PARTIALLY CONFORMAL TRANSFORMATIONS WITH RESPECT TO (m-1)-DIMENSIONAL DISTRIBUTIONS OF m-DIMENSIONAL RIEMANNIAN MANIFOLDS

SHÛKICHI TANNO

(Received August 23, 1965)

This paper is devoted to the geometry of transformations which have deep relation with an (m-1)-dimensional distribution D of m-dimensional Riemannian manifold M. A diffeomorphism φ of M to another m-dimensional Riemannian manifold N induces a mapping of the tangent space at any point x of M to that at φx of N. Also φ induces a mapping φ_p of the (m-1)dimensional tangent subspace defined by D to that defined by φD . If φ_D is conformal for any point x of M, then we call φ an (m-1)-conformal transformation of M to N with respect to the distribution D. A conformal transformation in usual sense is of course an (m-1)-conformal transformation. An (m-1)-homothetic, or (m-1)-isometric transformation is naturally defined by its restriction to D. We denote by D^{\perp} the orthocomplementary distribution to D. If an (m-1)-conformal transformation φ maps D^{\perp} to $(\varphi D)^{\perp}$, then it is called special and denoted by an $(m-1)^s$ -conformal transformation. As D^{\perp} does not always admit a globally defined unit vector field ζ such that $\zeta_x \in D_x^\perp$ at every point x of M, we introduce a symbol ζ (cf. §1). By this ζ we can obtain the equation which characterizes an (m-1)-conformal transformation. An (m-1)-conformal transformation of M onto itself which preserves D is denoted by an [m-1]-conformal transformation.

Examples of such transformation appeared already in the theory of almost contact metric structures. As an almost contact Riemannian manifold admits a globally defined unit vector field ξ (see [14], [15] etc.), we can consider the orthogonal distribution to ξ . And a ϕ -preserving transformation of a contact Riemannian manifold is, in fact, an $[m-1]^s$ -homothety ([8, 9], [17~20], etc.). Further, the existence of such transformations on certain contact Riemannian manifold characterizes the structure of the manifold itself ([19, 20]).

A trivial example is as follows: Let M, N be two Riemannian manifolds with metrics g, h respectively and denote by R a real line, then we can define Riemannian metrics on $M \times R$, $N \times R$ by g+k, h+k respectively, where k is the usual metric on R. If $\varphi_0: M \to N$ is a conformal transformation and $f: R \to R$ is an arbitrary diffeomorphism, then $\varphi: M \times R \to N \times R$ defined by $\varphi(x, t) = (\varphi_0 x, f(t)), t \in R$, is an $[m-1]^s$ -conformal transformation.

PARTIALLY CONFORMAL TRANSFORMATIONS

In §1, we give the equation of an (m-1)-conformal transformation φ and the condition of speciality of (m-1)-conformal transformation. In §§4~6, we calculate φ -image of the Christoffel's symbol, the Riemannian curvature, the Ricci curvature and scalar curvature. Using these we investigate the properties of φ under the additional conditions on φ or on manifolds. In §7, we assume that ${}^{\varepsilon}\zeta$ is parallel along D and φ is an $(m-1)^{s}$ -homothety, and have a relation of the sectional curvatures (Theorem 7.5). In §9, we consider the group Π of all [m-1]-conformal transformations and its subgroups. It is known that the set of all conformal transformations of a Riemannian manifold is a Lie group ([4]). But generally Π is not finite dimensional, so we want to find out the conditions on the manifold and a subgroup of Π so that the subgroup is a Lie group. And some answers are given in §15 (Theorem 15.9, 15.12).

Chapter II contains some studies of infinitesimal (m-1)-conformal transformations. The properties of conformal or infinitesimal conformal transformations (or homothetic, or isometric ones) of Riemannian manifolds are studied by many authors ([1], [3], [10], [16], [22], [23], etc.). In §16, we consider the case where M is compact and the scalar curvature is constant and obtain analogous results. Other extended investigation will be seen in other papers.

Contents are as follows:

Chapter I

- 1. Definition of an (m-1)-conformal transformation
- 2. Commutability of an $(m-1)^s$ -homothety and parallel translations
- 3. The case where each trajectory of ζ is a geodesic
- 4. Transformation of the Christoffel's symbols
- 5. $(m-1)^{s}$ -conformal and projective transformations
- 6. The Riemannian curvature, Ricci curvature and scalar curvature
- 7. The sectional curvatures in the case where ζ is parallel along D
- 8. (m-1)-Einstein spaces
- 9. The group of [m-1]-conformal transformations
- 10. (m-1)-conformal transformations of complete or compact manifold M
- 11. Supplementary results

Chapter II

- 12. Infinitesimal (m-1)-conformal and [m-1]-conformal transformations
- 13. Lie derivative of the Christoffel's symbols by an infinitesimal (m-1)conformal transformation and relations with an infinitesimal affine
 transformation and projective transformation
- 14. Lie derivative of the Riemannian curvature by an infinitesimal (m-1)conformal transformation

- 15. Lie algebras of infinitesimal [m-1]-conformal transformations and Lie transformation groups
- 16. The case where M is compact and the scalar curvature R is constant

Chapter I

1. Definition of an (m-1)-conformal transformation. Let M, N be two connected *m*-dimensional Riemannian manifolds $(m \ge 3)$ of class C^{∞} and g, htwo Riemannian metrics of M, N respectively. First we assume that Madmits an (m-1)-dimensional distribution D, and we fix D throughout the paper. Then we also have an orthocomplementary 1-dimensional distribution. Now we consider a diffeomorphism $\varphi: M \to N$, and denote by φ^* the dual map of φ .

DEFINITION. If a diffeomorphism $\varphi: M \rightarrow N$ satisfies the following relation

(1.1)
$$(\varphi^*h)_x(u,v) = \alpha(x) g_x(u,v)$$

for any point $x \in M$ and vector fields u, v on M such that $u, v \in D$, where α is a differentiable function on M, then we call φ an (m-1)-conformal transformation of M to N with respect to D. If α is constant, φ is an (m-1)-homothety. Furthermore if $\alpha = 1, \varphi$ is an (m-1)-isometry.

In order to express an (m-1)-conformal transformation by a tensor equation, let x be an arbitrary point of M. Then we can find an open neighborhood U of x and a vector field ζ_v on U, such that ζ_v is orthocomplementary to D and a unit vector field i.e., $g(\zeta_v, \zeta_v) = 1$. For some open covering $\{U\}$ of M we can define $\{\zeta_v\}$ corresponding ζ_v to each U in such a way that $\zeta_v = \zeta_v$ or $-\zeta_v$ holds on the intersection $U \cap V$, if it is not empty. $\{\zeta_v\}$ or its subfamily does not always define a vector field on M, so we use the symbol ${}^{e}\zeta = \{\zeta_v\}$. We refer frequently this fixed covering $\{U\}$ in the sequel.

On each neighborhood U, we define a 1-form w_{v} by

(1.2)
$$w_{v}(u) = g(\zeta_{v}, u)$$

for any vector field u on M. Then we have

and $w_v = 0$ is the equation of the distribution *D*. Similarly we use the notation $\varepsilon w = \{w_v\}$.

We put $E = \varphi^* h - \alpha g$, clearly E(u, v) = 0 if ${}^{\circ}w(u) = {}^{\circ}w(v) = 0$. Next

we put $E(\xi, \xi) = \beta$, then β is a globally defined scalar field because it contains two ξ 's, and we define θ by

(1.4)
$${}^{\varepsilon}\theta(u) = E(u,{}^{\varepsilon}\zeta) - \beta^{\varepsilon}w(u)$$

for any vector field u on M. ${}^{\epsilon}\theta$ is determined as follows: Let x be any point of M then we have some open neighborhood $U \in \{U\}$ of x and ζ_{v}, w_{v} on U. These ζ_{v}, w_{v} determine θ_{v} of ${}^{\epsilon}\theta$ on U. From the definition of E and ${}^{\epsilon}\theta$, we see that

(1.5)
$${}^{\varepsilon}\theta({}^{\varepsilon}\zeta) = 0$$

Then we can verify

(1.6)
$$\varphi^* h = \alpha q + {}^{\varepsilon} w \otimes {}^{\varepsilon} \theta + {}^{\varepsilon} \theta \otimes {}^{\varepsilon} w + \beta^{\varepsilon} w \otimes {}^{\varepsilon} w,$$

where \otimes means the tensor product. To see this, it is enough to compare both sides substituting the pairs $({}^{\varepsilon}\zeta, {}^{\varepsilon}\zeta)$, $({}^{\varepsilon}\zeta, u)$ and (u, v) where u and v are vector fields which belong to the distribution D. Though ${}^{\varepsilon}\zeta, {}^{\varepsilon}w$ and ${}^{\varepsilon}\theta$ are not tensor fields, restricting ourselves to some neighborhood we consider (1.6) as a tensor equation. Of course, for $U, V \in \{U\}$, the expressions $(1.6)_{v}$ in U and $(1.6)_{v}$ in V are equivalent, because ε 's appear twice in the last three terms. It is evident that the decomposition of φ^*h given by (1.6) is unique in the sense that (1.5) holds. From the definition of β it follows that

(1.7)
$$\alpha + \beta = h(\varphi^{\varepsilon}\zeta, \varphi^{\varepsilon}\zeta) \cdot \varphi,$$

where we have used, and shall use φ to denote also the differential of φ .

As for the distribution φD induced by φ on N, one has ξ and η on N similar to ζ and w on M, satisfying

(1.8)
$${}^{\delta}\eta({}^{\delta}\xi) = 1$$
, ${}^{\delta}\eta(X) = h({}^{\delta}\xi, X)$

for any vector field X on N. We also fix a covering $\{V\}$ of N.

LEMMA 1.1. For any (m-1)-conformal transformation φ , we have $\alpha > 0$ and $\alpha + \beta > 0$. And the following conditions are equivalent:

(i) ${}^{\varepsilon}\theta = 0$. (ii) $\varphi^{\varepsilon}\zeta = {}^{\varepsilon\delta}\mu^{\delta}\xi$, for some ${}^{\varepsilon\delta}\mu$.

In the above lemma, ${}^{\epsilon\delta}\mu$ is a symbol of $\{\mu_{U'V}\}$, and $\mu_{U'V}$ is a differentiable function on $\varphi U \cap V$. Namely for $x \in M$, if $y = \varphi x$, we take some neighborhoods

U of x and 'V of y, then $\varphi \zeta_v = \mu_{v'v} \xi_v$ on $\varphi U \cap V$. In this case by (1.7), we see that $\mu^2_{v'v}(\varphi p) = \alpha(p) + \beta(p)$ for $p \in U \cap \varphi^{-1}(V)$.

PROOF. Following the above notation, we show (i) \rightarrow (ii). By the definition of φD , we have $\varphi^* \eta_{V} = \gamma_{VU} w_U$ for some differentiable function γ_{VU} on $U \cap \varphi^{-1}(V)$. In the following we write this relation by

(1.9)
$$\varphi^{*\delta}\eta = {}^{\delta\varepsilon}\gamma^{\varepsilon}w.$$

Let u be any vector field on M such that ${}^{\varepsilon}w(u) = 0$. If ${}^{\varepsilon}\theta = 0$ holds in (1.6), then we have

$$h(\varphi^{\varepsilon}\zeta,\varphi u) = (\varphi^*h)(\varepsilon\zeta,u) = 0$$
.

Thus $\varphi^{\varepsilon}\zeta$ is orthocomplementary to φD . This means that $\varphi^{\varepsilon}\zeta$ is proportional to ${}^{\delta}\xi$. And by (1.9), we have $\varphi^{\varepsilon}\zeta = ({}^{\delta\varepsilon}\gamma \cdot \varphi^{-1}){}^{\delta}\xi$. That is, we get

$$\varphi^{\varepsilon}\zeta={}^{\varepsilon\delta}\mu^{\delta}\xi,$$

where

(1.10)
$${}^{\epsilon\delta}\mu = {}^{\delta\epsilon}\gamma \cdot \varphi^{-1}, \quad {}^{\delta\epsilon}\gamma^2 = \alpha + \beta.$$

In the next place we prove (ii) \rightarrow (i). (1.4) means that

$$\begin{split} {}^{\varepsilon}\!\theta(u) &= h(\varphi u, \varphi^{\varepsilon}\zeta) \cdot \varphi - \alpha g(u, {}^{\varepsilon}\!\zeta) - \beta^{\varepsilon} w(u) \\ &= h(\varphi u, {}^{\varepsilon\delta}\mu^{\delta}\xi) \cdot \varphi \\ &= 0 \end{split}$$

for any vector field $u \in D$. This completes the proof.

PROPOSITION 1.2. Let φ be an (m-1)-conformal transformations of M to N, and let ${}^{\delta \varepsilon}K_N$, ${}^{\delta \varepsilon}K_M$ be angles determined by $\varphi^{\varepsilon}\zeta$ and ${}^{\delta \xi}$, ${}^{\varepsilon}\zeta$ and $\varphi^{-1}{}^{\delta \xi}$ respectively. Then we have

(1.11)
$$\cos^{\delta\varepsilon} K_N = \frac{\sqrt[\delta\varepsilon}{\sqrt{\alpha+\beta}} \varphi^{-1},$$

(1.12)
$$\cos^{\delta\varepsilon} K_{\mathfrak{M}} = \operatorname{sgn}({}^{\delta\varepsilon}\gamma) \left(\frac{\alpha}{2\alpha + \beta - {}^{\delta\varepsilon}\gamma^2}\right)^{\frac{1}{2}}.$$

PROOF. In the formula

(1.13)
$$\cos^{\delta\epsilon} K_{N} = \frac{h(\varphi^{\epsilon}\zeta, {}^{\delta}\xi)}{\sqrt{h(\varphi^{\epsilon}\zeta, \varphi^{\epsilon}\zeta)}}$$

we substitute $(\varphi^*h)(\zeta,\zeta) = \alpha + \beta$ and

$$egin{aligned} h(arphi^arepsilon\zeta,{}^\delta\!\xi) &= {}^\delta\!\eta(arphi^arepsilon\zeta) \ &= (arphi^{st\delta}\eta)({}^s\!\zeta)\!ulletarphi^{-1} &= {}^{\deltaarepsilon}\!\gamma\!ulletarphi^{-1} \,, \end{aligned}$$

then we get (1.11). Similarly e have the formula

(1.14)
$$\cos^{\delta\varepsilon}K = \frac{g({}^{\varepsilon}\boldsymbol{\zeta}, \boldsymbol{\varphi}^{-1}{}^{\delta}\boldsymbol{\xi})}{\sqrt{g(\boldsymbol{\varphi}^{-1}{}^{\delta}\boldsymbol{\xi}, \boldsymbol{\varphi}^{-1}{}^{\delta}\boldsymbol{\xi})}}.$$

First we have

$$g({}^{\varepsilon}\zeta, \varphi^{-1}{}^{\delta}\xi) = {}^{\varepsilon}w(\varphi^{-1}{}^{\delta}\xi)$$
$$= (\varphi^{-1}{}^{\varepsilon}w)({}^{\delta}\xi) \cdot \varphi = {}^{\delta\varepsilon}\gamma^{-1}$$

And in order to estimate $g(\varphi^{-1} \xi, \varphi^{-1} \xi)$, we decompose $\varphi^{-1} \xi$ into orthogonal components as follows:

(1.15)
$$\varphi^{-1\delta}\xi = {}^{\varepsilon}w(\varphi^{-1\delta}\xi){}^{\varepsilon}\zeta + (\varphi^{-1\delta}\xi - {}^{\varepsilon}w(\varphi^{-1\delta}\xi){}^{\varepsilon}\zeta).$$

Then we have

$$g(\varphi^{-1\delta}\xi,\varphi^{-1\delta}\xi) = ({}^{\varepsilon}w(\varphi^{-1\delta}\xi))^2 + g(\varphi^{-1\delta}\xi - {}^{\varepsilon}w(\varphi^{-1\delta}\xi){}^{\varepsilon}\zeta,\varphi^{-1\delta}\xi - {}^{\varepsilon}w(\varphi^{-1\delta}\xi){}^{\varepsilon}\zeta),$$

where

$$({}^{\varepsilon}w(arphi^{-1}{}^{\delta}m{\xi}))^2=((arphi^{-1*arepsilon}w)({}^{\delta}m{\xi}))^2=({}^{\deltaarepsilon}\gamma)^{-2}$$
 ,

and

$$egin{aligned} lpha g(arphi^{-1\delta}m{\xi} - {}^arepsilon w(arphi^{-1\delta}m{\xi})^arepsilon \zeta, arphi^{-1\delta}m{\xi} - {}^arepsilon w(arphi^{-1\delta}m{\xi})^arepsilon \zeta) \ &= h({}^\delta\!m{\xi} - arphi({}^{\deltaarepsilon}m{\gamma}^{-1}m{\cdot}^arepsilon \zeta), {}^\delta\!m{\xi} - arphi({}^{\deltaarepsilon}m{\gamma}^{-1}m{\cdot}^arepsilon \zeta))m{\cdot}arphi \end{aligned}$$

since the 2nd term of the right hand side of (1.15) belongs to the distribution D. Then we have

$$\begin{split} h({}^{\delta}\!\boldsymbol{\xi},{}^{\delta}\!\boldsymbol{\xi})\boldsymbol{\cdot}\boldsymbol{\varphi}\!-\!2({}^{\delta\epsilon}\!\boldsymbol{\gamma})^{-1}\,h({}^{\delta}\!\boldsymbol{\xi},\boldsymbol{\varphi}^{\epsilon}\!\boldsymbol{\zeta})\boldsymbol{\cdot}\boldsymbol{\varphi}\!+\!({}^{\delta\epsilon}\!\boldsymbol{\gamma})^{-2}\,h(\boldsymbol{\varphi}^{\epsilon}\!\boldsymbol{\zeta},\boldsymbol{\varphi}^{\epsilon}\!\boldsymbol{\zeta})\boldsymbol{\cdot}\boldsymbol{\varphi}\\ &=1\!-\!2({}^{\delta\epsilon}\!\boldsymbol{\gamma})^{-1}\,{}^{\delta}\!\eta(\boldsymbol{\varphi}^{\epsilon}\!\boldsymbol{\zeta})\boldsymbol{\cdot}\boldsymbol{\varphi}+({}^{\delta\epsilon}\!\boldsymbol{\gamma})^{-2}(\boldsymbol{\alpha}\!+\!\boldsymbol{\beta})\\ &=-1\!+\!({}^{\delta\epsilon}\!\boldsymbol{\gamma})^{-2}\!(\boldsymbol{\alpha}\!+\!\boldsymbol{\beta})\,.\end{split}$$

Therefore, subsituting these into (1.14), we get (1.12). q.e.d.

