a and B are constant and @ is an affine transformation.

PrROOF. This is an immediate consequence of (5.13).

COROLLARY 54. Let @ be an (m—1)-conformal transformation of M
onto itself and at the same time projective transformation such that @°¢
==%. Then @ is an affine transformation.

6. The Riemannian curvature, Ricci curvature and scalar curvature.
Let @ be an (m—1)-conformal transformation of M to N. We denote by R';,,
R;., R and °RY;, ?R;,, R the Riemannian curvatures, Ricci curvatures, scalar
curvatures with respect to ¢ and @*h = (G,;) respectively. First we have

(6~ 1) ¢Rijkl = Rijkl + W;k,l - Wél.lc + Wf'z ?Ic - ik gz 5

where covariant derivative ( , ) is the one with respect to Uk} and

i ? i _ i
©.2) =il e
The verification of (6.1) is as follows: When we calculate ?R%;, by
{;k} + Wi, we have the right side of (6.1) and the terms which contain {Jl-k}’s.

At any point x of M, we can find local coordinates x' such that {;k} =0

holds good. Then we have (6.1) at x, and as (6.1) is a tensor equation, we

get (6.1).
Contracting with respect to 7 and /, we have the relation of the Ricci

curvatures by ;

(6.3) ’Rjx = Ry + Wiy — Wi + WL, W5 — WL W7, .
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Transvecting (6. 3) with (4.2), we get

1

1 1 D 1
(6.4) "R=—""R+—_~Wig".— Wiy’ + Wi

g~ - WEW g™

+ L (8- L) (R, O+ Wh e~ Wi, suveot
+ Wi Wiw'wt— Wi, Wi w'}
o (2R,(0, £)-+ 2W 0t — W o0+ w08)
+ 2Wi W w6 —2Wi, W6 w’}

A (CRO,0) + (~ W+ W~ W W+ WEWR 66

where R, denotes the Ricci curvature.
As a special case, we consider an (m—1)*-homothetic transformation of
M to N assuming that ¢ is a parallel field. By (4.6), we have

1 i
(6‘ 5) 2W§k = - 7Biijlc + Z{.(‘a.lp_l_—s)— (B(fﬁ)ijk—l-ZdB(jwk)) .
Then by (6.3) we have
2
(6.6) 4°R,, = 4R, + d—w—(Bj,,w‘wﬁﬂk,zwlw,—ﬁj,k)

+ wi{—2(a+B)2 B ,+28(a+B)B;, ww'

1
ala+B8y? ™

+ (@+8)B,8" — B(RB)*}

1
+ (a+8)—2(ﬁj8k_2(§ﬁ)8(jwk)) .
And finally from (4. 3), we have

4

op_ 4
6.7 4°R=— Rt "o

Byt —84) + s (87— (€8,

where we have used R;w'w’=0, which follows from the fact that w' is a

parallel field.
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Now, next Proposition is evident :

PROPOSITION 6.1. Suppose that ¢ is a parallel field and @ is an (m—1)*-
homothety of M to N such that B is constant. Then the scalar curvatures

. . 1 . .
are in the relation 'R,, = —a_R” x e M. Particularly if both scalar curvatures

are constant and equal to R > 0, then @ is an (m—1)'-isometry.

As usual, we denote by 8 the dual of d (i.e. codifferentiation), then we
have 8, = —8dB.

THEOREM 6.2. Suppose that °¢ is a parallel field and @ is an (m—1)*-
homothety of M onto itself such that 8dB = 0 and ¢8 = 0 hold good.

(i) If R=0, B is constant.

(ii) If R = constant <O, then a =1.

(iii) If R = constant > 0, then a =1.
In (ii) and (iii) equality holds if and only if B is constant.

PROOF. If R is constant by (6.7) we get
1 .
(6.8) Wﬁrﬁ =2(a—1)R,

where we have used B, w'w' = (8;w’), w'=0. From (6.8), (i), (ii) and (iii)
follow. If & =1, then B,8” = 0 holds, hence B is constant,

THEOREM 6.3. Suppose that °¢ is a parallel field and ¢ is an (m—1)-
homothety of M onto itself such that B is constant. If the scalar curvature
is bounded and not equal to 0 somewhere, then @ is an (m—1)-isometry.

PROOF. By (6.7) we have R = —c_lz_R namely R,, = —C%-Rz , x being a

1

k
point at which R, is not zero. Then by iteration, we have Ry, = (—C—t—> R,.

As R is bounded, we can conclude that a=1.

THEOREM 6.4. Suppose that °¢ is a parallel field and ¢ is an (m—1)-
homothety of M onto itself which preserves the Ricci curvature.
(i) If 8dB =0 and ¢B = 0, then B is constant.
(ii) If M is compact orientable, then dfB is proportional to w.
(ili) If M is compact and there exists a point x such that R, > 0, then
a=1.
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PROOF. Noticing that ?R;, = R;;, we transvect (6.6) with w’w*, and get

1
a+pB

6.9) 28, 1w — 28+ g BB~ o5 €8 =0.

Then (i) is clear. To prove (ii), if we integrate (6.9) over M, we have
[t @8 - ¢8pds=0
- a+B T 2

where we have used f B ww'de = L (B;w'w')  do =0, and do denotes the
M

volume element of M. As a+ 8 is positive and (8,8"—(&R)?) = (B,— (&R w,)
X (B8 —(¢B)w") is non-negative, we have 8,=({8)w,, namely dR is proportional
to w. On the other hand, transvecting *R;,= R;; with (G™*)’! in (6. 6), we have

R = —i—R. As M is compact, R is bounded, so we have a=1.

REMARK. Assume that ¢ is a parallel field and @ is an [z —1)-homothety
of M onto itself, then we have (i) and (ii). Because *R,({, &)=u’R,(, &) =0.

7. The sectional curvatures in the case where °¢ is parallel along D.
We say that ¢ is parallel along D, if VvV, =0 holds for any vector field «
which belongs to the distribution D i.e. w(x) = 0. First we prove

LEMMA 7.1. If ¢ is parallel along D, then D is completely integrable.
PROOF. Suppose that # and v belong to D, then we have

(7.1) w(Vou) = Vy(ww) — V,w-u=0,

from which we have

(7.2) ‘ w([u, v]) = w(Vo — Vu)=0.

This completes the proof.

LEMMA 7.2. If ¢ is parallel along D and if ¢ is an (m—1)*-homothety
of M to N. Let u,v be vector fields which belong to D, then we have

(7' 3) IquW = ¢vvu .



378 S. TANNO

PROOF. If # and v belong to D and @ is an (m—1)*-homothety we have
(2. 4), equivalently

(7. 4) W Vopu,Y) = alp™*g) @V 1, Y)

for any vector field Y on N. By (1.16), we have

(-5 7% = h = (e o @

And we get

(7.6)  (@(@Vu,Y)=neV,u) 5Y)=vyw(Vu)e oY) =0.
Then by virtue of (7.4), (7.5) and (7. 6), we get

(7.7) (' Vopu,Y) = h(pV u,Y).

As (7.7) holds for any Y, we have (7. 3).

PROPOSITION 7.3. Let ¢ be an (m—1)-homothety of M to N such that
B is constant, then two following conditions are equivalent :

(1) °¢ is parallel (along D resp.).

(ii) °¢ is parallel (along @D resp.).

PrROOF. (i) — (ii). We use (2.7). If ¢ is parallel along D, V,¢ = 0 holds
good provided that v belongs to D, and we have 'V,,p¢ = 0. Then ~/a+ B &,
and so &, is parallel along @D. If ¢ is parallel, each trajectory of ¢ is a
geodesic. By Theorem 3.1 we see that each trajectory of & is also a geodesic.
Then & is parallel field. The case (ii) — (i) reduces to the first case by taking

the inverse @™

THEOREM 7.4. Suppose that °¢ is parallel along D and ¢ is an (m—1)*-
homothety of M to N. Let u,v,r be vector fields which belong to D, then
we have

(7.8) ‘R(pu, pv) pr = p(R(u, v)r),

where R and ‘R denote the Riemannian curvature tensors with respect to g
and h.