It is geometrically obvious that φ^{-1} is also an (m-1)-conformal transformation of N to M with respect to the distribution φD , applying φ^{-1*} to (1.6) we have

$$\begin{split} h &= (\boldsymbol{\alpha} \boldsymbol{\cdot} \boldsymbol{\varphi}^{-1}) \, \boldsymbol{\varphi}^{-1 \ast \varepsilon} g + \boldsymbol{\varphi}^{-1 \ast \varepsilon} \boldsymbol{w} \otimes \boldsymbol{\varphi}^{-1 \ast \varepsilon} \boldsymbol{\theta} + \boldsymbol{\varphi}^{-1 \ast \varepsilon} \boldsymbol{\theta} \otimes \boldsymbol{\varphi}^{-1 \ast \varepsilon} \boldsymbol{w} \\ &+ (\boldsymbol{\beta} \boldsymbol{\cdot} \boldsymbol{\varphi}^{-1}) \, \boldsymbol{\varphi}^{-1 \ast \varepsilon} \boldsymbol{w} \otimes \boldsymbol{\varphi}^{-1 \ast \varepsilon} \boldsymbol{w} \, . \end{split}$$

Hence

(1.16)
$$\varphi^{-1} * g = \left(\frac{1}{\alpha} \cdot \varphi^{-1}\right) h + {}^{\delta} \eta \otimes {}^{\delta} \lambda + {}^{\delta} \lambda \otimes {}^{\delta} \eta + \rho^{\delta} \eta \otimes {}^{\delta} \eta ,$$

where we have put

(1.17)
$${}^{\delta}\!\lambda = -(\alpha^{-1\delta\varepsilon}\gamma^{-1}\cdot\varphi^{-1})(\varphi^{-1*\varepsilon}\theta - {}^{\varepsilon}\theta(\varphi^{-1\delta}\xi)^{\delta}\eta),$$

(1.18)
$$\rho = -(\alpha^{-1}\beta^{\delta\varepsilon}\gamma^{-2}\cdot\varphi^{-1}) - 2(\alpha^{-1}\delta\varepsilon\gamma^{-1}\cdot\varphi^{-1})^{\varepsilon}\theta(\varphi^{-1}\delta\xi)\cdot\varphi^{-1}.$$

The right hand side of (1.17) contains \mathcal{E} , and so $^{\delta}\lambda$ may be written formally as $^{\epsilon\delta}\lambda$. However \mathcal{E} appears twice in each term. Thus $^{\epsilon\delta}\lambda$ does not depend on the choice of the neighborhood $U \in \{U\}$. Therefore we can omit \mathcal{E} from $^{\epsilon\delta}\lambda$. Similarly the right hand side of (1.18) contains \mathcal{E} and δ twice in each term respectively. So ρ does not depend on the choice of neighborhoods.

DEFINITION. The most standard (m-1)-conformal transformation of M to N is one which satisfies ${}^{\epsilon}\theta = 0$, we call such an (m-1)-conformal transformation a special (m-1)-conformal transformation and we denote it by an $(m-1)^{s}$ -conformal transformation.

DEFINITION. If we consider an (m-1)-conformal transformation φ of M onto itself, we sometimes assume that φ preserves the distribution. And we denote such φ by an [m-1]-conformal transformation. Namely by an [m-1]-conformal transformation of M onto M we understand an (m-1)-conformal transformation such that $\varphi D=D$.

ABBREVIATION. In the subsequent sections, we abbreviate \mathcal{E} or δ in ${}^{\varsigma}\zeta, {}^{\delta}\xi, {}^{\varsigma\delta}\gamma, \cdots$, frequently in the case where there is no confusion.

2. Commutability of an $(m-1)^s$ -homothety and the parallel translations. In this section, we study some properties of the $(m-1)^s$ -homothety of M to N satisfying some additional conditions, concerning the parallel translations with respect to the Riemannian connections. We denote by τ and \bigtriangledown , $\dot{\tau}$ and $\dot{\bigtriangledown}$ the parallel translations along certain curves and covariant differentiations with respect to the Riemannian connections for g, h respectively. We utilize the fundamental formula:

(2.1)
$$2g(\nabla_x Z, Y) = X \cdot g(Y, Z) + Z \cdot g(Y, X) - Y \cdot g(Z, X) + g(X, [Y, Z]) + g(Z, [Y, X]) - g(Y, [Z, X])$$

for any vector fields X, Y and Z.

THEOREM 2.1. Let φ be an $(m-1)^s$ -homothety of M to N and suppose that the distribution D in M is completely integrable. If a curve $l = \{l_t: 0 \leq t \leq 1\}$ in M, joining two points l_0 and l_1 , is a segment of an integral curve of the distribution D. And if u_{l_0} is a tangent vector at l_0 which belongs to D_{l_0} and $\tau_{l(t)}u_{l_0} \in D_{l_1}$ for any $t: 0 \leq t \leq 1$, $l(t) = \{l_s: 0 \leq s \leq t\}$, then we have

$$\varphi_{l_1}\tau_l u_{l_0} = \tau_{\varphi_l}\varphi_{l_0}u_{l_0}.$$

PROOF. We can assume that l does not have any self-intersecting point. Let u be a vector field on M such that u coincides with $u_{l_t} = \tau_{l(t)} u_{l_0}$ on l_t : $0 \leq t \leq 1$, and belongs to D. And let v be a vector field on M such that vis tangential to the curve l and belongs to D.

Of course, such u, v exist. In fact, let \overline{u} be any vector field on M which coincides with u_{l_i} on l_i , then $u = \overline{u} - {}^{\varepsilon}w(\overline{u}){}^{\varepsilon}\zeta$ satisfies the required property. In this case ${}^{\varepsilon}w(\overline{u}){}^{\varepsilon}\zeta$ is a globally defined vector field, since it has two \mathcal{E} 's.

Now, in (2.1) we set $X = \varphi v$, $Z = \varphi u$ and replace g by h, then we have

$$(2.2) 2h(' \bigtriangledown_{\varphi v} \varphi u, Y) = \varphi v \cdot h(Y, \varphi u) + \varphi u \cdot h(Y, \varphi v) - Y \cdot h(\varphi u, \varphi v) + h(\varphi v, [Y, \varphi u]) + h(\varphi u, [Y, \varphi v]) - h(Y, [\varphi u, \varphi v])$$

for any vector field Y on N. By the assumption ${}^{\varepsilon}\theta = 0$ and w(u) = 0, and by (1.6), we have

$$\begin{split} \varphi v \cdot h(Y, \varphi u) &= v \cdot (\varphi^* h)(\varphi^{-1}Y, u) \cdot \varphi^{-1} \\ &= v \cdot (\alpha g(\varphi^{-1}Y, u)) \cdot \varphi^{-1} \,. \end{split}$$

And we have

$$\begin{split} h(\varphi v, [Y, \varphi u]) &= (\varphi^* h)(v, [\varphi^{-1}Y, u]) \cdot \varphi^{-1} \\ &= \alpha g(v, [\varphi^{-1}Y, u]) \cdot \varphi^{-1} \,, \end{split}$$

(2.3)
$$h(Y, [\varphi u, \varphi v]) = \alpha g(\varphi^{-1}Y, [u, v]) \cdot \varphi^{-1} + \beta w(\varphi^{-1}Y) w([u, v]) \cdot \varphi^{-1}.$$

As the distribution D is completely integrable, w([u, v]) = 0 holds good, and so

(2.4)
$$h(\nabla_{\varphi v} \varphi u, Y) = \alpha_g(\nabla_v u, \varphi^{-1}Y) \cdot \varphi^{-1}.$$

If u is parallel along $l, \nabla_v u = 0$ holds on l and we have $\nabla_{\varphi v} \varphi u = 0$ on φl . q.e.d.

As a natural consequence, we see that, under the assumption in Theorem 2.1, if l is not only an integral curve of D, but also a geodesic, then φl is also geodesic. However this holds without the asumption of the complete integrability of D.

THEOREM 2.2. Let φ be an $(m-1)^s$ -homothety. If l is an integral curve of D and geodesic with respect to g, then φl is an integral curve of φD and geodesic with respect to h.

PROOF. If l is a geodesic, in the above proof we may assume that u=v. In (2.2), we replace φu by φv , then (2.4) replaced u by v holds good, since the 2nd term of the right hand side of (2.3) is zero. And hence $\nabla_v v = 0$ on l means $\nabla_{\varphi v} \varphi v = 0$ on φl .

THEOREM 2.3. Suppose that the distribution D is completely integrable and each trajectory of ${}^{\epsilon}\zeta$ is a geodesic. If an $(m-1)^{s}$ -homothetic transformation φ satisfies β =constant. Then, denoting by $l = \{l_{t}: 0 \leq t \leq 1\}$ a segment of the trajectory of ${}^{\epsilon}\zeta$, we have

$$\varphi_{l_1}\tau_l u_{l_0} = \tau_{\varphi l}\varphi_{l_0}u_{l_0}$$

for any tangent vector u_{l_0} at l_0 which belongs to D_{l_0} .

PROOF. As ζ is autoparallel and u_{l_0} is orthogonal to ζ_{l_0} , $\tau_{l(t)}u_{l_0}$ is also

orthogonal to ζ_{l_i} . Let u be a vector field on M such that $u_{l_i} = \tau_{(l)} u_{l_i}$ and w(u)=0. Using (2.1) for $\varphi \zeta$ and φu , we get

$$\begin{aligned} 2h(' \bigtriangledown_{\varphi \xi} \varphi u, Y) \cdot \varphi &= 2\alpha g(\bigtriangledown_{\xi} u, \varphi^{-1}Y) + \beta u \cdot w(\varphi^{-1}Y) \\ &+ \beta w([\varphi^{-1}Y, u]) - \beta w(\varphi^{-1}Y) w([u, \zeta]) \end{aligned}$$

for any vector field Y on N. If we put $Y = \varphi v$, where v belongs to D, as D is integrable, we have

(2.5)
$$h(\nabla_{\varphi\zeta}\varphi u,\varphi v) = \alpha_g(\nabla_{\zeta} u,v) \cdot \varphi^{-1}$$

Next we put $Y = \varphi \zeta$, and notice that

$$w([\zeta, u]) = -L(\zeta) \, w \cdot u \,,$$

where $L(\zeta_U)$ means the operator of the Lie derivation with respect to ζ_U . It is known that $L(\zeta_U)w_U = 0$ if and only if each trajectory of ζ_U is a geodesic, since $w(\zeta)=1$. And so we have

(2.6)
$$h(\nabla_{\varphi\zeta}\varphi u, \varphi\zeta) = \alpha_g(\nabla_{\zeta} u, \zeta) \cdot \varphi^{-1}.$$

By (2.5) and (2.6), $\nabla_{\xi} u = 0$ on l means that $\nabla_{\varphi\xi} \varphi u = 0$ on φl .

THEOREM 2.4. Suppose that the distribution D is completely integrable and $l = \{l_t : 0 \le t \le 1\}$ is a segment of an integral curve of D. If an $(m-1)^s$ homothetic transformation φ satisfies β =constant and ζ is parallel along l, then $\delta \xi$ is parallel along φl .

PROOF. Let v be a vector field stated in the proof of Theorem 2.1. By (2.1) we get

$$\begin{split} 2h(\bigtriangledown \nabla_{\varphi v} \varphi \zeta, Y) \cdot \varphi &= 2 \alpha g(\bigtriangledown_{v} \zeta, \varphi^{-1} Y) + v \cdot \beta w(\varphi^{-1} Y) \\ &+ \beta w([\varphi^{-1} Y, v]) - \beta w(\varphi^{-1} Y) w([\zeta, v]) \,. \end{split}$$

By the similar argument to the proof of Theorem 2.3 we have

(2.7)
$$h(\nabla_{\varphi v} \varphi \zeta, Y) = \alpha g(\nabla_{v} \zeta, \varphi^{-1} Y) \cdot \varphi^{-1}.$$

This completes the proof.

3. The case where each trajectory of ζ is a geodesic. In this section we do not necessarily assume that α is constant.

THEOREM 3.1. We assume that M and N admit an $(m-1)^s$ -conformal transformation φ such that $\alpha + \beta$ is constant. If each trajectory of ζ is a geodesic, each trajectory of ξ is also geodesic.

PROOF. In (2.1), putting $\varphi \zeta$ and Y, we get

(3.1)
$$2h(\nabla_{\varphi\xi}\varphi\zeta, Y) \cdot \varphi = 2\zeta \cdot (\alpha + \beta) w(\varphi^{-1}Y) - \varphi^{-1}Y \cdot (\alpha + \beta) + 2(\alpha + \beta) w([\varphi^{-1}Y, \zeta]).$$

By the assumption that $\alpha + \beta$ is constant and that each trajectory of ζ is a geodesic, we see that the right hand side vanishes when we put $Y = \varphi \zeta$ and $Y = \varphi u$ respectively, u denoting a vector field which belongs to D. So we have $\nabla_{\varphi \zeta} \varphi \zeta = 0$. As $\varphi \zeta = \mu \xi$, $|\mu|^2 = \alpha + \beta$, we see that $\nabla_{\xi} \xi = 0$.

THEOREM 3.2. Suppose that each trajectory of ${}^{\delta}\zeta$ and ${}^{\delta}\xi$ is a geodesic. Let φ be an $(m-1)^{s}$ -conformal transformation of M to N, and u be a vector field on M which belongs to D. Then we have $L(u)(\alpha+\beta) = 0$.

PROOF. We utilize (3.1) and putting $Y = \varphi u$, we have

(3.2)
$$2h(\nabla_{\varphi\xi}\varphi\zeta,\varphi u)\cdot\varphi = -u\cdot(\alpha+\beta).$$

On the other hand, as $(\varphi \zeta)_{\varphi x} = \mu_{\varphi x} \xi_{\varphi x}, \mu_{\varphi x}^2 = (\alpha + \beta)_x, x \in M$, we get

$$(3.3) \qquad \qquad \quad ' \nabla_{\varphi \xi} \varphi \zeta = (' \nabla_{\varphi \xi} \mu) \xi,$$

where we have used $\nabla_{\xi} \xi = 0$. By (3.2) and (3.3), we have $u \cdot (\alpha + \beta) = 0$.

PROPOSITION 3.3. Suppose that each trajectory of ${}^{\epsilon}\zeta$ and ${}^{\delta}\xi$ is a geodesic. Let φ be an $(m-1)^{s}$ -conformal transformation of M to N such that $\zeta \cdot (\alpha + \beta) = 0$. Then $\alpha + \beta$ is constant.

PROOF. Any tangent vector v_x at $x \in M$ is written as

$$v_x = (v_x - w(v)\boldsymbol{\zeta}_x) + w(v)\,\boldsymbol{\zeta}_x$$
 ,

where $v_x - w(v) \zeta_x \in D_x$. By Theorem 3.2 we have $(v_x - w(v) \zeta_x)(\alpha + \beta) = 0$.

Thus we see that $\alpha + \beta$ is constant.

From Theorem 3.2 we see geometrically the following

PROPOSITION 3.4. Suppose that each trajectory of ${}^{\epsilon}\zeta$ and ${}^{\delta}\xi$ is a geodesic. Let φ be an $(m-1)^{s}$ -conformal transformation of M to N and let l be a trajectory of ${}^{\epsilon}\zeta$. If, for each l and for any points $x, y \in l$, we can join x and y by a piecewise differentiable integral curve of D. Then $\alpha + \beta$ is constant.

4. Transformation of the Christoffel's symbols. Let φ be an (m-1)conformal transformation of M to N and x be an arbitrary point of M and $y = \varphi x$. On some coordinate neighborhoods U of x and V of y, we have $w_{U}, \zeta_{U}, \theta_{U}, \xi_{V}$ and we write them simply w, ζ, θ, ξ . We write their components w^{i}, ξ^{α} , etc. with respect to the local coordinates $x^{i}, y^{\alpha}: i, \alpha = 1, 2, \dots, m$. For convienience, we write w^{i} for ζ^{i} sometimes. Let

$$G_{ij} = h_{lphaeta} \, rac{\partial y^lpha}{\partial x^i} \, rac{\partial y^eta}{\partial x^j} \, ,$$

then (1.6) is written as follows:

(4.1)
$$G_{ij} = \alpha g_{ij} + w_i \theta_j + \theta_i w_j + \beta w_i w_j$$

We put $\nu = \theta_i \theta^i - \alpha(\alpha + \beta)$, where $\theta^i = g^{ij}\theta_j$ and g^{ij} is the inverse matrix of g_{ij} . Then the inverse matrix $(G^{-1})^{jk}$ of G_{ij} is given by

$$(4.2) \quad (G^{-1})^{jk} = \frac{1}{\alpha} g^{jk} + \frac{1}{\nu} (w^{j}\theta^{k} + \theta^{j}w^{k}) - \frac{1}{\alpha\nu} \theta^{j}\theta^{k} + \frac{1}{\nu} \left(\beta - \frac{r}{\alpha}\right) w^{j}w^{k},$$

where $r = \theta_j \theta^j$. If $\theta = 0$, (4.2) reduces to

(4.3)
$$(G^{-1})^{jk} = \frac{1}{\alpha} g^{jk} - \frac{\beta}{\alpha(\alpha+\beta)} w^j w^k .$$

Denoting by ${}^{\varphi} { i \\ jk }$, ${ i \\ jk }$ the Christoffel's symbols with respect to G_{ij} , g_{ij} respectively, generally we see that

$$(4.4) \quad \nabla_{k}(\varphi^{*}h)_{ij} - (\varphi^{*}(\nabla h))_{kij} = \binom{\varphi}{ik} - \binom{r}{ik} (\varphi^{*}h)_{rj} + \binom{\varphi}{jk} - \binom{r}{jk} (\varphi^{*}h)_{ir}$$

holds good, where \bigtriangledown and $'\bigtriangledown$ are covariant differentiation with respect to g

and h. The second term of the left hand side of (4.4) vanishes. Making up (4.4) in the simplified form, we get

(4.5)
$$2\binom{\varphi \left\{ r\\ jk \right\}}{-} \binom{r}{jk} G_{ri} = \nabla_{j}G_{ki} + \nabla_{k}G_{ij} - \nabla_{i}G_{jk}.$$

We calculate $\binom{r}{jk}$ by (4.1), (4.2) and (4.5) and we have

$$(4.6) \qquad 2^{\varphi} \left\{ \begin{matrix} i\\ jk \end{matrix} \right\} = 2 \left\{ \begin{matrix} i\\ jk \end{matrix} \right\} + \frac{1}{\alpha} (\alpha_{j} \delta_{k}^{i} + \alpha_{k} \delta_{j}^{i} - \alpha^{i} g_{jk}) \\ - \frac{1}{\alpha} \beta^{i} w_{j} w_{k} + \frac{2\beta}{\alpha} w_{(k} (w^{i}{}_{,j)} - w_{j)}{}^{,i}) \\ - \frac{w^{i}}{\nu} \left\{ \left(\beta - \frac{r}{\alpha} \right) (\zeta \alpha) g_{jk} + \left(\beta - \frac{r}{\alpha} \right) (\zeta \beta) w_{j} w_{k} \\ - 2 \left(\beta - \frac{r}{\alpha} \right) \alpha_{(j} w_{k)} + 2\alpha \beta_{(j} w_{k)} + 2\alpha \left(\beta - \frac{r}{\alpha} \right) w_{(j,k)} \\ + 2\beta \left(\beta - \frac{r}{\alpha} \right) w_{(j} w_{k),s} w^{s} \right\} + ([\theta]) ,$$

where we have used the notations $\nabla_i w_j = w_{j,i}$, $\alpha_i = \partial \alpha / \partial x^i$, $\alpha^k = g^{ki} \alpha_i$, $\beta^k = g^{ki} \beta_i$, $\zeta \alpha = w^i \alpha_i$, and () for indices means half of the sum of two terms interchanged two indices, for example

$$2w_{(k}w^{i}{}_{,j)}=w_{k}w^{i}{}_{,j}+w_{j}w^{i}{}_{,k},$$

and finally we have put

$$(4.7) \qquad ([\theta]) = 2\alpha^{-1} g^{hi} \{ w_{(k}(\theta_{|h|,j)} - \theta_{j),h}) + \theta_{(k}(w_{|h|,j)} - w_{j),h}) \}$$

$$+ \nu^{-1} w^{i} \{ 2\alpha_{(j}\theta_{k)} - (\theta\alpha)g_{jk} - (\theta\beta)w_{j}w_{k} - 2\alpha\theta_{(j,k)}$$

$$- 2\beta w_{(j}(w_{k),s} - w_{|s|,k)})\theta^{s}$$

$$- 2w_{(j}(\theta_{k),s} - \theta_{|s|,k)})\theta^{s}$$

$$- 2\theta_{(j}(w_{k),s} - w_{|s|,k)})\theta^{s}$$

$$- 2(\beta - r\alpha^{-1})(\theta_{(j}w_{k),s}w^{s} + w_{(j}(\theta_{k),s} - \theta_{|s|,k)})w^{s}) \}$$

$$+ \nu^{-1}\theta^{i} \{ (\alpha^{-1}\theta\alpha - \zeta\alpha) g_{jk} + (\alpha^{-1}\theta\beta - \zeta\beta) w_{j}w_{k}$$

$$+ 2\theta_{(j,k)} - 2\alpha w_{(j,k)} + 2\alpha_{(j}w_{k)} + 2\beta_{(j}w_{k)}$$

PARTIALLY CONFORMAL TRANSFORMATIONS

$$- 2\alpha^{-1}\alpha_{(j}\theta_{k)} - 2\beta w_{(j}w_{k),s}w^{s}$$

- 2(w_{(j}(\theta_{k),s} - \theta_{|s|,k)})w^{s} + \theta_{(j}w_{k),s}w^{s})
+ 2\alpha^{-1}\beta w_{(j}(w_{k),s} - w_{|s|,k)}\beta^{s}
+ 2\alpha^{-1}(w_{(j}(\theta_{k),s} - \theta_{|s|,k)})\beta^{s} + \theta_{(j}(w_{k),s} - w_{|s|,k})\beta^{s})\}.

Contracting with respect to i and k, we have

(4.8)
$$2^{\varphi} \left\{ \begin{matrix} k \\ jk \end{matrix} \right\} = 2 \left\{ \begin{matrix} k \\ jk \end{matrix} \right\} + (m\alpha^{-1} + \beta\nu^{-1} - 2r\alpha^{-1}\nu^{-1})\alpha_j - \alpha\nu^{-1}\beta_j + \nu^{-1}r_j.$$

THEOREM 4.1. Let φ be an $(m-1)^s$ -conformal transformation of M to N. If φ is an affine transformation, we have

(1) α and β are constant. And as a necessary condition that M and N admit such φ satisfying $\beta \ge 0$, we have

(2) ζ is a parallel field.

PROOF. By the assumption the last term of the right hand side of (4.7) vanishes and ${}^{\varphi} \left\{ \begin{matrix} i \\ jk \end{matrix} \right\} = \left\{ \begin{matrix} i \\ jk \end{matrix} \right\}$ holds good. Transvecting (4.6) with $w^{j}w_{i}$, we get

$$(4.9) \qquad \qquad \alpha_k + \beta_k = 0.$$

And from (4.8), it follows that

(4.10)
$$(m(\alpha+\beta)-\beta)\alpha_k + \alpha\beta_k = 0.$$

(4.9) and (4.10) give the following relation

$$(m-1)(\alpha+\beta)\alpha_k=0.$$

Thus α is constant and, by (4.9), β is also constant.

In the next place we prove (2). Transvecting (4.6) with $w^{j}w^{k}$ and using the fact that α and β are constant, we get

$$(4.11) \qquad \qquad \beta w^i{}_{,j} w^j = 0 \,.$$

If $\beta \neq 0$, by (4.11) we get $w_{i,j}w^j = 0$. Transvecting (4.6) with w_i , we have

(4.12)
$$\beta(w_{j,k} + w_{k,j}) = 0.$$

Thus ζ_v has a property of a Killing vector field. Transvecting (4.6) with w^k we have

(4.13)
$$\beta(w_{i,j} - w_{j,i}) = 0.$$

Hence ζ is a parallel field.

REMARK. In (2) of the Theorem 4.1, the assumption $\beta \ge 0$ means that φ is an essentially $(m-1)^s$ -conformal transformation.

q.e.d.

As a converse, next theorem follows from (4.6) immediately.

THEOREM 4.2. Suppose that φ is an $(m-1)^s$ -homothetic transformation of M to N such that β is constant. If ζ is a parallel field. Then φ is an affine transformation.

5. $(m-1)^s$ -conformal and projective transformation. By definition a projective transformation φ of M to N is one which transforms the system of geodesics in M into the same system in N. Namely as a necessary and sufficient condition that φ is a projective transformation we have

(5.1)
$$2^{\varphi} \left\{ \frac{i}{jk} \right\} - 2 \left\{ \frac{i}{jk} \right\} = 2\delta_{j}^{i} \psi_{k} + 2\delta_{k}^{i} \psi_{j}$$

where ψ is a differentiable function on M.

Suppose that φ is an $(m-1)^s$ -conformal and at the same time projective transformation. Contracting with respect to *i* and *j* in (5.1) and using (4.8), we get

(5.2)
$$2(m+1)\psi_k = \frac{m(\alpha+\beta)-\beta}{\alpha(\alpha+\beta)}\alpha_k + \frac{1}{\alpha+\beta}\beta_k.$$

Thus, if α and β are constant, $\psi_k = 0$ holds good and we see that φ is an affine transformation.

PROPOSITION 5.1. Let φ be an $(m-1)^s$ -conformal and at the same time projective transformation. Then we have

$$(5.3) 2d\psi = d\log \alpha \,.$$

PROOF. Transvecting (4.6) with $w^{i}w_{i}$ and utilizing (5.1), we get

(5.4)
$$2\zeta \boldsymbol{\psi} \cdot \boldsymbol{w}_k + 2\boldsymbol{\psi}_k = \frac{1}{\boldsymbol{\alpha} + \boldsymbol{\beta}} (\boldsymbol{\alpha}_k + \boldsymbol{\beta}_k) \, .$$

Transvecting (5.2) and (5.4) with w^k , we obtain

(5.5)
$$2(m+1)\zeta\psi = \frac{m(\alpha+\beta)-\beta}{\alpha(\alpha+\beta)}\zeta\alpha + \frac{1}{\alpha+\beta}\zeta\beta,$$

(5.6)
$$4\zeta\psi = \frac{1}{\alpha+\beta}(\zeta\alpha+\zeta\beta).$$

Eliminating $\zeta \psi$ from (5.5) and (5.6), we get

(5.7)
$$(\alpha + 2\beta)\zeta\alpha = \alpha\zeta\beta$$

By (5.6) and (5.7), we get $2\zeta\psi = \frac{1}{\alpha}\zeta\alpha$. And so, by virtue of (5.2), (5.4) is written as

(5.8)
$$((m-1)\beta - \alpha)\alpha_k - m\alpha\beta_k + (m+1)(\alpha + \beta)\zeta\alpha \cdot w_k = 0.$$

Transvecting (4.6) with $g^{jk}w_i$ and using (5.1), (5.7) and $2\alpha\zeta\psi=\zeta\alpha$, we get

$$(5.9) \qquad (m-1)\zeta \alpha = 2\beta w^{i}{}_{,i}.$$

Transvecting (4.6) with $w^{j}w^{k}$ and g^{jk} respectively and using (5.1), (5.2), (5.7) and (5.9), we have

(5.10)
$$2(\alpha+\beta)\zeta\alpha\cdot w_k - \alpha(\alpha_k+\beta_k) + 2\alpha\beta w_{k,i}w^i = 0,$$

(5.11)
$$\frac{(m+1)\alpha+2\beta}{\alpha}\zeta\alpha\cdot w_k + \frac{(\alpha+\beta)(2-m-m^2)+2\beta}{(\alpha+\beta)(m+1)}\alpha_k$$
$$(\alpha+\beta)(m+1)+2\alpha$$

$$-rac{(lpha+eta)(m+1)+2lpha}{(lpha+eta)(m+1)}eta_k+2eta\,w_{k,i}w^i=0\,.$$

Eliminating $w_{k,i}w^i$ from the two above equations

$$(5.12) \quad ((3-m^2)(\alpha+\beta)+2\beta)\alpha_k-2\alpha\beta_k+(m-1)(m+1)(\alpha+\beta)\zeta\alpha\cdot w_k=0.$$

Eliminating w_k from (5.8) and (5.12), as m > 2, we get

(5.13)
$$(\alpha + 2\beta)\alpha_k - \alpha\beta_k = 0.$$

From (5.2) and (5.13), we deduce (5.3).

THEOREM 5.2. Let φ be an $(m-1)^{s}$ -homothety and at the same time projective transformation. Then φ is an affine transformation. Further β is constant and ζ is a parallel field.

PROOF. As α is constant, we have $\psi_k = 0$ by Proposition 5.1, hence φ is an affine transformation. Then we can apply Theorem 4.1.

THEOREM 5.3. Let φ be an $(m-1)^s$ -conformal transformation and at the same time projective transformation such that $\alpha + \beta$ is constant. Then we see that α and β are constant and φ is an affine transformation.

PROOF. This is an immediate consequence of (5.13).

COROLLARY 5.4. Let φ be an $(m-1)^s$ -conformal transformation of M onto itself and at the same time projective transformation such that $\varphi^{\varepsilon}\zeta = \pm^{\varepsilon}\zeta$. Then φ is an affine transformation.

6. The Riemannian curvature, Ricci curvature and scalar curvature. Let φ be an (m-1)-conformal transformation of M to N. We denote by $R^{i}_{j_{kl}}$, R_{j_k} , R and ${}^{\varphi}R^{i}_{j_{kl}}$, ${}^{\varphi}R_{j_k}$, ${}^{\varphi}R$ the Riemannian curvatures, Ricci curvatures, scalar curvatures with respect to g and $\varphi^*h = (G_{ij})$ respectively. First we have

(6.1)
$${}^{\varphi}R^{i}_{jkl} = R^{i}_{jkl} + W^{i}_{jk,l} - W^{i}_{jl,k} + W^{i}_{rl}W^{r}_{jk} - W^{i}_{rk}W^{r}_{jl},$$

where covariant derivative (,) is the one with respect to ${i \choose jk}$ and

(6.2)
$$W_{jk}^{i} = {}^{\varphi} \left\{ \begin{array}{c} i\\ jk \end{array} \right\} - \left\{ \begin{array}{c} i\\ jk \end{array} \right\}.$$

The verification of (6.1) is as follows: When we calculate ${}^{\varphi}R^{i}_{jkl}$ by $\begin{cases} i\\ jk \end{cases} + W^{i}_{jk}$, we have the right side of (6.1) and the terms which contain $\begin{cases} i\\ jk \end{cases}$'s. At any point x of M, we can find local coordinates x^{i} such that $\begin{cases} i\\ jk \end{cases}_{x} = 0$ holds good. Then we have (6.1) at x, and as (6.1) is a tensor equation, we get (6.1).

Contracting with respect to i and l, we have the relation of the Ricci curvatures by;

(6.3)
$${}^{\varphi}R_{jk} = R_{jk} + W^{i}_{jk,i} - W^{i}_{ji,k} + W^{i}_{ri}W^{r}_{jk} - W^{i}_{rk}W^{r}_{ji}.$$

Transvecting (6.3) with (4.2), we get

$$(6.4) {}^{\varphi}R = \frac{1}{\alpha} R + \frac{1}{\alpha} (W^{i}_{jk} g^{jk})_{,i} - \frac{1}{\alpha} (W^{i}_{jl})^{,j} + \frac{1}{\alpha} W^{i}_{ir} W^{r}_{jk} g^{jk} - \frac{1}{\alpha} W^{i}_{kr} W^{r}_{ji} g^{jk} + \frac{1}{\nu} \left(\beta - \frac{r}{\alpha}\right) \{R_{1}(\zeta, \zeta) + W^{i}_{jk,i} w^{j} w^{k} - W^{i}_{ji,k} w^{j} w^{k} + W^{i}_{ir} W^{r}_{jk} w^{j} w^{k} - W^{i}_{kr} W^{r}_{ji} w^{k} w^{j}\} + \frac{1}{\nu} \{2R_{1}(\theta, \zeta) + 2W^{i}_{jk,i} \theta^{j} w^{k} - W^{i}_{jl,k} (w^{j} \theta^{k} + w^{k} \theta^{j}) + 2W^{i}_{ir} W^{r}_{jk} w^{j} \theta^{k} - 2W^{i}_{kr} W^{r}_{jl} \theta^{k} w^{j}\} + \frac{1}{\alpha \nu} \{-R_{1}(\theta, \theta) + (-W^{i}_{jk,i} + W^{i}_{jl,k} - W^{i}_{ir} W^{r}_{jk} + W^{i}_{kr} W^{r}_{jl}) \theta^{j} \theta^{k}\},$$

where R_1 denotes the Ricci curvature.