PROOF. The expression of the Riemannian curvature tensor is as follows :
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(7.9) —Ru,v)r = VoV — Vo Vur—Var -
Thus, if «, v, r belong to D, by Lemma 7.2, we have
—'R(pu, p0)pr = Vo Vo @r — Voo NV ou @ — "N ton,00 PT
= Vou (V1) = V@ (Vur) = Vouun@r
= —@-Ru,v)r,
completing the proof.

We denote by K,(#,v) the sectional curvature defined by the tangent
vectors # and v at a point x, then

K = B

where |uAv| is the area of the parallelogram with « and v as adjacent sides:
(7.10) luAv]? = |ul?[v]® = (g, v)*.

REMARK 1. If ¢ is a parallel field, we have R0’ = 0. Therefore the
sectional curvature K(¢,«) determined by ¢ and any other vector « is equal
to zero.

THEOREM 7.5. Assume that °¢ is parallel along D and ¢ is an (m—1)*-
homothety. Let u,v be tangent wvectors at x< M which belong to D,, then
we have

(7.11) K. (u,v) = a' K, (pu, pv),

where 'K(gu, pv) is the sectional curvature determined by ou and @v with
respect to h.

PROOF. By Theorem 7.4, we have

(7.12) h('R(pu, pv) pu, pv) = h(g - R(u, v) u, pv)

= ag(Ru,v)u,v)-@™".
From (7.10), it follows that

(7.13) lpu Npu|® = a®lupv|?p".
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By (7.12) and (7.13), we get (7.11). q.e.d.

Let u,, v, be two tangent vectors at x and let #,v be their extension to
vector fields. Then the value of the function K(x, v) at x is equal to K, (&, v,).
Now we prove

THEOREM 7.6. Assume that ¢ and °¢ are parallel fields and ¢ is an
(m—1)*-homothety. Then we have

_ Qlp,u,v) \.
(7.14) Ku,v) = (d + T;%%) K(pu, pv) - @,

for any vector fields u and v, where we have put
(7.15) Qp,u,v) = B(a*g(v,v) + b*g(u,u) — 2abg(u,v)),
a and b denoting “w(u) and “w(v) respectively.
PROOF. We decompose # and v as follows:
(7.16) u=u+at, v=uv,+b¢,
where #, and v, belong to D and a=°a="w(u), b="b="w(v). Then @u=qpu,

+Cap™) 9t = puy+(Cap™")u’, u?-p = a+B, and as ¢ and & are parallel fields,
we have

(7.17) h('R(pu, pv)pu, pv) = h('R(puy, pv,) ptts, PTo)
= “Q(R(uo; vO) Uy, vO) ° ¢—1
= ag(R(u,v)u,v) - p7".

On the other hand, using (7.10) and @¢ = ué, p*-p=a+B, we can show the
following relation

lpuppv|® - @ = a’lu \v|* + aBa’g(v, v) + b°g(u, u) — 2abg(u,v)).

Thus we have

_ (1 A(R(pu, pv) pu, pv)-@
Ko = () ol

_ 1 a@lupv|’+aQ(p,u,v)
T a lupv|?

(K(pu, pv)- ).
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Now we have (7.14).

THEOREM 7.7. Assume that ¢ and %€ are parallel fields and @ is an
(m—1)-homothety. If M is of non-negative curvature (non-positive curvature
respectively), then N is of non-negative curvature (non-positive curvature
respectively).

PROOF. By (7.17) we see that K(u,v) and 'K(pu, pv) have the same sign
+ or —.

REMARK 2. In Theorem 7.6 and 7.7, if @ is an (sn—1)’-homothety such
that B is constant, then the assumption that °¢ is a parallel field may be
removed by Proposition 7.3.

8. (m—1)-Einstein spaces. Let M and R, be an m-dimensional Riemannian
manifold and Ricci curvature.

DEFINITION. If M admits an (m2—1)-dimensional distribution D such that
R,(u,v)=eg(u,v) holds good for ,ve D, e denoting a scalar field, we say that
M is an (m—1)-Einstein space with respect to the distribution D.

Let °¢, “w be ones defined in §1. By the similar argument we see that
R, is written as follows

(8.1) R, = eg + “w®K + ‘KQw + fro@w,

where f is a scalar field on M and °K defines a 1-form Ky in each U in §1.
Namely in U, we have

(8.2) Ri; = egi; + wK; + Kgw; + fw,w;,

where K;w'=0. Transvecting (8.2) with ¢¥, we get

(8.3) R=me+ f.

By the same letter K we denote the contravariant vector: K’= ¢¥K;. Using

3, we have (w)=—w',.
Now we prove

THEOREM 81. Suppose that M is an (m—1)-Einstein space (m>3) with
respect to D. If in (8.1), the three conditions:
(1) S‘w,;:O, V;UQ‘UZO,
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(2) R,(¢v, &v) = constant,
() 8Ky=0, Vi Ky+ Vibv=0

are satisfied for each U, then e and f are constant on M. Further the
scalar curvature R is constant.

PROOF. Multiply w'w’ to (8.2) and contract with respect to ¢ and j,
then we have

(8. 4) R wwi=e+ f.
Hence, by (2) we have

(8.5) e, +f=0
Differentiating covariantly (8.3) we have

(8.6) R,=me, + f.

And from (8.2), we get

8.7 d*Riis = Riv'* = e, + fiw'wy,

where we have used w';=0, w; ;w'=0, K';=0 and K, ,w'+w,,;K'=0. Using
the well-known identity R ,=2R;.", (8.6) and (8.7) show that

8.8 (m—2)e, = 2¢f - wi, — fr.

Eliminating f, from (8.5) and (8.8), we have

(8.9) (m—23)e, =2¢f - wy.

Transvecting (8.5) and (8.9) with w*, we get
Le+tf=0, (m—3)fe=2Lf.

Thus we get (m—1)¢e=0 and &e=0, {f=0. Then from (8.5), (8.6) and (8.9)
it follows that e, =f,=0 and R ,=0.

COROLLARY 8.2. In an (m—1)-Einstein space (m>3), if °¢ is a parallel
Jield and if 8Ky=0, YV, Ki;=0 (in particular if K=0) hold good. Then e,

Jf and R are constant.
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PrOOF. (1) of the Theorem holds good. By Ricci’s indentity, we have
R;w'w’ =0, satisfying (2).

PROPOSITION 8.3. In the above Theorem, if m=3, i.e., M is a (3—1)-
Einstein space satisfying (1), (2) and (3). Then

Le=¢f=0 and E¢R=0.

PPOOF. By (8.9) we have £f=0. And so £e=0 and ¢R=0 follow from
(8.5) and (8.6).

DEFINITION. We call M a °w-Einstein space if M is an (m—1)-Einstein
space with respect to D and satisfies °’K=0 in (8.1).

REMARK 1. In the study of contact manifolds, some authors treated with
n-Einstein spaces, 7 denoting a contact form ([11], [12]).

REMARK 2. In the Theorem 8.1 and Proposition 8.3, if M is a “w-Einstein
space, the condition (3) is satisfied always.

If M is an Einstein space (R<0), a transformation which preserves the
Ricci curvature is an isometry of M. So there is no essentially [m—1]-
conformal transformation of M which preserves the Ricci curvature. This
is one of the reasons why we consider (m—1)-Einstein spaces.

THEOREM 8.4. Let M be an (m—1)-Einstein space. If a transformation
@ of M preserves the Ricci curvature and the distribution *w=0, then @ is
an [m—1)-conformal transformation.

PROOF. By assumption we have

R \(pu, pv) = e g(pu, pv) + w(pu) K(pv) + Klpu)w(pv) + fw(puw) wiev)

for any vector fields %, v on M. And we have a family ®'y = {vy,} of scalar
fields such that p*w=Yw. As R(pu,pv) 9 = R,(u,v), we have

% - € 1 —Yo*
(8.10) P¥g = P g+ . w Q@ (K—7p*K)

+ ;1; (K=79*K)®@w + —e_%(f—'w(f' P)wQw .
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Though this is not a canonical form of an (m—1)-conformal transformation,
we see that @ is an [m—1]-conformal transformation. If K—vy@*K is pro-
portional to w, @ is an [m—1]*-conformal ‘transformation. And if e is
constant, @ is an [m—1]*-isometry.

COROLLARY 85. Let M be a*w-Einstein space (m>3) and suppose that
@ preserves the Ricci curvature and the distribution *w=0. If (1) dwy=0,
Ve ,£v=0 and (2) R,(&v, &y) is constant, then @ is an [m—1]-isometry.

PROOF. As K=0, by Theorem 81, we see that e and f are constant.
Thus by (8.10), we get

(8.11) P¥g =g+ {—(1——72) wQw .

COROLLARY 8.6. In Corollary 8.5, in particular if R\(&v, {v)=non-zero
constant. Then @ is an isometry.

PROOF. From ¢*w = Yw, ¢¢ = (Y- 1) ¢ follows. By contraction (8.11)
with ¢, we get

=1+ %(1—'1/2) .
As e+ f > 0, we have 7*=1, and hence @¥*g=g.

9. The group of [m—1]-conformal transformations. In 7-dimensional
manifold M, let D be an (m—1)-dimensional distribution of class C~. By II
we denote the set of all [m—1]-conformal transformation of M on itself with
respect to the distribution D. Let @, @, and @; be elements of II, then )

©.1) P = Naw
9.2) (@*9). = an(x) g + W, R, + (B):Qw, + Br(x)w,Rw, ,

A=1,2,3, where 7, ay, 81 are scalar fields and 6, defines 1-form in each local
neighborhood. Then the composition @, @, satisfies

9.3) (2« p)*w), = (P *@*w), = V(x) V(P x) ws

9.9 (@: - @) *9). = a,(x) ay(px) Ja
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+ ws @ [y x)(0)s + Vi(x)(@¥8,),]
+ [aty(@12)(6,)s + Vi(X)(@1*65)s] @ W,

+ [y x)Bi(x) + Bapix) Mi(@)] we @ Wi,
9.5) (@5 @2 - ¢1)*9) = a,(x)y(P, ) As(Pop1 T) go + (oo )»

where (---) means three terms corresponding to the 2,3, 4th term in the
right hand side of (9.4). The inverse transformation of ¢ satisfies

9.6) (s = (5) @14,

OD @ = (1) @+ woe @ (= @) (7¥8),
+ (— C—t:; (x)> (@ #0)gz @ Wy — ("CgT (%) Wpo @ Wy, -

Here we notice that (9. 4) and (9. 7) are not canonical expression of (m—1)-
conformal transformations.

We use the notations for the subgroups of the transformation group II as
follows :

IT*: The totality of [#—1]-conformal transformations.

® : The totality of [m—1]-homotheties.

® : The totality of [m—1]-isometries.

®': NI, P ONIL.

Next theorem is an immediate consequence of (9.5) and (9.7).

THEOREM 9.1. ® and ®° are normal subgroups of ® and ©° respectively.
THEOREM 9.2. Any finite subgroup of @ is a subgroup of ®.
PROOF. Let @< ®, then by (9.4) we have

(@*9)e = d?gs + (*),

and by % times iterations we have

(@*9)s = dfgs + (¥%),
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where (*) and (**) denote the terms which contain w,. So, as a* is not
bounded unless a=1, the assertion is true. q.e.d.

Some answers to the question “Under what conditions does certain subgroup
of II* make a Lie group ?” are given in §15.

10. (m—1)-conformal transformations of complete or compact M. Let
@ be an (m—1)-conformal transformation of M onto itself satisfying (1.6) or
(4.1). We take an arbitrary point « of M and take suitable local coordinates
' in a local coordinate neighborhood U about x such that (g;;).=38;;, w,=(0,
«-+,0,1). This is possible as & is a unit vector field. And let (4,,---,8,_,,0)
be components of #;, where we have used 6,,=0 as (£)=0. Then we have

O 0 o 0 6,
0 a "

Gl = e T e 5
; a0 O s
T 0 @ b
By oo Ons Onoy B

where |G;;| denotes the determinant of the matrix G;;. Thus

Gl = am{(@+8) — o~ 2 03

m—1

holds at x. As ) 6 = g(¢,6) and |G;l, lgi;] are positive, we get

i=1

(10.1) N 1Gyl = [ama+B—a'g@, O)* Vgl -
If M is compact and orientable, we can integrate (10.1) over M, denoting

fd0‘=lM|, we have
M

THEOREM 10.1. Suppose that @ is an (m—1)-conformal transformation
of a compact and orientable manifold M onto itself. Then the following
equation is valid :

1
2

o [ar@r-ar g0 ds=1.
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As an immediate consequence of Theorem 10.1, we get

THEOREM 10.2. Let ¢ be an (m—1)-homothety of a compact and
orientable manifold onto itself such that B is constant. Then @ is an
isometry, except the case aax1 and S=a' "—a.

As a corollary we have

COROLLARY 103. In a compact orientable manifold, (i) if @ is an
(m—1)*-homothety such that @°¢ = =£°¢, then @ is an isometry. (ii) if @ is an
(m—1)*-isometry such that B is constant, then @ is an isometry.

Next we prove

THEOREM 104. Let @ be an (m—1)-conformal transformation of a
complete Riemannian manifold M. If a<<a,<l and a+B<a,<l on M
(or a>a,>1 and a+B>a,>1) for some constant «,, then there exists a
unique fixed point of @ in M.

PROOF. Let x be an arbitrary point of M and /=x(¢) (0 =¢=1) be any
differentiable curve which joins x=x(0) and z(1)=@px. We denote by |I| the
length of I. Now we have

2

gl 450 85 = (5 82 ) (4.

We decompose —Ccllf_ as -%— = v,+r,, v,€ Dy, then

d dx \ )
g¢z(l) <¢ %’ ¢W = ax(t)(g(vta vt) + ri) + B:c(t)rt

= az(t)(vh vt) + (a+/8):c(t)r%

dx dx
<%9\'ar > ar )
Thus the length |@l| of @/ is smaller than |/|. By iteration we get |@*l|
<ag|l| for any integer k. Therefore (x,@x,---, ¢*x,---) is a Cauchy
sequence. By completeness of M, we have limit point z: @z = Z.
In the case &> ay > 1 and a+8 > a,> 1, we have |@*l| > a*|l|. Thus
this case reduces to the first case by consideration of !, Uniqueness of Z
is seen as follows: If there exist two fixed points Z, ' of @, we can join z
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and Z’ by the shortest curve /, then @I’ is of the smaller length than |/'|
which is a contradiction.

COROLLARY 10.5. Suppose that ¢ is a parallel field and let ¢ be an
(m—1)-homothety of a complete Riemannian manifold M such that B is
constant satisfying a <1 and a+B<1 (or a>1 and a+B>1). Then M is
(locally) Euclidean.

PROOF. By Theorem 4.2, @ is an affine transformation of M. And by
Proposition 10.4, ¢ has a fixed point z. Then by [2], or [5], M is locally
Euclidean.

11. Supplimentary results. (i) Space of constant curvature. A manifold
M is said to be constant curvature if the Riemannian curvature R satisfies

(11.1) R(u,v)z = k{g(v, 2)-u — g(u, 2)-v}
for any vector fields «, v, z on M, where ¢ is constant.