As a special case, we consider an $(m-1)^s$ -homothetic transformation of M to N assuming that ζ is a parallel field. By (4.6), we have

(6.5)
$$2W_{jk}^{i} = -\frac{1}{\alpha}\beta^{i}w_{j}w_{k} + \frac{w^{i}}{\alpha(\alpha+\beta)}\left(\beta(\zeta\beta)w_{j}w_{k} + 2\alpha\beta_{(j}w_{k)}\right).$$

Then by (6.3) we have

$$(6.6) 4^{\varphi}R_{jk} = 4R_{jk} + \frac{2}{\alpha+\beta} \left(\beta_{j,l}w^{l}w_{k} + \beta_{k,l}w^{l}w_{j} - \beta_{j,k}\right) \\ + \frac{1}{\alpha(\alpha+\beta)^{2}}w_{j}w_{k}\left\{-2(\alpha+\beta)^{2}\beta_{i,l}^{i} + 2\beta(\alpha+\beta)\beta_{i,l}w^{l}w^{l} \\ + (\alpha+\beta)\beta_{\tau}\beta^{\tau} - \beta(\zeta\beta)^{2}\right\} \\ + \frac{1}{(\alpha+\beta)^{2}} \left(\beta_{j}\beta_{k} - 2(\zeta\beta)\beta_{(j}w_{k)}\right).$$

And finally from (4.3), we have

(6.7)
$$4^{\varphi}R = \frac{4}{\alpha}R + \frac{4}{\alpha(\alpha+\beta)}(\beta_{j,i}w^{j}w^{i}-\beta_{j,i}^{i}) + \frac{2}{\alpha(\alpha+\beta)^{2}}(\beta_{r}\beta^{r}-(\zeta\beta)^{2}),$$

where we have used $R_{ij}w^iw^j=0$, which follows from the fact that w^i is a parallel field.

Now, next Proposition is evident:

PROPOSITION 6.1. Suppose that ${}^{\epsilon}\zeta$ is a parallel field and φ is an $(m-1)^{s}$ -homothety of M to N such that β is constant. Then the scalar curvatures are in the relation $R_{\varphi x} = \frac{1}{\alpha} R_x$, $x \in M$. Particularly if both scalar curvatures are constant and equal to $R \neq 0$, then φ is an $(m-1)^{s}$ -isometry.

As usual, we denote by δ the dual of d (i.e. codifferentiation), then we have $\beta_{i,i}^i = -\delta d\beta$.

THEOREM 6.2. Suppose that ${}^{s}\zeta$ is a parallel field and φ is an $(m-1)^{s}$ -homothety of M onto itself such that $\delta d\beta = 0$ and $\zeta \beta = 0$ hold good.

(i) If R = 0, β is constant.

(ii) If R = constant < 0, then $\alpha \leq 1$.

(iii) If R = constant > 0, then $\alpha \ge 1$.

In (ii) and (iii) equality holds if and only if β is constant.

PROOF. If R is constant by (6.7) we get

(6.8)
$$\frac{1}{(\alpha+\beta)^2} \beta_r \beta^r = 2(\alpha-1)R,$$

where we have used $\beta_{j,l}w^{j}w^{l} = (\beta_{j}w^{j})_{,l}w^{l} = 0$. From (6.8), (i), (ii) and (iii) follow. If $\alpha = 1$, then $\beta_{r}\beta^{r} = 0$ holds, hence β is constant,

THEOREM 6.3. Suppose that ${}^{\circ}\zeta$ is a parallel field and φ is an $(m-1)^{s}$ -homothety of M onto itself such that β is constant. If the scalar curvature is bounded and not equal to 0 somewhere, then φ is an $(m-1)^{s}$ -isometry.

PROOF. By (6.7) we have ${}^{\varphi}R = \frac{1}{\alpha}R$ namely $R_{\varphi x} = \frac{1}{\alpha}R_x$, x being a point at which R_x is not zero. Then by iteration, we have $R_{\varphi^k x} = \left(\frac{1}{\alpha}\right)^k R_x$. As R is bounded, we can conclude that $\alpha = 1$.

THEOREM 6.4. Suppose that ${}^{\circ}\zeta$ is a parallel field and φ is an $(m-1)^{s}$ -homothety of M onto itself which preserves the Ricci curvature.

- (i) If $\delta d\beta = 0$ and $\zeta \beta = 0$, then β is constant.
- (ii) If M is compact orientable, then $d\beta$ is proportional to w.
- (iii) If M is compact and there exists a point x such that $R_x \ge 0$, then $\alpha = 1$.

PROOF. Noticing that ${}^{\varphi}R_{jk} = R_{jk}$, we transvect (6.6) with $w^{j}w^{k}$, and get

(6.9)
$$2\beta_{j,\iota}w^{j}w^{\iota}-2\beta_{,\iota}^{\iota}+\frac{1}{\alpha+\beta}\beta_{r}\beta^{r}-\frac{1}{\alpha+\beta}(\zeta\beta)^{2}=0.$$

Then (i) is clear. To prove (ii), if we integrate (6.9) over M, we have

$$\int_{M} \frac{1}{\alpha + \beta} \left(\beta_{r} \beta^{r} - (\zeta \beta)^{2} \right) d\sigma = 0,$$

where we have used $\int_{\mathcal{M}} \beta_{j,l} w^{j} w^{l} d\sigma = \int_{\mathcal{M}} (\beta_{j} w^{j} w^{l})_{,l} d\sigma = 0$, and $d\sigma$ denotes the volume element of M. As $\alpha + \beta$ is positive and $(\beta_{r} \beta^{r} - (\zeta \beta)^{2}) = (\beta_{r} - (\zeta \beta) w_{r}) \times (\beta^{r} - (\zeta \beta) w^{r})$ is non-negative, we have $\beta_{r} = (\zeta \beta) w_{r}$, namely $d\beta$ is proportional to w. On the other hand, transvecting ${}^{\sigma}R_{jk} = R_{jk}$ with $(G^{-1})^{jk}$ in (6.6), we have ${}^{\sigma}R = \frac{1}{\alpha} R$. As M is compact, R is bounded, so we have $\alpha = 1$.

REMARK. Assume that ζ is a parallel field and φ is an $[m-1]^s$ -homothety of M onto itself, then we have (i) and (ii). Because ${}^{\varphi}R_1(\zeta,\zeta) = \mu^2 R_1(\zeta,\zeta) \cdot \varphi = 0$.

7. The sectional curvatures in the case where ζ is parallel along D. We say that ζ is parallel along D, if $\nabla_u \zeta = 0$ holds for any vector field u which belongs to the distribution D i.e. w(u) = 0. First we prove

LEMMA 7.1. If ζ is parallel along D, then D is completely integrable.

PROOF. Suppose that u and v belong to D, then we have

(7.1)
$$w(\nabla_v u) = \nabla_v (w(u)) - \nabla_v w \cdot u = 0,$$

from which we have

(7.2)
$$w([u,v]) = w(\nabla_u v - \nabla_v u) = 0.$$

This completes the proof.

LEMMA 7.2. If ζ is parallel along D and if φ is an $(m-1)^s$ -homothety of M to N. Let u, v be vector fields which belong to D, then we have

(7.3)
$$\nabla_{\varphi v} \varphi u = \varphi \nabla_{v} u.$$

PROOF. If u and v belong to D and φ is an $(m-1)^s$ -homothety we have (2.4), equivalently

(7.4)
$$h(\nabla_{\varphi v} \varphi u, Y) = \alpha(\varphi^{-1*}g)(\varphi \nabla_{v} u, Y)$$

for any vector field Y on N. By (1.16), we have

(7.5)
$$\varphi^{-1*}g = \frac{1}{\alpha}h - \left(\frac{\beta}{\alpha(\alpha+\beta)} \cdot \varphi^{-1}\right)\eta \otimes \eta.$$

And we get

(7.6)
$$(\eta \otimes \eta)(\varphi \nabla_v u, Y) = \eta(\varphi \nabla_v u) \cdot \eta(Y) = \gamma w(\nabla_v u) \varphi^{-1} \cdot \eta(Y) = 0.$$

Then by virtue of (7.4), (7.5) and (7.6), we get

(7.7)
$$h(' \nabla_{\varphi v} \varphi u, Y) = h(\varphi \nabla_{v} u, Y).$$

As (7.7) holds for any Y, we have (7.3).

PROPOSITION 7.3. Let φ be an $(m-1)^s$ -homothety of M to N such that β is constant, then two following conditions are equivalent:

- (i) ζ is parallel (along D resp.).
- (ii) ^{$\delta\xi$} is parallel (along φD resp.).

PROOF. (i) \rightarrow (ii). We use (2.7). If ζ is parallel along D, $\nabla_v \zeta = 0$ holds good provided that v belongs to D, and we have $\nabla_{\varphi v} \varphi \zeta = 0$. Then $\sqrt{\alpha + \beta} \xi$, and so ξ , is parallel along φD . If ζ is parallel, each trajectory of ζ is a geodesic. By Theorem 3.1 we see that each trajectory of ξ is also a geodesic. Then ξ is parallel field. The case (ii) \rightarrow (i) reduces to the first case by taking the inverse φ^{-1} .

THEOREM 7.4. Suppose that ζ is parallel along D and φ is an $(m-1)^s$ -homothety of M to N. Let u, v, r be vector fields which belong to D, then we have

(7.8)
$$(R(\varphi u, \varphi v) \varphi r = \varphi(R(u, v)r),$$

where R and 'R denote the Riemannian curvature tensors with respect to g and h.

PROOF. The expression of the Riemannian curvature tensor is as follows:

PARTIALLY CONFORMAL TRANSFORMATIONS

(7.9)
$$-R(u,v)r = \nabla_u \nabla_v r - \nabla_v \nabla_u r - \nabla_{[u,v]} r.$$

Thus, if u, v, r belong to D, by Lemma 7.2, we have

$$- {}^{'}R(\varphi u, \varphi v)\varphi r = {}^{'} \bigtriangledown_{\varphi u} \bigtriangledown_{\varphi v} \varphi r - {}^{'} \bigtriangledown_{\varphi v} \circ_{\varphi u} \varphi r - {}^{'} \bigtriangledown_{[\varphi u, \varphi v]} \varphi r$$
$$= {}^{'} \bigtriangledown_{\varphi u} \varphi(\bigtriangledown_{v} r) - {}^{'} \bigtriangledown_{\varphi v} \varphi(\bigtriangledown_{u} r) - {}^{'} \bigtriangledown_{\varphi [u, v]} \varphi r$$
$$= - \varphi \cdot R(u, v) r,$$

completing the proof.

We denote by $K_x(u, v)$ the sectional curvature defined by the tangent vectors u and v at a point x, then

$$K_x(u,v) = \frac{g_x(R(u,v)\,u,v)}{|u \wedge v|^2}$$

where $|u \wedge v|$ is the area of the parallelogram with u and v as adjacent sides:

(7.10)
$$|u \wedge v|^{2} = |u|^{2}|v|^{2} - (g(u, v))^{2}.$$

REMARK 1. If ζ is a parallel field, we have $R^{i}_{jkl}w^{j} = 0$. Therefore the sectional curvature $K(\zeta, u)$ determined by ζ and any other vector u is equal to zero.

THEOREM 7.5. Assume that ${}^{\varepsilon}\zeta$ is parallel along D and φ is an $(m-1)^{s}$ -homothety. Let u, v be tangent vectors at $x \in M$ which belong to D_x , then we have

(7.11)
$$K_x(u,v) = \alpha' K_{\varphi x}(\varphi u, \varphi v),$$

where $K(\varphi u, \varphi v)$ is the sectional curvature determined by φu and φv with respect to h.

PROOF. By Theorem 7.4, we have

(7.12)
$$h(R(\varphi u, \varphi v) \varphi u, \varphi v) = h(\varphi \cdot R(u, v) u, \varphi v)$$
$$= \alpha g(R(u, v) u, v) \cdot \varphi^{-1}.$$

From (7.10), it follows that

(7.13)
$$|\varphi u \wedge \varphi v|^2 = \alpha^2 |u \wedge v|^2 \cdot \varphi^{-1}.$$

By (7.12) and (7.13), we get (7.11).

Let u_x, v_x be two tangent vectors at x and let u, v be their extension to vector fields. Then the value of the function K(u, v) at x is equal to $K_x(u_x, v_x)$. Now we prove

THEOREM 7.6. Assume that ${}^{\circ}\zeta$ and ${}^{\delta}\xi$ are parallel fields and φ is an $(m-1)^{s}$ -homothety. Then we have

(7.14)
$$K(u,v) = \left(\alpha + \frac{Q(\varphi, u, v)}{|u \wedge v|^2}\right) K(\varphi u, \varphi v) \cdot \varphi,$$

for any vector fields u and v, where we have put

(7.15)
$$Q(\varphi, u, v) = \beta(a^2g(v, v) + b^2g(u, u) - 2abg(u, v)),$$

a and b denoting ${}^{\varepsilon}w(u)$ and ${}^{\varepsilon}w(v)$ respectively.

PROOF. We decompose u and v as follows:

(7.16)
$$u = u_0 + a\zeta, \quad v = v_0 + b\zeta,$$

where u_0 and v_0 belong to D and $a = {}^{e}a = {}^{e}w(u)$, $b = {}^{e}b = {}^{e}w(v)$. Then $\varphi u = \varphi u_0 + ({}^{e}a\varphi^{-1})\varphi \zeta = \varphi u_0 + ({}^{e}a\varphi^{-1}){}^{e\delta}\mu^{\delta}\xi$, $\mu^2 \cdot \varphi = \alpha + \beta$, and as ζ and ξ are parallel fields, we have

(7.17)
$$h(R(\varphi u, \varphi v)\varphi u, \varphi v) = h(R(\varphi u_0, \varphi v_0) \varphi u_0, \varphi v_0)$$
$$= \alpha g(R(u_0, v_0) u_0, v_0) \cdot \varphi^{-1}$$
$$= \alpha g(R(u, v) u, v) \cdot \varphi^{-1}.$$

On the other hand, using (7.10) and $\varphi \zeta = \mu \xi$, $\mu^2 \cdot \varphi = \alpha + \beta$, we can show the following relation

$$|\varphi u \wedge \varphi v|^2 \cdot \varphi = \alpha^2 |u \wedge v|^2 + \alpha \beta (a^2 g(v, v) + b^2 g(u, u) - 2abg(u, v)).$$

Thus we have

$$\begin{split} K(u,v) &= \left(\frac{1}{\alpha}\right) \frac{h(R(\varphi u,\varphi v) \varphi u,\varphi v) \cdot \varphi}{|u \wedge v|^2} \\ &= \frac{1}{\alpha} \cdot \frac{\alpha^2 |u \wedge v|^2 + \alpha Q(\varphi, u, v)}{|u \wedge v|^2} (K(\varphi u,\varphi v) \cdot \varphi). \end{split}$$

380

q.e.d.

Now we have (7.14).

THEOREM 7.7. Assume that ${}^{\circ}\zeta$ and ${}^{\delta}\xi$ are parallel fields and φ is an $(m-1)^{s}$ -homothety. If M is of non-negative curvature (non-positive curvature respectively), then N is of non-negative curvature (non-positive curvature respectively).

PROOF. By (7.17) we see that K(u, v) and $K(\varphi u, \varphi v)$ have the same sign + or -.

REMARK 2. In Theorem 7.6 and 7.7, if φ is an $(m-1)^s$ -homothety such that β is constant, then the assumption that ${}^{\delta}\xi$ is a parallel field may be removed by Proposition 7.3.

8. (m-1)-Einstein spaces. Let M and R_1 be an m-dimensional Riemannian manifold and Ricci curvature.

DEFINITION. If M admits an (m-1)-dimensional distribution D such that $R_1(u, v) = eg(u, v)$ holds good for $u, v \in D$, e denoting a scalar field, we say that M is an (m-1)-Einstein space with respect to the distribution D.

Let ${}^{\varepsilon}\!\zeta$, ${}^{\varepsilon}\!w$ be ones defined in §1. By the similar argument we see that R_1 is written as follows

(8.1)
$$R_1 = eg + {}^{\varepsilon}w \otimes {}^{\varepsilon}K + {}^{\varepsilon}K \otimes {}^{\varepsilon}w + f^{\varepsilon}w \otimes {}^{\varepsilon}w,$$

where f is a scalar field on M and $^{\circ}K$ defines a 1-form K_{v} in each U in §1. Namely in U, we have

(8.2)
$$R_{ij} = eg_{ij} + w_i K_j + K_i w_j + f w_i w_j,$$

where $K_i w^i = 0$. Transvecting (8.2) with g^{ij} , we get

$$(8.3) R = me + f.$$

By the same letter K we denote the contravariant vector: $K^i = g^{ij}K_j$. Using δ , we have $(\delta w) = -w^i_{,i}$.

Now we prove

THEOREM 8.1. Suppose that M is an (m-1)-Einstein space (m>3) with respect to D. If in (8.1), the three conditions: (1) $\delta w_U = 0$, $\nabla_{\xi_U} \xi_U = 0$,

(2) $R_1(\zeta_v, \zeta_v) = constant,$

(3) $\delta K_{\upsilon} = 0$, $\nabla_{\zeta_{\upsilon}} K_{\upsilon} + \nabla_{K_{\upsilon}} \zeta_{\upsilon} = 0$

are satisfied for each U, then e and f are constant on M. Further the scalar curvature R is constant.

PROOF. Multiply $w^i w^j$ to (8.2) and contract with respect to *i* and *j*, then we have

$$(8.4) R_{ij}w^iw^j = e + f.$$

Hence, by (2) we have

(8.5)
$$e_k + f_k = 0$$
.

Differentiating covariantly (8.3) we have

(8.6)
$$R_{,k} = m e_k + f_k$$
.