THEOREM 11.1. Let M be of constant curvature and @ be (m—1)-
conformal transformation of M onto M. If “w(z)= 0, then we have

(11.2) R(pu, pv)pz = p(aR(u, v)z).
PROOF. By (11.1), we get

R(pu, pv)pz = k{g(pv, px)pu — ¢(pu, pz)pv}
= p(aR@, v)2),
because g(@v, p2) = ag(v, 2)- @~
(i)
THEOREM 11.2. We assume that R,(°¢,°t) = T and the scalar curvature

R are constant and R=xT. If @< II* leaves R, invariant, then @< ®°. Further
if Tx0, @ is an isometry of M.

PROOF. As T is constant and @¢=puf, p’-p=a+ B, we have
(11.5) T = R(pt, ¢8) = (@+B)T.

On the other hand, we have



PARTIALLY CONFORMAL TRANSFORMATIONS 389

R=*R=(G"}'Ry=—2 R~ ﬁ’r.

Namely, we have

(11.6) (@+B)a—1)R+ BT =0.

We add —(a¢+8—1)T=0 to the last equation, getting
(@+B)a—1)R — (@—1)T =0.

If we use again (11.5), the last equation turns to (@+B8)(@—1)(R—T)=0. So
a=1 follows. Furthermore, if T'x0, 8=0 follows from (11.6).

Chapter II
12. Infinitesimal (m—1)-conformal and [m—1]-conformal transforma-
tions. Let D be an (m—1)-dimensional distribution and @,(|¢| <g; for some
positive number ¢) be a local 1-parameter subgroup of II, then we have
(12.1) Pt =, w,
(12. 2) ¢g*g = “;g + ew@%; + sﬂt®ew + Bt ew®ew’

for ¢: |t|<q. In this section too, we abbreviate frequently & in “w or °f.
As @,(t=0) is an identical transformation of M, we have

(12.3) L(v)w = ltir(r)l 'Y‘_t_l w,

a1 6.\ (. B, B
(12.4) L(v)g~1t1_'r£1 ; g+w®(121_{£1 ; )+<lt1_{ro1 p )®w+lt1_1}01 p wQRw ,

where v is a vector field on M defined by @,. From these, we define that
an infinitesimal transformation # is an infinitesimal [ —1]-conformal trans-
formation if it satisfies

(12.5) Luw)w = cw,
(12.6) (L) g)(r,s) =0

for any vector fields r, s which belong to D. In (12.5), ¢ does not depend on
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the choice of U, so ¢ is a scalar field.
By the similar fashion to §1, we see that L(x)g is written as

12.7) Liu)g = ag + wQF + FQw + bwQw,

where a and b are scalar fields, and F = (°F) defines a 1-form Fy in each
neighborhood U in such a way that wy, and Fy are orthogonal. When we
use the local coordinates x' in U, w and F are treated as covariant tensors.
If F=0, v is called an infinitesimal [m—1]*-conformal transformation. If ais
constant, v is called an infinitesimal [m—1]-homothetic transformation, etc..
But in many cases, we consider infinitesimal transformations which satisfy only
(12.6), and we denote them by infinitesimal (m—1)-conformal transformation.

THEOREM 12.1. Let u be an infinitesimal [m—1)-conformal transforma-
tion. Then L(u)°¢ = p°¢ holds good for some scalar field p if and only if
F=0, ie, u in an infinitesimal [m—1]*-conformal transformation. And
we have —2p = 2¢c = a+b.

PROOF. Operating Lie differentiation to w;=w'g; with respect to u, we
get

cw; = (L(uw)w) gi; + (a+b)w; + F;.

If Lw)w'= pw', we get F; = 0. Conversely if F; =0, transvecting the last
equation with ¢”, we obtain

Lu)w' = (c—a—b)w'.

THEOREM 12.2. If ¢y is an infinitesimal [m—1]-conformal transforma-
tion in each U. Then it is an infinitesimal [m — 1)-conformal transformation
in each U and each trajectory of ¢ is a geodesic.

PROOF. By the equation L({)w,=cw;, we see that
wy, w0’ = cw, .
Transvecting the last equation with w', we get ¢=0 and w; ;w’ =0. This
means that each trajectory of ¢ is a geodesic. Next as L({)g = w ;+w;,;,

we get

(12. 8) Wy, j + Wiy, = a‘(]gj + wiE + ij + bwtwj .
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Multiplying (12. 8) by w'w’ and contracting, we have a+5=0. If we transvect
(12. 8) with w’ and use w; ;w’=0, we have (a+b)w,;+ F,=0. Thus F;=0. q.e.d.

In the above proof, we see also the following

THEOREM 12.3. If ¢y is an infinitesimal (m—1)-conformal transforma-
tion in each U. And if each trajectory of °¢ is a geodesic, then {y is an
infinitesimal [m—1)-conformal transformation and satisfie a+b=0.

Furthermore we have

THEOREM 12.4. If ¢y is an infinitesimal (m—1)-conformal transforma-
tion and satisfies 8wy = 0. Then it is an infinitesimal (m—1)-isometry in
each U.

PROOF. Transvecting (12.8) with w'w’ and ¢“, we have a+& = 0 and
ma+b=0. Thus a=0 and 5=0 hold good.

THEOREM 12.5. If &y is an infinitesimal (m—1)-conformal transforma-
tion in each U. And if each trajecoty of &v is a geodesic and 8wy = 0.
Then Ly is an infinitesimal isometry.

PROOF. By Theorem 12.4, we have a =b =0. On the other hand by
Theorem 12.3, we have F;=0 completing the proof.

THEOREM 12.6. Suppose that &y be an infinitesimal (m—1)-conformal
transformation, then p&y is also an infinitesimal (m—1)-conformal trans-
formation for any scalar field p.

PROOF. First we have

(pw),; + (pw;),s = p(wy s+ wye) + pew; + pyws .
On the other hand, p; is written as
pi = (ps—Ep - wy) + Ep-w;.
Therefore, from (12.8) we get

L(p8)gi; = apgi; + wi(pF;+p;—Ep-wy) + (pF+p,—Ep - w)) w;
+ (bp+28p) wyw; .

This completes the proof.
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Conversely, we have
THEOREM 12.7. If p&y is an infinitesimal (m—1)-conformal trans-

formation for some non-vanishing scalar p. Then &y is also an infinitesimal
(m—1)-conformal transformation.

PROOF. We refer to the proof of Theorem 12.6.

Now let # and pu be two infinitesimal (7 —1)-conformal transformations,
then we have

(12. 9) u,,;,j + u“ = agij + wiE —+ ij + bwi‘w,- 5
(12. 10) (Pui):.’ + (Puj)'i = a’gu + wiF’j -+ F’iwj + bl wWywW; ,

where a, a, b, b’, are scalar fields. Subtracting (12.9) multiplied by p from
(12.10), we get

(12.11) pyu; + piue; = (@' —pa) gs; + wi(Fy—pF)) + (F —pF)w; + (b'— pb) w;w; .
If m> 2, there exists a vector field which is orthogonal to # and ¢, thus
a’—pa =0 follows form (12.11). Transvecting (12.11) with w'w’ and ¢¥
respectively, we get

2w0(u)tp = b — pb,

2up=0b"— pb,

from which we get up = w(u)¢p. Next transvecting (12.11) with #' and '
respectively, we have

12.12)  ap-u, + (wad)p, = wXFj—pF)
+ (B —pF)u'w, + (5 —pb) ),
(12.13) &p - u; + w(w)p; = (Fj—pF) + (b'—pb)w; .

Subtracting (12.13) multiplied w(x) from (12.12) and using up = w(u)p, we
get

(12.14) (' —w'@)p; = (F—pF)u'w;.
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THEOREM 12.8. Two different infinitesimal (m—1)*-conformal trans-
formations, both of which are not proportional to ¢ almost everywhere in
M, cannot have the same streamlines, if m = 3.

PrROOF. In (12.14), as F and F' vanish, we have (uu‘—w’(u))p; = 0.
That #' is not proportional to w' almost everywhere means, as usual, that the
set of the point where #' is proportional to w' is of measure zero. And '
is proportional to w' at a point x of M if and only if wu' = w¥u) at =x.
Thus we have p;=0 almost everywhere, and hence everywhere on M. This
means that p is constant.