And from (8.2), we get

(8.7)
$$g^{is} R_{ik,s} = R_{ik}^{i} = e_k + f_i w^i w_k,$$

where we have used $w^{i}_{,i}=0$, $w_{k,i}w^{i}=0$, $K^{i}_{,i}=0$ and $K_{k,i}w^{i}+w_{k,i}K^{i}=0$. Using the well-known identity $R_{,k}=2R_{ik,i}^{i}$, (8.6) and (8.7) show that

 $(8.8) \qquad (m-2)e_k = 2\zeta f \cdot w_k - f_k.$

Eliminating f_k from (8.5) and (8.8), we have

$$(8.9) (m-3)e_k = 2\zeta f \cdot w_k.$$

Transvecting (8.5) and (8.9) with w^k , we get

 $\zeta e + \zeta f = 0, \quad (m-3)\zeta e = 2\zeta f.$

Thus we get $(m-1)\zeta e=0$ and $\zeta e=0$, $\zeta f=0$. Then from (8.5), (8.6) and (8.9) it follows that $e_k = f_k = 0$ and $R_{,k} = 0$.

COROLLARY 8.2. In an (m-1)-Einstein space (m>3), if ${}^{\epsilon}\zeta$ is a parallel field and if $\delta K_{\upsilon}=0$, $\nabla_{\xi_{\upsilon}}K_{\upsilon}=0$ (in particular if K=0) hold good. Then e, f and R are constant.

PROOF. (1) of the Theorem holds good. By Ricci's indentity, we have $R_{ij}w^iw^j=0$, satisfying (2).

PROPOSITION 8.3. In the above Theorem, if m=3, i.e., M is a (3-1)-Einstein space satisfying (1), (2) and (3). Then

$$\zeta e = \zeta f = 0$$
 and $\zeta R = 0$.

PPOOF. By (8.9) we have $\zeta f=0$. And so $\zeta e=0$ and $\zeta R=0$ follow from (8.5) and (8.6).

DEFINITION. We call M a ^ew-Einstein space if M is an (m-1)-Einstein space with respect to D and satisfies ^eK=0 in (8.1).

REMARK 1. In the study of contact manifolds, some authors treated with η -Einstein spaces, η denoting a contact form ([11], [12]).

REMARK 2. In the Theorem 8.1 and Proposition 8.3, if M is a ^{ε}w-Einstein space, the condition (3) is satisfied always.

If M is an Einstein space $(R \approx 0)$, a transformation which preserves the Ricci curvature is an isometry of M. So there is no essentially [m-1]-conformal transformation of M which preserves the Ricci curvature. This is one of the reasons why we consider (m-1)-Einstein spaces.

THEOREM 8.4. Let M be an (m-1)-Einstein space. If a transformation φ of M preserves the Ricci curvature and the distribution ${}^{\varepsilon}w=0$, then φ is an [m-1]-conformal transformation.

PROOF. By assumption we have

 $R_1(\varphi u, \varphi v) = e_q(\varphi u, \varphi v) + w(\varphi u)K(\varphi v) + K(\varphi u)w(\varphi v) + f_w(\varphi u)w(\varphi v)$

for any vector fields u, v on M. And we have a family ${}^{\omega}\gamma = \{\gamma_{UV}\}$ of scalar fields such that $\varphi^*w = \gamma w$. As $R_1(\varphi u, \varphi v) \cdot \varphi = R_1(u, v)$, we have

(8.10)
$$\varphi^* g = \frac{e}{e \cdot \varphi} g + \frac{1}{e \cdot \varphi} w \otimes (K - \gamma \varphi^* K)$$
$$+ \frac{1}{e \cdot \varphi} (K - \gamma \varphi^* K) \otimes w + \frac{1}{e \cdot \varphi} (f - \gamma^2 (f \cdot \varphi)) w \otimes w.$$

Though this is not a canonical form of an (m-1)-conformal transformation, we see that φ is an [m-1]-conformal transformation. If $K - \gamma \varphi^* K$ is proportional to w, φ is an $[m-1]^s$ -conformal transformation. And if e is constant, φ is an $[m-1]^s$ -isometry.

COROLLARY 8.5. Let M be a ^{ε}w-Einstein space (m>3) and suppose that φ preserves the Ricci curvature and the distribution ^{ε}w=0. If (1) $\delta w_{U}=0$, $\nabla_{\xi_{U}}\xi_{U}=0$ and (2) $R_{1}(\xi_{U},\xi_{U})$ is constant, then φ is an $[m-1]^{s}$ -isometry.

PROOF. As K=0, by Theorem 8.1, we see that e and f are constant. Thus by (8.10), we get

(8.11)
$$\varphi^* g = g + \frac{f}{e} (1 - \gamma^2) w \otimes w.$$

COROLLARY 8.6. In Corollary 8.5, in particular if $R_1(\zeta_v, \zeta_v)=non-zero$ constant. Then φ is an isometry.

PROOF. From $\varphi^* w = \gamma w$, $\varphi \zeta = (\gamma \cdot \varphi^{-1}) \zeta$ follows. By contraction (8.11) with ζ , we get

$$\gamma^2 = 1 + rac{f}{e} (1 - \gamma^2) \; .$$

As $e+f \neq 0$, we have $\gamma^2 = 1$, and hence $\varphi^*g = g$.

9. The group of [m-1]-conformal transformations. In *m*-dimensional manifold M, let D be an (m-1)-dimensional distribution of class C^{∞} . By Π we denote the set of all [m-1]-conformal transformation of M on itself with respect to the distribution D. Let φ_1, φ_2 and φ_3 be elements of Π , then

(9.1)
$$\varphi_{\lambda}^{*}w = \gamma_{\lambda}w,$$

$$(9.2) \qquad (\varphi_{\lambda} * g)_{x} = \alpha_{\lambda}(x) g_{x} + w_{x} \otimes (\theta_{\lambda})_{x} + (\theta_{\lambda})_{x} \otimes w_{x} + \beta_{\lambda}(x) w_{x} \otimes w_{x},$$

 $\lambda = 1, 2, 3$, where $\gamma_{\lambda}, \alpha_{\lambda}, \beta_{\lambda}$ are scalar fields and θ_{λ} defines 1-form in each local neighborhood. Then the composition $\varphi_2 \cdot \varphi_1$ satisfies

(9.3)
$$((\varphi_2 \cdot \varphi_1)^* w)_x = (\varphi_1^* \varphi_2^* w)_x = \gamma_1(x) \gamma_2(\varphi_1 x) w_x,$$

$$(9.4) \qquad \qquad ((\varphi_2 \cdot \varphi_1)^* g)_x = \alpha_1(x) \, \alpha_2(\varphi_1 x) \, g_x$$

PARTIALLY CONFORMAL TRANSFORMATIONS

where (\cdots) means three terms corresponding to the 2, 3, 4th term in the right hand side of (9.4). The inverse transformation of φ satisfies

(9.6)
$$(\varphi^{-1*}w)_{\varphi_x} = \left(\frac{1}{\gamma}\right)(x)w_{\varphi_x},$$

(9.7)
$$(\varphi^{-1*}g)_{\varphi x} = \left(\frac{1}{\alpha}\right)(x)g_{\varphi x} + w_{\varphi x}\otimes\left(-\frac{1}{\alpha\gamma}(x)\right)(\varphi^{-1*}\theta)_{\varphi x} \\ + \left(-\frac{1}{\alpha\gamma}(x)\right)(\varphi^{-1*}\theta)_{\varphi x}\otimes w_{\varphi x} - \left(\frac{\beta}{\alpha\gamma^{2}}\right)(x)w_{\varphi x}\otimes w_{\varphi x} .$$

Here we notice that (9.4) and (9.7) are not canonical expression of (m-1)-conformal transformations.

We use the notations for the subgroups of the transformation group Π as follows :

- Π^s : The totality of $[m-1]^s$ -conformal transformations.
- Θ : The totality of [m-1]-homotheties.
- Φ : The totality of [m-1]-isometries.

 $\Theta^{s}: \Theta \cap \Pi^{s}, \Phi^{s}: \Phi \cap \Pi^{s}.$

Next theorem is an immediate consequence of (9.5) and (9.7).

THEOREM 9.1. Φ and Φ^s are normal subgroups of Θ and Θ^s respectively.

THEOREM 9.2. Any finite subgroup of Θ is a subgroup of Φ .

PROOF. Let $\varphi \in \Theta$, then by (9.4) we have

$$(\varphi^{2*}g)_{x} = \alpha^{2}g_{x} + (*),$$

and by k times iterations we have

$$(\varphi^{k*}g)_x = \alpha^k g_x + (**),$$

where (*) and (**) denote the terms which contain w_x . So, as α^k is not bounded unless $\alpha=1$, the assertion is true. q.e.d.

Some answers to the question "Under what conditions does certain subgroup of Π^s make a Lie group?" are given in §15.

10. (m-1)-conformal transformations of complete or compact M. Let φ be an (m-1)-conformal transformation of M onto itself satisfying (1.6) or (4.1). We take an arbitrary point x of M and take suitable local coordinates x^i in a local coordinate neighborhood U about x such that $(g_{ij})_x = \delta_{ij}, w_x = (0, \cdots, 0, 1)$. This is possible as ζ_U is a unit vector field. And let $(\theta_1, \cdots, \theta_{n-1}, 0)$ be components of θ_U , where we have used $\theta_m = 0$ as $\theta(\zeta) = 0$. Then we have

where $|G_{ij}|$ denotes the determinant of the matrix G_{ij} . Thus

$$|G_{ij}| = lpha^{m-1} \{ (lpha + eta) - rac{1}{lpha} \sum_{i=1}^{m-1} heta_i^2 \}$$

holds at x. As $\sum_{i=1}^{m-1} \theta_i^2 = g(\theta, \theta)$ and $|G_{ij}|, |g_{ij}|$ are positive, we get

(10.1)
$$\sqrt{|G_{ij}|} = \left[\alpha^{m-1}(\alpha + \beta - \alpha^{-1}g(\theta, \theta))\right]^{\frac{1}{2}} \sqrt{|g_{ij}|}.$$

If M is compact and orientable, we can integrate (10.1) over M, denoting $\int_{M} d\sigma = |M|$, we have

THEOREM 10.1. Suppose that φ is an (m-1)-conformal transformation of a compact and orientable manifold M onto itself. Then the following equation is valid:

$$rac{1}{|M|}\int_{\mathfrak{M}} \left[lpha^{m-1}(lpha+eta-lpha^{-1}g(heta, heta))
ight]^{rac{1}{2}}d\sigma=1\,.$$

As an immediate consequence of Theorem 10.1, we get

THEOREM 10.2. Let φ be an $(m-1)^s$ -homothety of a compact and orientable manifold onto itself such that β is constant. Then φ is an isometry, except the case $\alpha \approx 1$ and $\beta = \alpha^{1-m} - \alpha$.

As a corollary we have

COROLLARY 10.3. In a compact orientable manifold, (i) if φ is an $(m-1)^s$ -homothety such that $\varphi^{\varepsilon}\zeta = \pm^{\varepsilon}\zeta$, then φ is an isometry. (ii) if φ is an $(m-1)^s$ -isometry such that β is constant, then φ is an isometry.

Next we prove

THEOREM 10.4. Let φ be an $(m-1)^s$ -conformal transformation of a complete Riemannian manifold M. If $\alpha < \alpha_0 < 1$ and $\alpha + \beta < \alpha_0 < 1$ on M (or $\alpha > \alpha_0 > 1$ and $\alpha + \beta > \alpha_0 > 1$) for some constant α_0 , then there exists a unique fixed point of φ in M.

PROOF. Let x be an arbitrary point of M and l=x(t) $(0 \le t \le 1)$ be any differentiable curve which joins x=x(0) and $x(1)=\varphi x$. We denote by |l| the length of l. Now we have

$$g_{\varphi x(t)}\left(\varphi \frac{dx}{dt}, \varphi \frac{dx}{dt}\right) = \alpha_{x(t)}g\left(\frac{dx}{dt}, \frac{dx}{dt}\right) + \beta_{x(t)}\left(w\left(\frac{dx}{dt}\right)\right)^2.$$

We decompose $\frac{dx}{dt}$ as $\frac{dx}{dt} = v_t + r_t \zeta$, $v_t \in D_{x(t)}$, then

$$egin{aligned} g_{arphi x(t)}igg(arphi_{\cdot}, arphi_{\cdot} rac{dx}{dt}, arphi_{\cdot} rac{dx}{dt}igg) &= lpha_{x(t)}(g(v_t, v_t) + r_t^2) + eta_{x(t)}r_t^2 \ &= lpha_{x(t)}(v_t, v_t) + (lpha + eta)_{x(t)}r_t^2 \ &< lpha_{0}gigg(rac{dx}{dt}, rac{dx}{dt}igg). \end{aligned}$$

Thus the length $|\varphi l|$ of φl is smaller than |l|. By iteration we get $|\varphi^k l| < \alpha_0^k |l|$ for any integer k. Therefore $(x, \varphi x, \dots, \varphi^k x, \dots)$ is a Cauchy sequence. By completeness of M, we have limit point $\bar{x} : \varphi \bar{x} = \bar{x}$.

In the case $\alpha > \alpha_0 > 1$ and $\alpha + \beta > \alpha_0 > 1$, we have $|\varphi^k l| > \alpha^k |l|$. Thus this case reduces to the first case by consideration of φ^{-1} . Uniqueness of \bar{x} is seen as follows: If there exist two fixed points \bar{x}, \bar{x}' of φ , we can join \bar{x}

and \bar{x}' by the shortest curve l', then $\varphi l'$ is of the smaller length than |l'| which is a contradiction.

COROLLARY 10.5. Suppose that ${}^{\epsilon}\zeta$ is a parallel field and let φ be an $(m-1)^{s}$ -homothety of a complete Riemannian manifold M such that β is constant satisfying $\alpha < 1$ and $\alpha + \beta < 1$ (or $\alpha > 1$ and $\alpha + \beta > 1$). Then M is (locally) Euclidean.

PROOF. By Theorem 4.2, φ is an affine transformation of M. And by Proposition 10.4, φ has a fixed point \overline{x} . Then by [2], or [5], M is locally Euclidean.

11. Supplimentary results. (i) Space of constant curvature. A manifold M is said to be constant curvature if the Riemannian curvature R satisfies

(11.1)
$$R(u,v)z = \kappa \{q(v,z) \cdot u - q(u,z) \cdot v\}$$

for any vector fields u, v, z on M, where κ is constant.

THEOREM 11.1. Let M be of constant curvature and φ be $(m-1)^s$ conformal transformation of M onto M. If ${}^{\circ}w(z) = 0$, then we have

(11.2)
$$R(\varphi u, \varphi v)\varphi z = \varphi(\alpha R(u, v)z).$$

PROOF. By (11.1), we get

$$R(\varphi u, \varphi v)\varphi z = \kappa \{g(\varphi v, \varphi z)\varphi u - g(\varphi u, \varphi z)\varphi v\}$$
$$= \varphi(\alpha R(u, v)z),$$

because $q(\varphi v, \varphi z) = \alpha q(v, z) \cdot \varphi^{-1}$.

(ii)

THEOREM 11.2. We assume that $R_1({}^{\epsilon}\zeta, {}^{\epsilon}\zeta) = T$ and the scalar curvature R are constant and $R \rightleftharpoons T$. If $\varphi \in \Pi^s$ leaves R_1 invariant, then $\varphi \in \Phi^s$. Further if $T \rightleftharpoons 0$, φ is an isometry of M.

PROOF. As T is constant and $\varphi \zeta = \mu \zeta$, $\mu^2 \cdot \varphi = \alpha + \beta$, we have

(11.5)
$$T = R_1(\varphi\zeta,\varphi\zeta) = (\alpha + \beta)T$$

On the other hand, we have

PARTIALLY CONFORMAL TRANSFORMATIONS

$$R = {}^{\varphi}R = (G^{-1})^{ij}R_{ij} = \frac{1}{\alpha}R - \frac{\beta}{\alpha(\alpha+\beta)}T.$$

Namely, we have

(11.6)
$$(\alpha+\beta)(\alpha-1)R + \beta T = 0.$$

We add $-(\alpha+\beta-1)T=0$ to the last equation, getting

$$(\alpha+\beta)(\alpha-1)R - (\alpha-1)T = 0.$$

If we use again (11.5), the last equation turns to $(\alpha + \beta)(\alpha - 1)(R - T) = 0$. So $\alpha = 1$ follows. Furthermore, if $T \ge 0$, $\beta = 0$ follows from (11.6).

Chapter II

12. Infinitesimal (m-1)-conformal and [m-1]-conformal transformations. Let D be an (m-1)-dimensional distribution and $\varphi_t(|t| < q;$ for some positive number q) be a local 1-parameter subgroup of Π , then we have

(12.1)
$$\varphi_t^{*\varepsilon}w = \gamma_t^{\varepsilon}w,$$

(12.2)
$$\varphi_t^* g = \alpha_t g + {}^{\varepsilon} w \otimes {}^{\varepsilon} \theta_t + {}^{\varepsilon} \theta_t \otimes {}^{\varepsilon} w + \beta_t {}^{\varepsilon} w \otimes {}^{\varepsilon} w,$$

for t: |t| < q. In this section too, we abbreviate frequently \mathcal{E} in ^{e}w or $^{e}\theta$. As $\varphi_{0}(t=0)$ is an identical transformation of M, we have

(12.3)
$$L(v)w = \lim_{t\to 0} \frac{\gamma_t - 1}{t}w,$$

(12.4)
$$L(v)g = \lim_{t \to 0} \frac{\alpha_t - 1}{t}g + w \otimes \left(\lim_{t \to 0} \frac{\theta_t}{t}\right) + \left(\lim_{t \to 0} \frac{\theta_t}{t}\right) \otimes w + \lim_{t \to 0} \frac{\beta_t}{t} w \otimes w,$$

where v is a vector field on M defined by φ_t . From these, we define that an infinitesimal transformation u is an infinitesimal [m-1]-conformal transformation if it satisfies

$$(12.5) L(u)w = cw,$$

(12.6)
$$(L(u)g)(r,s) = 0$$

for any vector fields r, s which belong to D. In (12.5), c does not depend on

the choice of U, so c is a scalar field.