13. Lie derivative of the Christoffel’s symbols by an infinitesimal
(m—1)-conformal transformation and relations with an infinitesimal affine
transformation and projective transformation. Let # be an infinitesimal
(m—1)-conformal transformation :

(13.1) L(u) gi5 = agi; + wiF; + Fw; + bwyw; .

Into the following formula (see [22], p. 52)

(13.2) 2L() {;k} = (VL) gr + VL @) grs — VoL@ 52

we substitute (13.1), then we have

(13.3)  2L(x) { J’.’k} = ;8 + a,8 — a'gy, + bw'w, + bw'w, — bww,
+ b{wy(w' ;— wyt) + wi(w' y—wit) + ww;, +we, 5)}
+ W'+ Fr ) + F = F ) we + (F = Fe) w,
+ Fi(w; p+wy, ;) + (W —wy) F + (Wl y—weh) F .

Analogously to Theorem 4.1, we prove

THEOREM 131. Let u be an infinitesimal (m—1)-conformal trans-
Sformation. If u is an infinitesimal affine transformation, then we have
(1) a and b are constant.
And as a necessary condition that M admits such u satisfying b>0, we have
(2) °¢ is a parallel field.

PROOF. Transvecting (13.3) with w*w,, & respectively and utilizing
F=0, we get
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(13.4) aj+bj:0,
(13. 5) maj + bj = 0.

Then we see that a and & are constant. Next we transvect (13. 3) with w’w*
and, noticing a;=b;=0, we get b w’,;w’=0. Transvecting (13.3) with =’ and
w; respectively, we have b(w, ,—w;;)=0 and b(w; ;+w)=0. Thus w; is
a parallel field, if 5x0.

Conversely the following Theorem is obvious by (13. 3).

THEOREM 13.2. If °¢ is a parallel field and u is an infintiesimal (m—1)*-
homothetic transformation such that b is constant. Then u is an infinitesimal
affine transformation.

An infinitesimal projective transformation # is characterized by
(13.6) 2L(w) { Jz.k} = 289 + 2849, ,

where ¥ is a scalar field on M.
Analogously to Theorem 5.2, we prove

THEOREM 13.3. If u is an infinitesimal (m—1)’-homothetic transformation
and at the same time infinitesimal projective transformation. Then u is an
infinitesimal affine transformation. Further b is constant and °¢ is a parallel

Jfeeld.

PROOF. Transvecting (13.6) with &, w*w, and using (13.3) with F= 0,
we have

13.7) 2(m+1)¥; = by,
(13.8) 28w + 29 = by.

From (13.7) and (13.8) we deduce the relations ¢» = 0 and &4 = 0. Then it
is easy to see that ¥, vanishes. That ¢ is a parallel field follows from

Theorem 13.1.

14. Lie derivative of the Riemannian curvature tensor by an infini-
tesimal (m—1)-conformal transformation. If we substitute (13.3) into the
following formula ([22], p. 17)
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(14.1) 2L Ry = 29, L) | Gy} = 29.La) {5}
we get
(14.2) 2L(u) Ry, = 2a;,u8% — 2a% ugiy; + 2w, pwyy + 2w;wpd 4
+ 2b(w' pwiy + wiwg) + 264 (w; pwy + wiwg k)
+ 2b {wu(w' ;= w;t) — wy'w; + we,w')}
+ b {2wyn(w' ,—w;y") + 2w — wy'e) wy
+ 2w, gyt — 2wtyw; + 2w + 2wl i
+ Ry w; — wR ;)
+ 2{wuu(F ;= Fy*) + (F ju—Fy'o) wig
+ w;,u(F' n—F ki‘i) + wy(F' uy— Fue'ny)
+ wW'(Fis+ Fijm) + @' Fuw i + Fiua)
+ Fuon(w';—w;*) + (w' ju—w;'n) Fiy
+ Fyu(w n—wa®) + Fy(w' pm—ww'y)

+ F* g 4wy i) + F (g, n + ws, )} -

Contracting with respect to 7 and /, we have

(14.3) 2LW)R;, = 2—m)ay . — @’ gsx + 28b + Wik
+ 2w’ bywiy + 2w (br, gwiy + bWy, r)
— 26" Cw w, = Wr, (Wiy) — b — U7 wiw,
+ 2b{w" ;Wi + WG (Wi o= Wi, 7)
+ w(W g — W) + WG kW' }
+ 2F ;wi i + 20, Fup + 20 W(By,r — 2Fr.5)
+ 2(F", = 2F ") we,r + 2wa(F7 50— Fyy"y)

-+ 2F(k(w’,,->r— w.j)’7‘7‘> + 2w(,-,k),~F’ + 2F(j,k)rw’ + 4w’,<jF|r|,k) .
On the other hand, we have

(14.4) L) g* = —ag™* — w'F* — F'w' — bw'w",
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(14.5) Lw)R = L(u) " « Rj, + ¢ L(w)Ryy. .

Transvecting (14.3) with ¢’*, and substituting the result into (14.5), we have
after calculation
(14.6) Lw)R = — aR — 2R;,w'F* — b Rjw'w* + (1—m)a’ ,

— b7, + (28w, + EED) + w; bt + (W)}

+ b(ww,r + Wty + ww'y,)

+ 2F’,,w‘,l + Zw“ rl + wr(l’-‘l,ﬂ-l—Fl,lr)"'F‘r('lUl»,n + w‘;,T)} )
where we have used 0 = (w*F) ,” = Wb F, + 2w""F,, + w'F, " .

We sometimes write Fy to denote not only 1-form but also for a con-
travariant vector field on U associated with it. And °F={Fy}.

PROPOSITION 14.1. Suppose that u is an infinitesimal (m—1)-conformal
transformation on M. Then we have

(14.7) L@)R + aR + 2R,(¢,°F) + bR, (°¢,°¢) = 3, %),
where (u, °¢) denotes a certain 1-form on M.
PROOF. The sixth term indicated by { } of the right hand side of (14.6)
is equal to
Eb-w),+ Gww ), + Gww ),

(*)

+ (WF )+ (Fw'y), + (WF ), + (Fw,),.
Although ¢, F and w are generally neither globally defined vector field nor
1-forms, each term of the above (¥) contains two of ¢, F, w. Thus each
term can be considered as a 8-image of a globally defined 1-form. As a and
b are scalar fields, we have (14.7) from (14.6).

PROPOSITION 14.2. Suppose that &y is an incom pressible vector field on
each U and each trajectory of &y is a geodesic. Then an infinitesimal
(m—1)*-conformal transformation u on M satisfies

L@)R = —aR — bR (¢v, &v) — 1—m)dda + Ellub) + 8db .

PROOF. In (14.6), we put F=0 and use the relation w’ w’ =0, w';=0.
Then Proposition 14.2 follows.
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COROLLARY 14.3. Besides the assum ptions on {y as in Proposition 14.2,
we suppose that M is of constant scalar curvature and u is an infinitesimal
(m—1)-homothety such that b is also constant. Then we have

aR + bR,(§v, £7) =0.

Particularly,

(1) If M is an Einstein space, we have (am+b)R = 0. So if R0, we get
am+b=0.

2) If *¢ is a parallel field and R >0, then u is an infinitesimal (m—1)-
isometry.

Propositions 14.1 and 14.2 are useful in §16.
The properties of an infinitesimal (m—1)-conformal transformation, which
leaves R, R;;, or R%;,, invariant respectively, will be studied in other papers.

15. Lie algebras of infinitesimal (m—1)-conformal transformations
and Lie transformation groups. In this section, we prove that the groups
of certain [m—1]-conformal transformations are Lie groups, if the Riemannian
manifold satisfies some conditions.

Let # be an infinitesimal [ —1]-conformal transformation :

Lw)g =ag + wQF + FQw + bwQw,

La)w=cw.

Then we have a local 1-parameter group @, (|| <g(x)) of local transformations
of M:

Pr—x

b

u, = lim

-0

where ¢ is a positive function on M. We fix a point x,, a positive number

g, and neighborhoods U and V of x, satisfying @,V CU, for any ¢:|t]|<<gq,
< g(x,). As a first step, we consider maps @,: V=, V.

LEMMA 151. There exists a family of differentiable functions v, (|t |
< q,) on V such that ¢ w="Yw.

Proof is standard and similarly done as the proof of Lemma 15.2, so we
shall omit it.

LEMMA 15.2. Each @, (1t| < qo) is an (m—1)-conformal transformation
of V onto @,V.
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PrROOF. First let X,Y, A, B be any tangent vectors at x, which belong
to the distribution D,,, such that the inner products of X,Y and A, B are
not zero. Then we have a real number A such that ¢,(X,Y)=\g.,(A,B).
We prove gou(@. X, 2,Y) = N gp(@. A, @.B), for this purpose we put

(15.1) B(t) = (@*9)(X,Y) — Mo *g)(A, B) .

It is clear by definition that E(0) = 0. As E is a function of ¢ (E: (—q,, qo)
— R), we can differentiate it and get

- *o % * ¥
%i = 1lim 297 P70 (X, Y) — A lim 2979 (A, B)
t 50 S $—0 S

* *p—
=lim 977 (9,X, 0, Y) — Mim #2929 (9,4, 9,B)

-0 $-0
= (L(u)g)(%X, @.Y) — ML(u) g)(%A, @.B)
= agleX, p.Y) — Maglp.A, p.B),
since 9, X, ¢,Y, 9, A and @,B belong to D,,, by Lemma 15.1. Therefore we get

(15.2) 2= — g B

This means that E is of the form pef®, p denoting a constant. By E(0)=0,
we have E(£)=0 identically. Thus we get

(?t*g)(}(: Y) — (¢L*g)(A’ B)
(15.3) _——_g(X, Y) —AQ(A, B)

for all X,Y,A,Be D,, ¢(X,Y)x0, g(4,B)>=0. And ¢, is an (m—1)-conformal

transformation.

LEMMA 15.3. If w is an infinitesimal [m—1°-conformal transformation,
then @, is an (m—1)-conformal transformation of V, onto ¢, V.

PROOF. By Lemma 15.2, we have «,, 8, and #, of functions and 1-forms
on V such that

(15.4) PXg = a,g + wQb, + 6,Qw + BwRw.

We prove §,=0. Let X be any tangent vector x, belonging to D,. Then
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t —0,(X) defines a function E': (—gqo,q) > R. As 6,X) = (@59, X), we
have

d=' .. @Fg—qg
ar = lim = (e elX)

= a(p,x,) B'(2).
Thereby E'(¢)=0 holds and so ¢, = 0 follows.
LEMMA 15.4. If u is an infinitesimal {m—1]-homothety, then @, is an

(m—1)-homothety. In particular, if w is an infinitesimal [m—1]-isometry,
then @, is an (m—1)-isometry.

PROOF. We put

B (t, x) = a,(x) it] <qo, xe M.
Then we have

oE” _ i Ay(pr) o (x)—a(x)
ot (¢, ) = &Egl s ’

since o, (x)=a(px)a,(x) by (9.4). Thus we get
(15.5) BB 4 2) = ale) P20, pu)
: ot TG

= aB"(t, x),

’”

because by assumption, %{;—(O, x)=a=constant. And as a solution of (15.5),

we have

(15.6) B (¢, x) = flo)e”,

where f is a function on V independent of £. On the other hand 5"(0, x)
=a,(x)=1, and so f{x)=1. This shows that E"(¢,z)=E"(¢) is constant e*
on V for each ¢: |t|>¢q, In particular, if a=0, then a,=1.

Similarly we can prove

LEMMA 15.5. If ¢ is constant, then ¥, in Lemma 15.1 is constant.
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We use the notations:

B = {w: infinitesimal [m—1]-conformal transformation},
9 = {u: infinitesimal [m—1]-homothety},

$ = {«: infinitesimal [m—1]-isometry},

B = {u: infinitesimal [m—1]’-conformal transformation}.

And we put
O =90P, JF=JNP.

By definition we have 59 DS, concerning a bracket operation, we have

PROPOSITION 15.6.

(15.7) [B, PIcB, [P, P]cP.
(15.8) [9,9]cy, [§,9]cy.
(15.9) [¥,31cy, 331

By preceding Lemmas, we have

PROPOSITION 15.7. If u is an element of B, 9, J, B, L or F° and
generates a 1-parameter group @, (t€ R) of global transformations of M,
then each @, belongs to 11, ®, ®, II°, ®° or ®° respectively.

LEMMA 15.8. Let u be an infinitesimal transformation such that L(u)g
= ag + bw@w, where b is a constant. Then the set of all such u is finite
demensional.

PROOF. Let u be an element of the set such that & is not zero. We
define # by # = (1/b)u, then

(15.10) L@)g = ayg + wQ@w.

where a, is a differentiable function on M. Then for any element v of the
set:

(15.11) Lv)g=dg+ b wQw,
we have

(15.12) v=(w—0%)+ bu
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where v—b% is an infinitesimal conformal transformation. Thus the set of
such v—b% is finite dimensional, whence the set of such v is also finite
demensional.

THEOREM 15.9. The subgroup of ®°, whose element satisfies p*w, ="Yyywy
for some constant V., is a Lie group.

PROOF. By R. S. Palais’ theorem [13], it is enough to prove finite
dimensionality of the Lie subalgebra of $°, whose element generates a 1-
parameter group of global [m—1]*-homotheties which satisfy @ *w, = Y rwy
for some constant v,,, for each £<¢ R.

Any element « of the Lie subalgebra satisfies L(u)w=cw and L(u)g=ag
+bw®w, where ¢ and a are constant. Then & is also constant. Thus by
Lemma 15.8, the Lie subalgebra is finite dimensional.

LEMMA 1510. If &y is a Killing vector field for each U and if u is
an element of B°. Then L({y)a = 0.

PROOF. Taking the Lie derivative of L(u)g with respect to { we have
(15.13) L) Ly = ta-g + t-w@w,
where we have used L(§)g=0 and L({)w=0. And as
L(ct) = — L([u, £]) = — L(w) L) + L(¢) L(x)
and L(c{) g=dcQ@w+w®dc, we have
(15.14) deQw + w®dc = fa-g + {b-wQw.

In the above equation each term excepting fa-g contains w, so we see that

¢a=0.

LEMMA 15.11. Suppose that the distribution defined by °¢ is regular,
tv is a Killing vector field, and each trajectory of °¢ is complete. Then the
set M/t = Fr of all trajectories of ¢ becomes a Riemannian manifold and
each u<c B induces an infinitesimal conformal transformation @ on Jf.

PROOF. Following [21], first we assume that there exists a point x of M
such that the trajectory /(x) which passes through x is closed. Then we
have the length s=|l(x)| of /(x), and we take a sufficiently small tubular
neighborhood W=W(l(x)) of I(x).
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On W we can define a vector field ¢ such that &|,=¢&r or —&, for each
U if UNnW is non-empty. Then ¢ is a Killing vector field on W and generates
a l-parameter group ¢,(¢< R) of isometries of W. And as ¢ is also regular, we
can conclude that ¢, is an identity transformation of W and each trajectory
of ¢ and hence ‘¢ is of constant length s ([21]).

Therefore either all trajectories of ¢ are homeomorphic to a circle, or all
trajectories are homeomorphic to the real line R. By [13] or [21], M/*¢ is a
differentiable manifold which has Riemannian metric 2 such that ¢ = 7*h
+wQ®w, 7™ denoting the natural projection: M — M/€§=]\~4.

It may be remarked that if °¢ is a globally defined vector field, then M/°¢
is a principal fiber bundle.