By the similar fashion to §1, we see that L(u)g is written as

(12.7)
$$L(u)g = ag + w \otimes F + F \otimes w + bw \otimes w,$$

where a and b are scalar fields, and $F = ({}^{\circ}F)$ defines a 1-form F_{U} in each neighborhood U in such a way that w_{U} and F_{U} are orthogonal. When we use the local coordinates x^{i} in U, w and F are treated as covariant tensors. If F=0, v is called an *infinitesimal* $[m-1]^{s}$ -conformal transformation. If a is constant, v is called an *infinitesimal* [m-1]-homothetic transformation, etc.. But in many cases, we consider infinitesimal transformations which satisfy only (12.6), and we denote them by *infinitesimal* (m-1)-conformal transformation.

THEOREM 12.1. Let u be an infinitesimal [m-1]-conformal transformation. Then $L(u)^{\epsilon}\zeta = p^{\epsilon}\zeta$ holds good for some scalar field p if and only if F=0, i.e., u in an infinitesimal $[m-1]^{\epsilon}$ -conformal transformation. And we have -2p = 2c = a+b.

PROOF. Operating Lie differentiation to $w_j = w^i g_{ij}$ with respect to u, we get

$$c w_j = (L(u) w^i) q_{ij} + (a+b) w_j + F_j.$$

If $L(u)w^i = pw^i$, we get $F_j = 0$. Conversely if $F_j = 0$, transvecting the last equation with g^{jk} , we obtain

$$L(u)w^i = (c-a-b)w^i.$$

THEOREM 12.2. If ζ_{υ} is an infinitesimal [m-1]-conformal transformation in each U. Then it is an infinitesimal $[m-1]^{s}$ -conformal transformation in each U and each trajectory of ζ is a geodesic.

PROOF. By the equation $L(\zeta) w_i = cw_i$, we see that

$$w_{i,j}w^j = cw_i.$$

Transvecting the last equation with w^i , we get c=0 and $w_{i,j}w^j=0$. This means that each trajectory of ζ is a geodesic. Next as $L(\zeta)g = w_{i,j} + w_{j,i}$, we get

(12.8)
$$w_{i,j} + w_{j,i} = ag_{ij} + w_i F_j + F_i w_j + b w_i w_j.$$

Multiplying (12.8) by $w^i w^j$ and contracting, we have a+b=0. If we transvect (12.8) with w^j and use $w_{i,j}w^j=0$, we have $(a+b)w_i+F_i=0$. Thus $F_i=0$. q.e.d.

In the above proof, we see also the following

THEOREM 12.3. If ζ_{v} is an infinitesimal (m-1)-conformal transformation in each U. And if each trajectory of ζ is a geodesic, then ζ_{v} is an infinitesimal $[m-1]^{s}$ -conformal transformation and satisfie a+b=0.

Furthermore we have

THEOREM 12.4. If ζ_{v} is an infinitesimal (m-1)-conformal transformation and satisfies $\delta w_{v} = 0$. Then it is an infinitesimal (m-1)-isometry in each U.

PROOF. Transvecting (12.8) with $w^i w^j$ and g^{ij} , we have a+b=0 and ma+b=0. Thus a=0 and b=0 hold good.

THEOREM 12.5. If ζ_{σ} is an infinitesimal (m-1)-conformal transformation in each U. And if each trajecoty of ζ_{σ} is a geodesic and $\delta w_{\sigma} = 0$. Then ζ_{σ} is an infinitesimal isometry.

PROOF. By Theorem 12.4, we have a = b = 0. On the other hand by Theorem 12.3, we have $F_j=0$ completing the proof.

THEOREM 12.6. Suppose that ζ_{v} be an infinitesimal (m-1)-conformal transformation, then $\rho \zeta_{v}$ is also an infinitesimal (m-1)-conformal transformation for any scalar field ρ .

PROOF. First we have

 $(\rho w_i)_{,j} + (\rho w_j)_{,i} = \rho(w_{i,j} + w_{j,i}) + \rho_i w_j + \rho_j w_i.$

On the other hand, ρ_i is written as

$$\rho_j = (\rho_j - \zeta \rho \cdot w_j) + \zeta \rho \cdot w_j.$$

Therefore, from (12.8) we get

$$\begin{split} L(\rho\zeta)g_{ij} &= a\rho g_{ij} + w_i(\rho F_j + \rho_j - \zeta \rho \cdot w_j) + (\rho F_i + \rho_i - \zeta \rho \cdot w_i)w_j \\ &+ (b\rho + 2\zeta \rho)w_iw_j \,. \end{split}$$

This completes the proof.

Conversely, we have

THEOREM 12.7. If $\rho \zeta_{\sigma}$ is an infinitesimal (m-1)-conformal transformation for some non-vanishing scalar ρ . Then ζ_{σ} is also an infinitesimal (m-1)-conformal transformation.

PROOF. We refer to the proof of Theorem 12.6.

Now let u and ρu be two infinitesimal (m-1)-conformal transformations, then we have

(12.9)
$$u_{i,j} + u_{j,i} = ag_{ij} + w_i F_j + F_i w_j + b w_i w_j,$$

(12.10)
$$(\rho u_i)_{,i} + (\rho u_j)_{,i} = a' g_{ij} + w_i F'_{,i} + F'_{,i} w_j + b' w_i w_j ,$$

where a, a', b, b', are scalar fields. Subtracting (12.9) multiplied by ρ from (12.10), we get

(12.11)
$$\rho_{j}u_{i} + \rho_{i}u_{j} = (a' - \rho a)g_{ij} + w_{i}(F_{j} - \rho F_{j}) + (F_{i} - \rho F_{i})w_{j} + (b' - \rho b)w_{i}w_{j}.$$

If m > 2, there exists a vector field which is orthogonal to u and ζ , thus $a' - \rho a = 0$ follows form (12.11). Transvecting (12.11) with $w^i w^j$ and g^{ij} respectively, we get

$$2w(u)\zeta\rho = b' - \rho b$$
,
 $2u\rho = b' - \rho b$,

from which we get $u\rho = w(u)\zeta\rho$. Next transvecting (12.11) with u^i and w^i respectively, we have

(12.12)
$$u\rho \cdot u_{j} + (u_{i}u^{i})\rho_{j} = w(u)(F_{j} - \rho F_{j})$$

 $+ (F_{i}' - \rho F_{i})u^{i}w_{j} + (b' - \rho b)w(u)w_{j},$

(12.13)
$$\zeta \rho \cdot u_j + w(u) \rho_j = (F'_j - \rho F_j) + (b' - \rho b) w_j.$$

Subtracting (12.13) multiplied w(u) from (12.12) and using $u\rho = w(u)\zeta\rho$, we get

(12.14)
$$(u_i u^i - w^2(u)) \rho_j = (F_i^{\prime} - \rho F_i) u^i w_j.$$

THEOREM 12.8. Two different infinitesimal $(m-1)^s$ -conformal transformations, both of which are not proportional to ζ almost everywhere in M, cannot have the same streamlines, if $m \geq 3$.

PROOF. In (12.14), as F and F' vanish, we have $(u_i u^i - w^2(u))\rho_j = 0$. That u^i is not proportional to w^i almost everywhere means, as usual, that the set of the point where u^i is proportional to w^i is of measure zero. And u^i is proportional to w^i at a point x of M if and only if $u_i u^i = w^2(u)$ at x. Thus we have $\rho_j = 0$ almost everywhere, and hence everywhere on M. This means that ρ is constant.

13. Lie derivative of the Christoffel's symbols by an infinitesimal (m-1)-conformal transformation and relations with an infinitesimal affine transformation and projective transformation. Let u be an infinitesimal (m-1)-conformal transformation:

(13.1)
$$L(u)g_{ij} = ag_{ij} + w_i F_j + F_i w_j + b w_i w_j.$$

Into the following formula (see [22], p. 52)

(13.2)
$$2L(u) \begin{Bmatrix} i \\ jk \end{Bmatrix} = g^{ir} (\nabla_j L(u) g_{rk} + \nabla_k L(u) g_{rj} - \nabla_r L(u) g_{jk}),$$

we substitute (13.1), then we have

(13.3)
$$2L(u) \begin{Bmatrix} i \\ jk \end{Bmatrix} = a_j \delta_k^i + a_k \delta_j^i - a^i g_{jk} + b_j w^i w_k + b_k w^i w_j - b^i w_j w_k \\ + b \lbrace w_k (w^i, j - w_j^{,i}) + w_j (w^i, k - w_k^{,i}) + w^i (w_{j,k} + w_{k,j}) \rbrace \\ + w^i (F_{j,k} + F_{k,j}) + (F^i, j - F_j^{,i}) w_k + (F^i, k - F_k^{,i}) w_j \\ + F^i (w_{j,k} + w_{k,j}) + (w^i, j - w_j^{,i}) F_k + (w^i, k - w_k^{,i}) F_j .$$

Analogously to Theorem 4.1, we prove

THEOREM 13.1. Let u be an infinitesimal $(m-1)^s$ -conformal transformation. If u is an infinitesimal affine transformation, then we have (1) a and b are constant.

And as a necessary condition that M admits such u satisfying $b \neq 0$, we have (2) ζ is a parallel field.

PROOF. Transvecting (13.3) with $w^k w_i$, δ_i^k respectively and utilizing F=0, we get

(13.4)
$$a_j + b_j = 0$$
,

$$(13.5) ma_j + b_j = 0$$

Then we see that a and b are constant. Next we transvect (13.3) with $w^{i}w^{k}$ and, noticing $a_{j}=b_{j}=0$, we get $b \ w^{i}_{,j}w^{j}=0$. Transvecting (13.3) with w^{j} and w_{i} respectively, we have $b(w_{i,k}-w_{k,i})=0$ and $b(w_{i,k}+w_{k,i})=0$. Thus w_{i} is a parallel field, if $b \ge 0$.

Conversely the following Theorem is obvious by (13.3).

THEOREM 13.2. If ζ is a parallel field and u is an infinitesimal $(m-1)^s$ -homothetic transformation such that b is constant. Then u is an infinitesimal affine transformation.

An infinitesimal projective transformation u is characterized by

(13.6)
$$2L(u)\left\{\frac{i}{jk}\right\} = 2\delta_j^i \overline{\psi}_k + 2\delta_k^i \overline{\psi}_j,$$

where $\overline{\psi}$ is a scalar field on *M*.

Analogously to Theorem 5.2, we prove

THEOREM 13.3. If u is an infinitesimal $(m-1)^{s}$ -homothetic transformation and at the same time infinitesimal projective transformation. Then u is an infinitesimal affine transformation. Further b is constant and ${}^{e}\zeta$ is a parallel field.

PROOF. Transvecting (13.6) with δ_i^k , $w^k w_i$ and using (13.3) with F = 0, we have

(13.7)
$$2(m+1)\overline{\psi}_j = b_j,$$

(13.8)
$$2\zeta \overline{\psi} \cdot w_j + 2\overline{\psi}_j = b_j.$$

From (13.7) and (13.8) we deduce the relations $\zeta b = 0$ and $\zeta \overline{\psi} = 0$. Then it is easy to see that $\overline{\psi}_j$ vanishes. That ζ is a parallel field follows from Theorem 13.1.

14. Lie derivative of the Riemannian curvature tensor by an infinitesimal (m-1)-conformal transformation. If we substitute (13.3) into the following formula ([22], p. 17)

PARTIALLY CONFORMAL TRANSFORMATIONS

(14.1)
$$2L(u)R^{i}_{jkl} = 2\nabla_{l}L(u)\left\{\frac{i}{jk}\right\} - 2\nabla_{k}L(u)\left\{\frac{i}{jl}\right\},$$

we get

$$(14.2) \quad 2L(u)R^{i}{}_{jkl} = 2a_{j,[l}\delta^{i}_{k} - 2a^{i}{}_{,[l}g_{k]j} + 2w^{i}b_{j,[l}w_{k]} + 2w_{j}w_{[l}b^{i}{}_{,k]} + 2b_{j}(w^{i}{}_{,l}w_{k]} + w^{i}w_{[k,l]}) + 2b^{i}(w_{j,[k}w_{l]} + w_{j}w_{[l,k]}) + 2b_{[i}\{w_{k]}(w^{i}{}_{,j} - w_{j}{}^{,i}) - w_{k]}{}^{,i}w_{j} + w_{k],j}w^{i})\} + b\{2w_{[k,l]}(w^{i}{}_{,j} - w_{j}{}^{,i}) + 2(w^{i}{}_{,j[l} - w_{j}{}^{,i}{}_{l})w_{k]} + 2w_{j,[k}w_{l]}{}^{,i} - 2w_{[k}{}^{,i}{}_{l}w_{j} + 2w^{i}{}_{l}w_{k],j} + 2w^{i}w_{[k,[j]l]} + R^{i}{}_{rkl}w^{r}w_{j} - w^{i}R^{r}{}_{jkl}w_{r}\} + 2\{w_{[k,l]}(F^{i}{}_{,j} - F_{j}{}^{,i}) + (F^{i}{}_{,j[l} - F_{j}{}^{,i}{}_{l})w_{k]} + w_{j,[l}(F^{i}{}_{,k]} - F_{k]}{}^{,i}) + w_{j}(F^{i}{}_{,[kl]} - F_{[k}{}^{,i}{}_{l}) + w^{i}{}_{l}(F_{k],j} + F_{[j],k]}) + w^{i}(F_{[k,[j]l]} + F_{j,[kl]}) + F_{[k,l]}(w^{i}{}_{,j} - w_{j}{}^{,i}) + (w^{i}{}_{,j[l} - w_{j}{}^{,i}{}_{l})F_{k]} + F_{j,[l}(w^{i}{}_{,k]} - w_{k]}{}^{,i}) + F_{j}(w^{i}{}_{,[kl]} - w_{[k}{}^{,i}{}_{l}]) \} .$$

Contracting with respect to i and l, we have

(14.3)
$$2L(u)R_{jk} = (2-m)a_{j,k} - a^{r}{}_{,r}g_{jk} + 2\zeta b \cdot w_{(j,k)} + 2w^{r}{}_{,r}b_{(j}w_{k)} + 2w^{r}(b_{r,(j}w_{k)} + b_{(j}w_{k),r}) - 2b^{r}(2w_{(j}w_{k),r} - w_{r,(j}w_{k)}) - b_{j,k} - b^{r}{}_{,r}w_{j}w_{k} + 2b\{w^{r}{}_{,r}w_{(j,k)} + w_{(j'}(w_{|r|,k)} - w_{k),r}) + w_{(j}(w^{r}{}_{,k)r} - w_{k})^{,r}) + w_{(j,k)r}w^{r}\} + 2F^{r}{}_{,r}w_{(j,k)} + 2w^{r}{}_{,r}F_{(j,k)} + 2w^{r}{}_{,(k}(F_{j),r} - 2F_{|r|,j})) + 2(F^{r}{}_{,(j} - 2F_{(j')})w_{k),r} + 2w_{(k}(F^{r}{}_{,j)r} - F_{j})^{,r}) + 2F_{(k}(w^{r}{}_{,j)r} - w_{j})^{,r}) + 2w_{(j,k)r}F^{r} + 2F_{(j,k)r}w^{r} + 4w^{r}{}_{,(j}F_{|r|,k)}.$$

On the other hand, we have

(14.4)
$$L(u)g^{jk} = -ag^{jk} - w^j F^k - F^j w^k - b w^j w^k,$$

(14.5)
$$L(u)R = L(u)g^{jk} \cdot R_{jk} + g^{jk}L(u)R_{jk}.$$

Transvecting (14.3) with g^{jk} , and substituting the result into (14.5), we have after calculation

(14.6)
$$L(u)R = -aR - 2R_{jk}w^{j}F^{k} - bR_{jk}w^{j}w^{k} + (1-m)a^{r}_{,r}$$
$$-b^{r}_{,r} + \{2\zeta b \cdot w^{r}_{,r} + \zeta(\zeta b) + w_{j,k}b^{j}w^{k} + b(w^{r}_{,r})^{2}$$
$$+b(w^{r,l}w_{l,r} + w^{r}w^{l}_{,rl} + w^{r}w^{l}_{,lr})$$
$$+ 2F^{r}_{,r}w^{l}_{,l} + 2w^{l,r}F_{r,l} + w^{r}(F^{l}_{,rl} + F^{l}_{,lr}) + F^{r}(w^{l}_{,n} + w^{l}_{,r})\},$$

where we have used $0 = (w^k F_k)_r^r = w^{k,r} F_k + 2w^{k,r} F_{k,r} + w^k F_{k,r}^r$.

We sometimes write F_U to denote not only 1-form but also for a contravariant vector field on U associated with it. And ${}^{\circ}F = \{F_U\}$.