Now let ue . As L(Qu=—L(u)t=ct, by the differential = of m, mu=u
is a vector field on #7. Denote by @, and @, the (local) 1-parameter groups
of (local) transformations generated by # and 7, then they satisfy =@, = &,

Using the fact that @, is an [m—1]*-conformal transformation, we have

@FMX,Y) = (3. X,$.Y)
= W(rpm ' X, mpm'Y)

= (pH (@) ' X, m'Y)

for any tangent vectors X,Y at Z € jr, where we consider #7'X as a tangent
vector at x€ Z such that w(m'X)=0 and #=(w'X)=X. Of course = 'X at x
is uniquely determined and we can prove that the value of A;3(mmp .7 ' X3,
TouPizm 'Y 3) does not depend on the choice of x< Z and the choice of = 'X
or m'Y so far as m(7'X) =X and 7(#'Y) =Y are satisfied, because the
. difference is of the form k¢, for some real number k. Then, as

P X(m*h) = 9*(g— wQw)
=a,g+ B wQw — YwQw,
we obtain
(BFX,Y) = ()7 X, m'Y)
= (am*h+ aw@w)(r X, m'Y)

= a,i(X,)Y).

Notice here that «, is constant on each trajectory of °¢. Namely by Lemma
15.10, we have {a=0 and by the almost similar method in Lemma 15.4, we
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can show that &a,=0. Therefore # is an infinitesimal conformal transformation
on pf.

THEOREM 15.12. Suppose that the 1-dimensional distribution by °¢ is
regular, §v is a Killing wvector field and each trajectory of °¢ is complete.
Then the subgroup 1I** of II° which consists of the element @ satisfying
P*wy = Yypwy on UN@ 'V for some constant Yyy is a Lie group.

PROOF. We devide the proof into two parts.

(1°) The case: ¢ is not a parallel field.

Denote by P the Lie subalgebra of % which consists of all « satisfying
L(u)w=cw for some constant ¢. The map m: « —#% gives a homomorphism
of B¢, also of *°, into the set of all infinitesimal conformal transformations
on j7r as Lie algebras. The kernel of 7 is the set of the form ¢f*¢ for some
f, fr is a scalar field on each U. As {r is a Killing vector field, /¢ belongs
to B if and only if L(f{)w = df = rw for some constant . Taking the
exterior differentiation of dfy = rwy, we have rdwy=0 on each U. However,
¢¢ is a Killing vector field and not a parallel field, there exists U on which
dwy3<0. Consequently we get r=0. Then we have dfy=0 for each U. So
[ | of °f°¢ is constant. Of course as °f*¢ must be a vector field, if M admits
non-trivial °f we can assume that ¢ is a globally defined vector field by suitable
choice of ¢y, —¢r. And so the kernel is given by {#¢,2< R}. Thus, as the
set of all infinitesimal conformal transformations on j is finite dimensional,
¢ is also finite dimensional.

(2°) The case: °¢ is a parallel field.

In this case, we take the universal covering manifold M of M and define
7,°, °w and % for u< P*° naturally on 37 by the local diffeomorphisms. Then
% is also an infinitesimal [ —1]°-conformal transformation on 7. So it suffices
to show the finite dimensionality of the set {#} in A7. As °¢ is parallel and
# is simply connected we may assume that ¢ is a globally defined vector field
on #f. And it is easy to see that & is also regular, so we have #7/¢ and
a Riemannian metric 2 on #£/C. #1/€ is also simply connected, and 37 is a
principal fiber bundle over 37 /¢. @ defines an infinitesimal connection on j7,
and w =0 is completely integrable. Similarly to the case (1°), we consider
the projection of % by the projection M — M/ ¢, and study its kernel. Then
any element of the kernel is of the form f ¢ for some scalar field f satisfying
d f =rw for some constant 7. Asa special case we take =1, then the solution
fo of w=djf is uniquely determined, if we fix a horizontal global section S
in M and give the initial condition f,=1 on S, because # is constant on
each horizontal section. So general solution of df =rw is f=7rf, +s for
constant 7 and 5. That is to say the kernel is {r(f,&) + s¢: r,s€ R} and
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at most 2-dimensional, Thus P*¢ is finite dimensional. Therefore in both
cases (1°), (2°), IT** makes a Lie group.

REMARK 1. If M admits an element z in P*° such that Lx)w = cw
for a constant ¢>0. Then °¢ is necessarily regular (see [18], §4).

PEMARK 2. In (1°) above, if °¢ cannot define a globally difined vector
field by any choice of £y, —&». Then the dimension of P*° is not greater
than that of the set of all infinitesimal conformal transformations on #7.

PEMARK 3. In the above Theorem, if M is complete, then each trajectory
of °¢ is complete.

16. The cases where M is compact and the scalar curvature R is
constant. In the first place, we prove general theorems.

THEOREM 16.1. Suppose that M is compact and orientable and u is
an infinitesimal (m—1)-conformal transformation, then we have

(16.1) L(am—l—b) do=0.

PrROOF. Contracting (13.1) with ¢ and noticing that L()gi; = wi;+u,,,
we get

2u' , =am + b.

Integration of the last equation over M is (16.1).

In the following, we denote the left hand side of (16.1) by a global inner
product <am+b,1>.

DEFINITION. We call M a ¢-space, if
(i) Swy=0, (i.e. {r: volume-preserving),
(ii) V¢, £0=0, (i.e. each trajectory of &v is a geodesic),
(iii) Ry(Cv, &v)=T=constant
for each U. If M satisfies only (i) and (ii), then we say that M has properties
(1) and (ii).

m—1

ExAMPLES. (1°) K-contact manifold is a &-space such that T =
([17], p. 329).
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(2°) If a manifold M admits a parallel direction field ¢¢. Then M is a
¢-space with T=0.

THEOREM 16.2. Suppose that M is compact and orientable and has
properties (i) and (i1), if L(w)wy = cwy, then

(16.2) <c,1> =0.

Further if w is an infinitesimal [m—1)-conformal transformation then
we have

(16. 3) <a,1> =0, <b,1>=0.

PROOF. Expression of L(x)w=cw by local coordinates is as follows :
(16.4) wy U+ wau = cw;.
Transvecting (16. 4) with w’, we have
(16.5) c=wu ,w = (wu w),
because w';=0 and w, ;w'=0. Although w is not a globally defined tensor,
(w,u"w") is a globally defined vector field. So if we integrate (16.5) over M,
we have (16. 2). By Theorem 12.1, if # is an [m—1]-conformal transformation,
we have 2c=a+b. Thus
(16.6) <a+b,1> = 0.
Then (16.1) and (16.6) yield (16. 3).

COROLLARY 16.3. In a compact orientable M with properties (i) and
(i1), if the scalar field ¢ in L(u)wy=cwy is constant, then c¢=0.

THEOREM 16.4. In a compact orientable M with properties (i) and (ii),
every infinitesimal [m—11-homothety is an infinitesimal [m —1]*-isometry.

PROOF. This is an immediate consequence of Theorem 16.2.

LEMMA 16.5. If M is compact and orientable, and if the scalar curvature
R is constant, we have

(16.7) <aR+bT,1> =0
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Sor any infinitesimal (m—1)*-conformal transformation u.
PROOF. (16.7) follows from Proposition 14.1.

LEMMA 16.6. In a compact orientable M with properties (i) and (ii),
we have

(16. 8) (m—1)<da,da>— <a,aR+bT>— <a, L(u) R>
+ <da—(a) w, db— (b)) w> =0

Sor any infinitesimal (m—1)*-conformal transformation u.
PROOF. As 8 is dual to d, we have

(16.9) <da,da> — <a; dda> = 0.

On the other hand, by virtue of Proposition 14.2, we get

(16.10) (m—1)8da = aR + bT + L(u)R — 8db — £(&b).

And we get

<a,ddb> = <da,db> ,
<a, {(Eb)> = <aw, d(¢b)>
= - <§a7 §b> ’

since daw)=adw—ta and 8w =0. Moreover
(16.11) <da—(¢a)w, db—(£b)w> = <da,db>— <&a,tb> .
Substitution 8da of (16.10) into (16.9) using above relations yields (16. 8).

LEMMA 16.7. In a compact orientable M, if wy is a closed form, then

we have

(16.12) <da— (¢a)w, db— (L) w> = — <da,da> + <ta,fa>
Sfor any infinitesimal [m—1)-conformal transformation.

PROOF. (16.12) is valid always with respect to the (local) inner product
which we denote by ( , ). So we prove here (16.12) for the inner product.
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As L(u)w = cw for some scalar field ¢, we have dL(w)w = dcA\w+cdw by
exterior differentiation, where A denotes the exterior product. Since d and
L(u) are commutative and dw=0, dc Aw=0 follows. Thus dc is proportional

to w and dc=¢c-w. By Theorem 12.1, we have da+db = ¢(a+b)-w. And
so we consider the inner product with da, and get

(da,da+db) = (¢a,ta+&b),
from which we have
(16.13) (da,db) — (¢a,tb) = —(da, da) + (La, &a).

Here we notice that (16. 11) holds also with respect to the inner product. Then,
from (16.11) and (16.13), relation (16.12) for the inner product follows.

LEMMA 16.8. As for T we have;
If wy is a harmonic form,

(16.14) T = —2(Vw, Vw) = 0.
If ¢y is a Killing vector field,
(16.15) T=2(Vw,Vw)=0.

Proof is easy, since {r is a unit vector field.
As a general statement, we have

PROPOSITION 16.9. In a compact orientable M, we assume that wy is
a harmonic form for each U. Then an infinitesimal [m—1}-conformal
transformation u is an infinitesimal [m—1V-isometry if and only if it satisfies

(16.16) <a,aR + bT + L(w)R> =0.

PROOF. If w is a harmonic form, we have dw =0 and 3w =0. The
length of w being equal to 1, V=0 follows from dw =0. Then, by Lemma
16.6 and 16.7, we have

16.17) (m—2)<da,da> — <a,aR+bT+Lu)R> + <fa,ta> =0.
If (16.16) holds, (16.17) means that each term is zero. So da=0 follows, that

is a is constant. Moreover, by (16.3); in Theorem 16.2, a is equal to zero.
q.e.d.
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If ¢ is a parallel field, M is a ¢-space with 7'=0. Therefore we get

THEOREM 16.10. In a compact orientable M, if ¢ is a parallel field
and R=constant =0. Then any infinitesimal [m—11-conformal transforma-
tion is an infinitesimal [m— 1) -isometrsy.

REMARK 1. In the above Theorem, essencially we need the condition that
a compact orientable M is a ¢-space satisfying 7'=0, dw=0 and R=constant
=0. However, if ¢-space satisfies dw=0, wy is a harmonic form. So T is
non-positive by Lemma 16.8. Thus if T'=0, wy is necessarily a parallel field.

Next we consider the case where an infinitesimal [7,2— 1]°-conformal trans-
formation « satisfies c=0. Of course, the only possible case of c=constant is
the case ¢=0 in the manifold with properties (i) and (ii) by Theorem 16.2.

Now as 2c=a+b, we have da=—db. On the other hand

(16.18) <da—({a)w, da — ((a)w> = <da,da> .
If we utilize (16.8) and (16. 18), we get
(16.19) (m—2)<da,da> — <a,aR—aT+Lu)R> =0.

So, if the second term is non-negative, we have da=0 and a=0. Consequently
we have also b=0 and « is a Killing vector field. Thus we have

PROPOSITION 16.11. In a compact orientable M with properties (i) and
(i1), an infinitesimal [m—1)-conformal transformation u such that L(u)w=0
is an infinitesimal isometry if and only if it satisfies

(16.20) <a,aR — aT + Lu)R> =< 0.

THEOREM 16.12. In a compact orientable M, if &v is a Killing vector
JSield and R=constant =0. Then any infinitesimal [m—1}-conformal trans-
Sformation u satisfying L(u)w=cw for some constant ¢ is a Killing vector

Siled.

PROOF. As ¢ is a unit and Killing vector field, M has properties (i) and
(ii). ¢=0 follows from Corollary 16.3. By (16.15) in Lemma 16.8, T is non-
negative. And R is a non-positive constant, (16.20) holds good. Then by
Proposition 16.11, # is a Killing vector field.



[1]
[21]
[31]
[4]
[51]
[61]

[71]
[8l

[91]
(10]
(111
[12]
[13]
[14]
[15]

(16]
[17]
(18]
[19]
[20]
[21]
[22]

[23]

PARTIALLY CONFORMAL TRANSFORMATIONS 409

BIBLIOGRAPHY

S. ISHIHARA, Groups of projective transformations and groups of conformal transforma-
tions, Journ. Math. Soc. Japan, 9(1957), 195-227.

S. ISHIHARA AND M. OBATA, Affine transformations in a Riemannian manifold, Tohoku
Math. Journ., 7(1955), 146-150.

M. S. KNEBELMAN AND K. YANO, On homothetic mappings of Riemann spaces, Proc.
Amer. Math. Soc., 12(1961), 300-303.

S. KOBAYASHI. Le groupe des transformations qui laissent invariant le paraléllisme,
Colloque de Top. de Strasbourg, (1954).

, A theorem on the affine transformation group of a Riemannian manifold,
Nagoya Math. Journ., 9(1955), 39-41.

S. KoBayvasHI AND K. NoM1zU, Foundations of differential geometry, Interscience Pub.
New York, 1963.

A. LICHNEROWICZ, Géométrie des groupes de transformations, Dunod Paris, 1958.

H. MizusawA, On infinitesimal transformations of K-contact and normal contact metric
spaces, Sci. Rep. Niigata Univ. Ser. A, 1(1964), 5-18.

———, On certain infinitesimal conformal transformations of contact metric spaces,
Sci. Rep. Niigata Univ., Ser. A, 2(1965), 33-39.

M. OBATA, Conformal transformations of compact Riemannian manifolds, Illinois Journ.
Math., 6(1962), 292-295.

M. OKUMURA, Some remarks on spaces with a certain contact structure, Tohoku Math.
Journ., 14(1962), 135-145.

——— , On infinitesimal conformal and projective transformation of normal contact
spaces, Tohoku Math. Journ., 14(1962), 398-412.

R. S. PALAIS, A global formulation of the Lie theory of transformation groups, Memoirs
of Amer. Math. Soc., 22(1957).

S. SAsAKI, On differentiable manifolds with certain structures which are closely related
to almost contact structure, I, Tohoku Math. Journ., 12(1960), 459-476.

S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structures
which are closely related to almost contact structure, [, Tohoku Math. Journ., 13
(1961), 281-294.

T. SUMITOMO, Projective and conformal transformations in compact Riemannian mani-
folds, Tensor (N.S.), 9(1959), 113-135.

S. TANNO, Some transformations on manifolds with almost contact and contact metric
structures, T, II, Tohoku Math. Journ., 15(1963), 140-147, 322-331.

——, On fiberings of some non-compact contact manifolds, Todhoku Math.
Journ., 15(1963), 289-297.

— A remark on transformations of a K-contact manifolds, Tohoku Math.
Journ., 16(1964), 173-175.

——— , Sur une variété munie d’une structure de contact admettant certaines
transformations, Tohoku Math. Journ., 17(1965), 239-243.

, A theorem on regular vector fields and its applications to almost contact
structures, Tohoku Math. Journ., 17(1965), 235-238.

K. YANO, The theory of Lie derivatives and its applications, Amsterdam, North Holland
Pub. Co., 1957.

K. YANO AND S. BOCHNER, Curvature and Betti Numbers, Annals of Math. Studies
32, Princeton, 1953.

TOHOKU UNIVERSITY.