PROPOSITION 14.1. Suppose that u is an infinitesimal (m-1)-conformal transformation on M. Then we have

(14.7)
$$L(u)R + aR + 2R_1({}^{\varepsilon}\zeta, {}^{\varepsilon}F) + bR_1({}^{\varepsilon}\zeta, {}^{\varepsilon}\zeta) = \delta(u, {}^{\varepsilon}\zeta),$$

where (u, ζ) denotes a certain 1-form on M.

PROOF. The sixth term indicated by $\{ \}$ of the right hand side of (14.6) is equal to

(*)

$$(\xi b \cdot w^{r})_{,r} + (b w^{r} w^{l}_{,r})_{,l} + (b w^{l} w^{r}_{,r})_{,l} + (w^{l} F^{r}_{,r})_{,l} + (F^{r} w^{l}_{,l})_{,r} + (w^{r} F^{l}_{,r})_{,l} + (F^{r} w^{l}_{,r})_{,l}$$

Although ζ , F and w are generally neither globally defined vector field nor 1-forms, each term of the above (*) contains two of ζ , F, w. Thus each term can be considered as a δ -image of a globally defined 1-form. As a and b are scalar fields, we have (14.7) from (14.6).

PROPOSITION 14.2. Suppose that ζ_{v} is an incompressible vector field on each U and each trajectory of ζ_{v} is a geodesic. Then an infinitesimal $(m-1)^{s}$ -conformal transformation u on M satisfies

$$L(u)R = -aR - bR_1(\zeta_v, \zeta_v) - (1-m)\delta da + \zeta_v(\zeta_v b) + \delta db.$$

PROOF. In (14.6), we put F=0 and use the relation $w_{,j}^i w^j = 0$, $w_{,i}^i = 0$. Then Proposition 14.2 follows.

COROLLARY 14.3. Besides the assumptions on ζ_{v} as in Proposition 14.2, we suppose that M is of constant scalar curvature and u is an infinitesimal $(m-1)^{s}$ -homothety such that b is also constant. Then we have

$$aR + bR_1(\zeta_v, \zeta_v) = 0.$$

Particularly,

- (1) If M is an Einstein space, we have (am+b)R = 0. So if $R \ge 0$, we get am+b=0.
- (2) If ${}^{\epsilon}\zeta$ is a parallel field and $R \succeq 0$, then u is an infinitesimal $(m-1)^{s}$ isometry.

Propositions 14.1 and 14.2 are useful in §16.

The properties of an infinitesimal (m-1)-conformal transformation, which leaves R, R_{jk} , or R^{i}_{jkl} invariant respectively, will be studied in other papers.

15. Lie algebras of infinitesimal (m-1)-conformal transformations and Lie transformation groups. In this section, we prove that the groups of certain [m-1]-conformal transformations are Lie groups, if the Riemannian manifold satisfies some conditions.

Let u be an infinitesimal [m-1]-conformal transformation:

$$L(u)g = ag + w \otimes F + F \otimes w + bw \otimes w,$$

$$L(u)w = cw.$$

Then we have a local 1-parameter group $\varphi_t(|t| < q(x))$ of local transformations of M:

$$u_x=\lim_{t\to 0}\frac{\varphi_t x-x}{t},$$

where q is a positive function on M. We fix a point x_0 , a positive number q_0 and neighborhoods U and V of x_0 satisfying $\varphi_t V \subset U$, for any $t : |t| < q_0 < q(x_0)$. As a first step, we consider maps $\varphi_t : V \to \varphi_t V$.

LEMMA 15.1. There exists a family of differentiable functions γ_t (|t| $\langle q_0 \rangle$ on V such that $\varphi_t^* w = \gamma_t w$.

Proof is standard and similarly done as the proof of Lemma 15.2, so we shall omit it.

LEMMA 15.2. Each φ_t ($|t| < q_0$) is an (m-1)-conformal transformation of V onto $\varphi_t V$.

PROOF. First let X, Y, A, B be any tangent vectors at x_0 which belong to the distribution D_{x_0} , such that the inner products of X, Y and A, B are not zero. Then we have a real number λ such that $g_{x_0}(X,Y) = \lambda g_{x_0}(A,B)$. We prove $g_{\varphi_t x_0}(\varphi_t X, \varphi_t Y) = \lambda g_{\varphi_t x_0}(\varphi_t A, \varphi_t B)$, for this purpose we put

(15.1)
$$\Xi(t) = (\varphi_t^*g)(X,Y) - \lambda(\varphi_t^*g)(A,B).$$

It is clear by definition that $\Xi(0) = 0$. As Ξ is a function of $t \ (\Xi: (-q_0, q_0) \rightarrow R)$, we can differentiate it and get

$$\begin{aligned} \frac{d\Xi}{dt} &= \lim_{s \to 0} \frac{\varphi_{t+s} * g - \varphi_t * g}{s} (X, Y) - \lambda \lim_{s \to 0} \frac{\varphi_{t+s} * g - \varphi_t * g}{s} (A, B) \\ &= \lim_{s \to 0} \frac{\varphi_s * g - g}{s} (\varphi_t X, \varphi_t Y) - \lambda \lim_{s \to 0} \frac{\varphi_s * g - g}{s} (\varphi_t A, \varphi_t B) \\ &= (L(u)g)(\varphi_t X, \varphi_t Y) - \lambda (L(u)g)(\varphi_t A, \varphi_t B) \\ &= ag(\varphi_t X, \varphi_t Y) - \lambda ag(\varphi_t A, \varphi_t B) , \end{aligned}$$

since $\varphi_t X, \varphi_t Y, \varphi_t A$ and $\varphi_t B$ belong to $D_{\varphi_{x_0}}$ by Lemma 15.1. Therefore we get

(15.2)
$$\frac{d\Xi}{dt} = a(\varphi_t x_0) \Xi(t) .$$

This means that Ξ is of the form $pe^{\int adt}$, p denoting a constant. By $\Xi(0) = 0$, we have $\Xi(t)=0$ identically. Thus we get

(15.3)
$$\frac{(\varphi_t^*g)(X,Y)}{g(X,Y)} = \frac{(\varphi_t^*g)(A,B)}{g(A,B)}$$

for all $X, Y, A, B \in D_{x_0}$, $g(X, Y) \neq 0$, $g(A, B) \neq 0$. And φ_t is an (m-1)-conformal transformation.

LEMMA 15.3. If u is an infinitesimal $[m-1]^s$ -conformal transformation, then φ_t is an $(m-1)^s$ -conformal transformation of V_t onto $\varphi_t V_t$.

PROOF. By Lemma 15.2, we have α_t , β_t and θ_t of functions and 1-forms on V such that

(15.4)
$$\varphi_t^* g = \alpha_t g + w \otimes \theta_t + \theta_t \otimes w + \beta_t w \otimes w.$$

We prove $\theta_t = 0$. Let X be any tangent vector x_0 belonging to D_{x_0} . Then

 $t \to \theta_t(X)$ defines a function $\Xi' : (-q_0, q_0) \to R$. As $\theta_t(X) = (\varphi_t * g)(\zeta, X)$, we have

$$egin{aligned} &rac{d\Xi'}{dt} = \lim_{s o 0} rac{arphi_s^*g - g}{s}(arphi_l\zeta, arphi_lX) \ &= a(arphi_l x_0)\,\Xi'(t)\,. \end{aligned}$$

Thereby $\Xi'(t)=0$ holds and so $\theta_t = 0$ follows.

LEMMA 15.4. If u is an infinitesimal [m-1]-homothety, then φ_t is an (m-1)-homothety. In particular, if u is an infinitesimal [m-1]-isometry, then φ_t is an (m-1)-isometry.

PROOF. We put

$$\Xi^{\prime\prime}(t,x)=lpha_{\iota}(x) \qquad |t|< q_{\scriptscriptstyle 0},\; x\in M.$$

Then we have

$$rac{\partial \Xi''}{\partial t}(t,x) = \lim_{s o 0} rac{lpha_s(arphi_t x) lpha_t(x) - lpha_t(x)}{s}$$
 ,

since $\alpha_{t+s}(x) = \alpha_s(\varphi_t x) \alpha_t(x)$ by (9.4). Thus we get

(15.5)
$$\frac{\partial \Xi''}{\partial t}(t,x) = \alpha_t(x) \frac{\partial \Xi''}{\partial t}(0,\varphi_t x)$$
$$= a \Xi''(t,x),$$

because by assumption, $\frac{\partial \Xi''}{\partial t}(0, x) = a = \text{constant}$. And as a solution of (15.5), we have

(15.6)
$$\Xi''(t,x) = f(x)e^{at}$$
,

where f is a function on V independent of t. On the other hand $\Xi''(0, x) = \alpha_0(x) = 1$, and so f(x) = 1. This shows that $\Xi''(t, x) = \Xi''(t)$ is constant e^{at} on V for each $t : |t| > q_0$. In particular, if a = 0, then $\alpha_t = 1$.

Similarly we can prove

LEMMA 15.5. If c is constant, then γ_t in Lemma 15.1 is constant.

We use the notations:

 $\mathfrak{P} = \{u: \text{ infinitesimal } [m-1]\text{-conformal transformation}\},\$

 $\mathfrak{H} = \{u: \text{ infinitesimal } [m-1]\text{-homothety}\},\$

 $\Im = \{u : \text{ infinitesimal } [m-1] \text{-isometry}\},\$

 $\mathfrak{P}^s = \{u: \text{ infinitesimal } [m-1]^s \text{-conformal transformation}\}.$

And we put

$$\mathfrak{H}^s = \mathfrak{H} \cap \mathfrak{P}^s$$
, $\mathfrak{J}^s = \mathfrak{J} \cap \mathfrak{P}^s$.

By definition we have $\mathfrak{P} \supset \mathfrak{H} \supset \mathfrak{H}$, concerning a bracket operation, we have

PROPOSITION 15.6.

- (15.7) $[\mathfrak{P},\mathfrak{P}]\subset\mathfrak{P}, \quad [\mathfrak{P}^s,\mathfrak{P}^s]\subset\mathfrak{P}^s.$
- (15. 8) $[\mathfrak{H}, \mathfrak{H}] \subset \mathfrak{J}, \quad [\mathfrak{H}^s, \mathfrak{H}^s] \subset \mathfrak{J}^s.$

$$[\mathfrak{J},\mathfrak{J}]\subset\mathfrak{J}, \quad [\mathfrak{J}^*,\mathfrak{J}^*]\subset\mathfrak{J}^*.$$

By preceding Lemmas, we have

PROPOSITION 15.7. If u is an element of $\mathfrak{P}, \mathfrak{H}, \mathfrak{H}, \mathfrak{H}^s, \mathfrak{H}^s$ or \mathfrak{I}^s and generates a 1-parameter group φ_t ($t \in R$) of global transformations of M, then each φ_t belongs to $\Pi, \Theta, \Phi, \Pi^s, \Theta^s$ or Φ^s respectively.

LEMMA 15.8. Let u be an infinitesimal transformation such that $L(u)g = ag + bw \otimes w$, where b is a constant. Then the set of all such u is finite demensional.

PROOF. Let u be an element of the set such that b is not zero. We define \overline{u} by $\overline{u} = (1/b)u$, then

(15.10)
$$L(\overline{u})g = a_0g + w \otimes w.$$

where a_0 is a differentiable function on M. Then for any element v of the set:

(15.11)
$$L(v)q = a'q + b'w \otimes w,$$

we have

(15.12)
$$v = (v - b'\overline{u}) + b'\overline{u}$$

where $v-b'\overline{u}$ is an infinitesimal conformal transformation. Thus the set of such $v-b'\overline{u}$ is finite dimensional, whence the set of such v is also finite demensional.

THEOREM 15.9. The subgroup of Θ^s , whose element satisfies $\varphi^* w_v = \gamma_{vv} w_v$ for some constant γ_{vv} , is a Lie group.

PROOF. By R. S. Palais' theorem [13], it is enough to prove finite dimensionality of the Lie subalgebra of \mathfrak{F}^s , whose element generates a 1-parameter group of global $[m-1]^s$ -homotheties which satisfy $\varphi_t^* w_v = \gamma_{tvv} w_v$ for some constant γ_{tvv} for each $t \in \mathbb{R}$.

Any element u of the Lie subalgebra satisfies L(u)w = cw and $L(u)g = ag + bw \otimes w$, where c and a are constant. Then b is also constant. Thus by Lemma 15.8, the Lie subalgebra is finite dimensional.

LEMMA 15.10. If ζ_{U} is a Killing vector field for each U and if u is an element of \mathfrak{P}^{s} . Then $L(\zeta_{U})a = 0$.

PROOF. Taking the Lie derivative of L(u)q with respect to ζ we have

(15.13) $L(\zeta)L(u)g = \zeta a \cdot g + \zeta b \cdot w \otimes w,$

where we have used $L(\zeta)g=0$ and $L(\zeta)w=0$. And as

$$L(c\zeta) = -L([u,\zeta]) = -L(u) L(\zeta) + L(\zeta) L(u)$$

and $L(c\zeta)g = dc \otimes w + w \otimes dc$, we have

(15.14) $dc \otimes w + w \otimes dc = \zeta a \cdot q + \zeta b \cdot w \otimes w \,.$

In the above equation each term excepting $\zeta a \cdot g$ contains w, so we see that $\zeta a=0$.

LEMMA 15.11. Suppose that the distribution defined by ζ is regular, ζ_{σ} is a Killing vector field, and each trajectory of ζ is complete. Then the set $M/\zeta = \widetilde{M}$ of all trajectories of ζ becomes a Riemannian manifold and each $u \in \mathfrak{P}^s$ induces an infinitesimal conformal transformation \widetilde{u} on \widetilde{M} .

PROOF. Following [21], first we assume that there exists a point x of M such that the trajectory l(x) which passes through x is closed. Then we have the length s = |l(x)| of l(x), and we take a sufficiently small tubular neighborhood W = W(l(x)) of l(x).

On W we can define a vector field $\overline{\zeta}$ such that $\overline{\zeta}|_{v} = \zeta_{v}$ or $-\zeta_{v}$ for each U if $U \cap W$ is non-empty. Then $\overline{\zeta}$ is a Killing vector field on W and generates a 1-parameter group $\phi_{t}(t \in R)$ of isometries of W. And as $\overline{\zeta}$ is also regular, we can conclude that ϕ_{s} is an identity transformation of W and each trajectory of $\overline{\zeta}$ and hence ζ is of constant length s ([21]).

Therefore either all trajectories of ${}^{\varepsilon}\zeta$ are homeomorphic to a circle, or all trajectories are homeomorphic to the real line R. By [13] or [21], $M/{}^{\varepsilon}\zeta$ is a differentiable manifold which has Riemannian metric h such that $g = \pi^* h + w \otimes w$, π denoting the natural projection: $M \to M/{}^{\varepsilon}\zeta = \widetilde{M}$.

It may be remarked that if ζ is a globally defined vector field, then M/ζ is a principal fiber bundle.

Now let $u \in \mathfrak{P}^s$. As $L(\zeta)u = -L(u)\zeta = c\zeta$, by the differential π of π , $\pi u = \widetilde{u}$ is a vector field on \widetilde{M} . Denote by φ_t and $\widetilde{\varphi}_t$ the (local) 1-parameter groups of (local) transformations generated by u and \widetilde{u} , then they satisfy $\pi \varphi_t = \widetilde{\varphi}_t \pi$.

Using the fact that φ_t is an $[m-1]^s$ -conformal transformation, we have

$$egin{aligned} (\widetilde{arphi}_t^*h)(X,Y) &= h(\widetilde{arphi}_tX,\widetilde{arphi}_tY) \ &= h(\pi arphi_t\pi^{-1}X,\pi arphi_t\pi^{-1}Y) \ &= (arphi_t^*(\pi^*h))(\pi^{-1}X,\pi^{-1}Y) \end{aligned}$$

for any tangent vectors X, Y at $\tilde{x} \in \tilde{M}$, where we consider $\pi^{-1}X$ as a tangent vector at $x \in \tilde{x}$ such that $w(\pi^{-1}X)=0$ and $\pi(\pi^{-1}X)=X$. Of course $\pi^{-1}X$ at xis uniquely determined and we can prove that the value of $h_{\tilde{\varphi}_{t}\tilde{x}}(\pi_{\varphi x}\varphi_{tx}\pi^{-1}X_{\tilde{x}}, \pi_{\varphi x}\varphi_{tx}\pi^{-1}Y_{\tilde{x}})$ does not depend on the choice of $x \in \tilde{x}$ and the choice of $\pi^{-1}X$ or $\pi^{-1}Y$ so far as $\pi(\pi^{-1}X) = X$ and $\pi(\pi^{-1}Y) = Y$ are satisfied, because the difference is of the form $k\zeta$, for some real number k. Then, as

$$egin{aligned} & arphi_t^*(\pi^*h) = arphi_t^*(g - w \otimes w) \ & = lpha_t g + eta_t w \otimes w - arphi_t^2 w \otimes w \,, \end{aligned}$$

we obtain

$$\begin{split} (\widetilde{\varphi}_t * h)(X, Y) &= (\alpha_{tg})(\pi^{-1}X, \pi^{-1}Y) \\ &= (\alpha_t \pi * h + \alpha_t w \otimes w)(\pi^{-1}X, \pi^{-1}Y) \\ &= \alpha_t h(X, Y) \,. \end{split}$$

Notice here that α_i is constant on each trajectory of ζ . Namely by Lemma 15.10, we have $\zeta a=0$ and by the almost similar method in Lemma 15.4, we

PARTIALLY CONFORMAL TRANSFORMATIONS

can show that $\zeta \alpha_t = 0$. Therefore \tilde{u} is an infinitesimal conformal transformation on \tilde{M} .

THEOREM 15.12. Suppose that the 1-dimensional distribution by ${}^{\varepsilon}\zeta$ is regular, ζ_{υ} is a Killing vector field and each trajectory of ${}^{\varepsilon}\zeta$ is complete. Then the subgroup Π^{sc} of Π^{s} which consists of the element φ satisfying $\varphi^*w_{\nu} = \gamma_{\nu \upsilon}w_{\upsilon}$ on $U \cap \varphi^{-1}V$ for some constant $\gamma_{\nu \upsilon}$ is a Lie group.

PROOF. We devide the proof into two parts.

(1°) The case: ζ is not a parallel field.

Denote by \mathfrak{P}^{sc} the Lie subalgebra of \mathfrak{P}^s which consists of all u satisfying L(u)w = cw for some constant c. The map $\pi: u \to \widetilde{u}$ gives a homomorphism of \mathfrak{P}^s , also of \mathfrak{P}^{sc} , into the set of all infinitesimal conformal transformations on \widetilde{M} as Lie algebras. The kernel of π is the set of the form ${}^{e}f{}^{e}\zeta$ for some ${}^{e}f, f_{\sigma}$ is a scalar field on each U. As ζ_{v} is a Killing vector field, ${}^{e}f{}^{e}\zeta$ belongs to \mathfrak{P}^{sc} if and only if $L(f\zeta)w = df = rw$ for some constant r. Taking the exterior differentiation of $df_{v} = rw_{v}$, we have $rdw_{v}=0$ on each U. However, ${}^{e}\zeta$ is a Killing vector field and not a parallel field, there exists U on which $dw_{v} \neq 0$. Consequently we get r=0. Then we have $df_{v}=0$ for each U. So $|{}^{e}f|$ of ${}^{e}f{}^{e}\zeta$ is constant. Of course as ${}^{e}f{}^{e}\zeta$ must be a vector field by suitable choice of $\zeta_{v}, -\zeta_{v}$. And so the kernel is given by $\{t\zeta, t \in R\}$. Thus, as the set of all infinitesimal conformal transformations on \widetilde{M} is finite dimensional.

(2°) The case: ζ is a parallel field.

In this case, we take the universal covering manifold \overline{M} of M and define $\overline{g}, \overline{\zeta}, \overline{v}\overline{w}$ and \overline{u} for $u \in \mathfrak{P}^{sc}$ naturally on \overline{M} by the local diffeomorphisms. Then \overline{u} is also an infinitesimal $[m-1]^s$ -conformal transformation on \overline{M} . So it suffices to show the finite dimensionality of the set $\{\overline{u}\}$ in \overline{M} . As $\overline{\zeta}$ is parallel and \overline{M} is simply connected we may assume that $\overline{\zeta}$ is a globally defined vector field on \overline{M} . And it is easy to see that $\overline{\zeta}$ is also regular, so we have $\overline{M}/\overline{\zeta}$ and a Riemannian metric \overline{h} on $\overline{M}/\overline{\zeta}$. $\overline{M}/\overline{\zeta}$ is also simply connected, and \overline{M} is a principal fiber bundle over $\overline{M}/\overline{\zeta}$. \overline{w} defines an infinitesimal connection on \overline{M} , and w = 0 is completely integrable. Similarly to the case (1°) , we consider the projection of \overline{u} by the projection $\overline{M} \to \overline{M}/\overline{\zeta}$, and study its kernel. Then any element of the kernel is of the form $\overline{f} \overline{\zeta}$ for some scalar field \overline{f} satisfying $d\overline{f} = r\overline{w}$ for some constant r. As a special case we take r=1, then the solution \overline{f}_0 of $\overline{w} = d\overline{f}$ is uniquely determined, if we fix a horizontal global section S in \overline{M} and give the initial condition $\overline{f}_0=1$ on S, because \overline{f} is constant on each horizontal section. So general solution of $d\overline{f} = r\overline{w}$ is $\overline{f} = r\overline{f_0} + s$ for constant r and s. That is to say the kernel is $\{r(\overline{f_0}\,\overline{\zeta}) + s\,\overline{\zeta}: r, s \in R\}$ and

S. TANNÔ

at most 2-dimensional, Thus \mathfrak{P}^{sc} is finite dimensional. Therefore in both cases (1°), (2°), Π^{sc} makes a Lie group.

REMARK 1. If M admits an element u in \mathfrak{P}^{sc} such that L(u)w = cw for a constant $c \neq 0$. Then ζ is necessarily regular (see [18], §4).

PEMARK 2. In (1°) above, if ${}^{\varepsilon}\zeta$ cannot define a globally difined vector field by any choice of $\zeta_{v}, -\zeta_{v}$. Then the dimension of \mathfrak{P}^{sc} is not greater than that of the set of all infinitesimal conformal transformations on \widetilde{M} .

PEMARK 3. In the above Theorem, if M is complete, then each trajectory of ζ is complete.

16. The cases where M is compact and the scalar curvature R is constant. In the first place, we prove general theorems.

THEOREM 16.1. Suppose that M is compact and orientable and u is an infinitesimal (m-1)-conformal transformation, then we have

(16.1)
$$\int_{M} (am+b) d\sigma = 0.$$

PROOF. Contracting (13.1) with g^{ij} and noticing that $L(u)g_{ij} = u_{i,j} + u_{j,i}$, we get

$$2u^i_{,i} = am + b.$$

Integration of the last equation over M is (16.1).

In the following, we denote the left hand side of (16.1) by a global inner product $\langle am+b, 1 \rangle$.

DEFINITION. We call M a ζ -space, if

(i) $\delta w_{U}=0$, (i.e. ζ_{U} : volume-preserving),

(ii) $\nabla_{\zeta_U} \zeta_U = 0$, (i.e. each trajectory of ζ_U is a geodesic),

(iii) $R_1(\zeta_v, \zeta_v) = T = \text{constant}$

for each U. If M satisfies only (i) and (ii), then we say that M has properties (i) and (ii).

EXAMPLES. (1°) K-contact manifold is a ζ -space such that $T = \frac{m-1}{4}$ ([17], p. 329).

(2°) If a manifold M admits a parallel direction field ζ . Then M is a ζ -space with T=0.

THEOREM 16.2. Suppose that M is compact and orientable and has properties (i) and (ii), if $L(u)w_{\sigma} = cw_{\sigma}$, then

$$(16.2) < c, 1 > = 0.$$

Further if u is an infinitesimal $[m-1]^s$ -conformal transformation then we have

$$(16.3) \qquad \qquad < a, 1 > = 0, \quad < b, 1 > = 0.$$

PROOF. Expression of L(u)w = cw by local coordinates is as follows:

(16.4)
$$w_{i,r}u^r + w_ru^r{}_{,i} = cw_i.$$

Transvecting (16.4) with w^i , we have

(16.5)
$$c = w_r u_{,i}^r w^i = (w_r u^r w^i)_{,i}$$

because $w_{i,i}^{i}=0$ and $w_{r,i}w^{i}=0$. Although w is not a globally defined tensor, $(w_{r}u^{r}w^{i})$ is a globally defined vector field. So if we integrate (16.5) over M, we have (16.2). By Theorem 12.1, if u is an $[m-1]^{s}$ -conformal transformation, we have 2c=a+b. Thus

$$(16.6) = 0.$$

Then (16.1) and (16.6) yield (16.3).

COROLLARY 16.3. In a compact orientable M with properties (i) and (ii), if the scalar field c in $L(u)w_v = cw_v$ is constant, then c=0.

THEOREM 16.4. In a compact orientable M with properties (i) and (ii), every infinitesimal $[m-1]^s$ -homothety is an infinitesimal $[m-1]^s$ -isometry.

PROOF. This is an immediate consequence of Theorem 16.2.

LEMMA 16.5. If M is compact and orientable, and if the scalar curvature R is constant, we have

(16.7)
$$< aR+bT, 1> = 0$$

S. TANNÒ

for any infinitesimal $(m-1)^s$ -conformal transformation u.

PROOF. (16.7) follows from Proposition 14.1.

LEMMA 16.6. In a compact orientable M with properties (i) and (ii), we have

(16.8)
$$(m-1) < da, da > - - + < da-(\zeta a)w, db-(\zeta b)w > = 0$$

for any infinitesimal $(m-1)^s$ -conformal transformation u.

PROOF. As δ is dual to d, we have

$$(16.9) \qquad \qquad < da, da > - < a, \delta da > = 0$$

On the other hand, by virtue of Proposition 14.2, we get

(16.10)
$$(m-1)\delta da = aR + bT + L(u)R - \delta db - \zeta(\zeta b).$$

And we get

$$\langle a, \delta db
angle = \langle da, db
angle \, ,$$

 $\langle a, \zeta(\zeta b)
angle = \langle aw, d(\zeta b)
angle \ = -\langle \zeta a, \zeta b
angle \, ,$

since $\delta(aw) = a\delta w - \zeta a$ and $\delta w = 0$. Moreover

$$(16.11) \qquad \langle da - (\zeta a)w, db - (\zeta b)w \rangle = \langle da, db \rangle - \langle \zeta a, \zeta b \rangle.$$

Substitution δda of (16.10) into (16.9) using above relations yields (16.8).

LEMMA 16.7. In a compact orientable M, if w_{σ} is a closed form, then we have

(16.12)
$$<\!\!da - (\zeta a)w, db - (\zeta b)w > = - <\!\!da, da > + <\!\!\zeta a, \zeta a >$$

for any infinitesimal $[m-1]^s$ -conformal transformation.

PROOF. (16.12) is valid always with respect to the (local) inner product which we denote by (,). So we prove here (16.12) for the inner product.

As L(u)w = cw for some scalar field c, we have $dL(u)w = dc \wedge w + cdw$ by exterior differentiation, where \wedge denotes the exterior product. Since d and L(u) are commutative and dw=0, $dc \wedge w=0$ follows. Thus dc is proportional to w and $dc=\zeta c \cdot w$. By Theorem 12.1, we have $da+db=\zeta(a+b)\cdot w$. And so we consider the inner product with da, and get

$$(da, da+db) = (\zeta a, \zeta a+\zeta b),$$

from which we have

(16.13)
$$(da, db) - (\zeta a, \zeta b) = -(da, da) + (\zeta a, \zeta a).$$

Here we notice that (16.11) holds also with respect to the inner product. Then, from (16.11) and (16.13), relation (16.12) for the inner product follows.

LEMMA 16.8. As for T we have; If w_{σ} is a harmonic form,

(16.14)
$$T = -2(\nabla w, \nabla w) \leq 0.$$

If ζ_v is a Killing vector field,

(16.15)
$$T = 2(\nabla w, \nabla w) \ge 0.$$

Proof is easy, since ζ_{σ} is a unit vector field. As a general statement, we have

PROPOSITION 16.9. In a compact orientable M, we assume that w_v is a harmonic form for each U. Then an infinitesimal $[m-1]^s$ -conformal transformation u is an infinitesimal $[m-1]^s$ -isometry if and only if it satisfies

(16.16)
$$< a, aR + bT + L(u)R > \leq 0.$$

PROOF. If w is a harmonic form, we have dw = 0 and $\delta w = 0$. The length of w being equal to 1, $\bigtriangledown_{\zeta} \zeta = 0$ follows from dw = 0. Then, by Lemma 16.6 and 16.7, we have

(16.17)
$$(m-2) < da, da > - < a, aR + bT + L(u)R > + < \zeta a, \zeta a > = 0.$$

If (16.16) holds, (16.17) means that each term is zero. So da=0 follows, that is *a* is constant. Moreover, by (16.3)₁ in Theorem 16.2, *a* is equal to zero. q.e.d.

S. TANNÒ

If ζ is a parallel field, M is a ζ -space with T=0. Therefore we get

THEOREM 16.10. In a compact orientable M, if ζ is a parallel field and $R = constant \leq 0$. Then any infinitesimal $[m-1]^{s}$ -conformal transformation is an infinitesimal $[m-1]^s$ -isometry.

REMARK 1. In the above Theorem, essencially we need the condition that a compact orientable M is a ζ -space satisfying T=0, dw=0 and R=constant ≤ 0 . However, if ζ -space satisfies dw=0, w_{U} is a harmonic form. So T is non-positive by Lemma 16.8. Thus if T=0, w_{U} is necessarily a parallel field.

Next we consider the case where an infinitesimal $[m-1]^s$ -conformal transformation u satisfies c=0. Of course, the only possible case of c= constant is the case c=0 in the manifold with properties (i) and (ii) by Theorem 16.2. Now as 2c=a+b, we have da=-db. On the other hand

$$(16.18) \qquad \qquad < da - (\zeta a)w, \, da - (\zeta a)w > \leq < da, \, da > .$$

If we utilize (16.8) and (16.18), we get

(16.19)
$$(m-2) < da, da > - < a, aR - aT + L(u)R > \leq 0.$$

So, if the second term is non-negative, we have da=0 and a=0. Consequently we have also b=0 and u is a Killing vector field. Thus we have

PROPOSITION 16.11. In a compact orientable M with properties (i) and (ii), an infinitesimal $[m-1]^{s}$ -conformal transformation u such that L(u)w=0is an infinitesimal isometry if and only if it satisfies

$$(16.20) \qquad \qquad < a, aR - aT + L(u)R > \leq 0.$$

THEOREM 16.12. In a compact orientable M, if ζ_{U} is a Killing vector field and $R = constant \leq 0$. Then any infinitesimal $[m-1]^{s}$ -conformal transformation u satisfying L(u)w = cw for some constant c is a Killing vector filed.

PROOF. As ζ is a unit and Killing vector field, M has properties (i) and (ii). c=0 follows from Corollary 16.3. By (16.15) in Lemma 16.8, T is nonnegative. And R is a non-positive constant, (16.20) holds good. Then by Proposition 16.11, u is a Killing vector field.

BIBLIOGRAPHY

- S. ISHIHARA, Groups of projective transformations and groups of conformal transformations, Journ. Math. Soc. Japan, 9(1957), 195-227.
- [2] S. ISHIHARA AND M. OBATA, Affine transformations in a Riemannian manifold, Tôhoku Math. Journ., 7(1955), 146-150.
- [3] M. S. KNEBELMAN AND K. YANO, On homothetic mappings of Riemann spaces, Proc. Amer. Math. Soc., 12(1961), 300-303.
- [4] S. KOBAYASHI. Le groupe des transformations qui laissent invariant le paraléllisme, Colloque de Top. de Strasbourg, (1954).
- [5] ——, A theorem on the affine transformation group of a Riemannian manifold, Nagoya Math. Journ., 9(1955), 39-41.
- [6] S. KOBAYASHI AND K. NOMIZU, Foundations of differential geometry, Interscience Pub. New York, 1963.
- [7] A. LICHNEROWICZ, Géométrie des groupes de transformations, Dunod Paris, 1958.
- [8] H. MIZUSAWA, On infinitesimal transformations of K-contact and normal contact metric spaces, Sci. Rep. Niigata Univ. Ser. A, 1(1964), 5-18.
- [9] ——, On certain infinitesimal conformal transformations of contact metric spaces, Sci. Rep. Niigata Univ., Ser. A, 2(1965), 33-39.
- [10] M. OBATA, Conformal transformations of compact Riemannian manifolds, Illinois Journ. Math., 6(1962), 292-295.
- [11] M. OKUMURA, Some remarks on spaces with a certain contact structure, Tôhoku Math. Journ., 14(1962), 135-145.
- [12] _____, On infinitesimal conformal and projective transformation of normal contact spaces, Tôhoku Math. Journ., 14(1962), 398-412.
- [13] R. S. PALAIS, A global formulation of the Lie theory of transformation groups, Memoirs of Amer. Math. Soc., 22(1957).
- [14] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure, I, Tôhoku Math. Journ., 12(1960), 459-476.
- [15] S. SASAKI AND Y. HATAKEYAMA, On differentiable manifolds with certain structures which are closely related to almost contact structure, II, Tôhoku Math. Journ., 13 (1961), 281-294.
- [16] T. SUMITOMO, Projective and conformal transformations in compact Riemannian manifolds, Tensor (N.S.), 9(1959), 113-135.
- [17] S. TANNO, Some transformations on manifolds with almost contact and contact metric structures, I, II, Tôhoku Math. Journ., 15(1963), 140-147, 322-331.
- [18] _____, On fiberings of some non-compact contact manifolds, Tôhoku Math. Journ., 15(1963), 289-297.
- [19] —, A remark on transformations of a K-contact manifolds, Tôhoku Math. Journ., 16(1964), 173-175.
- [20] _____, Sur une variété munie d'une structure de contact admettant certaines transformations, Tôhoku Math. Journ., 17(1965), 239-243.
- [21] ——, A theorem on regular vector fields and its applications to almost contact structures, Tôhoku Math. Journ., 17(1965), 235-238.
- [22] K. YANO, The theory of Lie derivatives and its applications, Amsterdam, North Holland Pub. Co., 1957.
- [23] K. YANO AND S. BOCHNER, Curvature and Betti Numbers, Annals of Math. Studies 32, Princeton, 1953.

TÔHOKU UNIVERSITY.