
PARTIALLY CONFORMAL TRANSFORMATIONS WITH RESPECT

TO (m-l)-DIMENSIONAL DISTRIBUTIONS OF

m-DIMENSIONAL RIEMANNIAN MANIFOLDS

SHUKICHI TANNO

(Received August 23, 1965)

This paper is devoted to the geometry of transformations which have
deep relation with an (m— l)-dimensional distribution D of m-dimensional
Riemannian manifold M. A diffeomorphism φ oί M to another ra-dimensional
Riemannian manifold N induces a mapping of the tangent space at any point
x of M to that at φx of N. Also φ induces a mapping φD of the (m — 1)-
dimensional tangent subspace defined by D to that defined by φD. If φD is
conformal for any point x of M, then we call φ an (m — l)-conformal trans-
formation of M to N with respect to the distribution D. A conformal trans-
formation in usual sense is of course an (m-l)-conformal transformation. An
{m — l)-homothetic, or (ra—1)-isometric transformation is naturally defined by
its restriction to D. We denote by D± the orthocomplementary distribution
to D. If an (m-l)-conformal transformation φ maps D1- to (φD)1-, then it is
called special and denoted by an (m — ϊ)s-conformal transformation. As D1-
does not always admit a globally defined unit vector field ζ such that ζx £ Dt
at every point x of M, we introduce a symbol % (cf. §1). By this % we can
obtain the equation which characterizes an (m — ΐ)-conformal transformation.
An (m-l)-conformal transformation of M onto itself which preserves D is
denoted by an [m — l]-conformal transformation.

Examples of such transformation appeared already in the theory of almost
contact metric structures. As an almost contact Riemannian manifold admits
a globally defined unit vector field ξ (see [14], [15] etc.), we can consider the
orthogonal distribution to ξ. And a φ-preserving transformation of a contact
Riemannian manifold is, in fact, an [m — l]s-homothety ([8, 9], [17-^20], etc.).
Further, the existence of such transformations on certain contact Riemannian
manifold characterizes the structure of the manifold itself ([19,20]).

A trivial example is as follows: Let M, N be two Riemannian manifolds
with metrics g, h respectively and denote by R a real line, then we can define
Riemannian metrics on MxR, NxR by g-\-k, h+k respectively, where k is
the usual metric on R. If φ0: M—• N is a conformal transformation and
f:R—>R is an arbitrary diffeomorphism, then φ:MxR-+NxR defined by
φ(x,t) = {φQx,f(t)\ tzR9 is an [m — l]s-conformal transformation.
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In §1, we give the equation of an (ra — l)-conformal transformation φ and
the condition of speciality of (ra — l)-conformal transformation. In §§4~-6,
we calculate <p-image of the ChristoffeΓs symbol, the Riemannian curvature,
the Ricci curvature and scalar curvature. Using these we investigate the
properties of ψ under the additional conditions on φ or on manifolds. In §7,
we assume that εξ is parallel along D and φ is an (ra — l)s-homothety, and have
a relation of the sectional curvatures (Theorem 7.5). In §9, we consider the
group Π of all [ra — l]-conformal transformations and its subgroups. It is known
that the set of all conformal transformations of a Riemannian manifold is a
Lie group ([4]). But generally Π is not finite dimensional, so we want to
find out the conditions on the manifold and a subgroup of Π so that the
subgroup is a Lie group. And some answers are given in §15 (Theorem 15.9,
15.12).

Chapter II contains some studies of infinitesimal (ra — l)-conformal trans-
formations. The properties of conformal or infinitesimal conformal trans-
formations (or homothetic, or isometric ones) of Riemannian manifolds are
studied by many authors ([1], [3], [10], [16], [22], [23], etc.). In §16, we consider
the case where M is compact and the scalar curvature is constant and obtain
analogous results. Other extended investigation will be seen in other papers.

Contents are as follows:

Chapter I

1. Definition of an (ra —1)-conformal transformation
2. Commutability of an (ra — l)s-homothety and parallel translations
3. The case where each trajectory of εξ is a geodesic
4. Transformation of the ChristoffeΓs symbols
5. (ra —l)s-conformal and projective transformations
6. The Riemannian curvature, Ricci curvature and scalar curvature
7. The sectional curvatures in the case where εζ is parallel along D
8. (ra — 1)-Einstein spaces
9. The group of [πι—1]-conformal transformations

10. (ra — l)-conformal transformations of complete or compact manifold M
11. Supplementary results

Chapter II

12. Infinitesimal (ra — l)-conformal and [ra —1]-conformal transformations
13. Lie derivative of the ChristoffeΓs symbols by an infinitesimal (ra —1)-

conformal transformation and relations with an infinitesimal affine
transformation and projective transformation

14. Lie derivative of the Riemannian curvature by an infinitesimal (ra —1)-
conformal transformation
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15. Lie algebras of infinitesimal [m — l]-conformal transformations and Lie

transformation groups

16. The case where M is compact and the scalar curvature R is constant

Chapter I

1. Definition of an (m—l)-conformal transformation. Let M, N be two

connected m-dimensional Riemannian manifolds (m ^ 3) of class C°° and g, h

two Riemannian metrics of M, N respectively. First we assume that M

admits an (ra —1)-dimensional distribution D, and we fix D throughout the

paper. Then we also have an orthocomplementary 1-dimensional distribution.

Now we consider a diffeomorphism φ:M—>N, and denote by φ* the dual

map of φ.

DEFINITION. If a diffeomorphism φ : M->N satisfies the following relation

(1.1) (<P*h)Jμ9 v) = a(x) gx(u, v)

for any point x z M and vector fields u, v on M such that u, v <= D, where

a is a differentiate function on M, then we call φ an (m—l)-conformal

transformation of M t o iVwith respect to D. If a is constant, φ is an (m — 1)-

homothety. Furthermore if <X=1, φ is an (m — ΐ)-isometry.

In order to express an (m — l)-conformal transformation by a tensor

equation, let x be an arbitrary point of M. Then we can find an open

neighborhood U of x and a vector field ζπ on U9 such that ζπ is ortho-

complementary to D and a unit vector field i.e., g(ξu,ζu) = 1. For some open

covering {U} of M we can define {ζπ} corresponding ζπ to each U in such

a way that ζπ = ζv or — ζv holds on the intersection Ud V, if it is not empty.

{ζπ} or its subfamily does not always define a vector field on M, so we use

the symbol εζ = {ξV}. We refer frequently this fixed covering {U} in the

sequel.

On each neighborhood U, we define a 1-form Wu by

(1.2) wπ(u) = g(ζπ,u)

for any vector field u on M. Then we have

(1.3)

and zεv = 0 is the equation of the distribution D. Similarly we use the

notation εw = {zvu}.

We put E — <p*h—ag, clearly E(μ9 v) = 0 if εzv(u) = εw(v) = 0 . Next
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we put E(εζ, εξ) = 8, then β is a globally defined scalar field because it
contains two £'s, and we define εθ by

(1.4) εθ(u) = E(μ,9ζ) - βεw{u)

for any vector field u on M. εθ is determined as follows: Let x be any point
of M then we have some open neighborhood U€ {U} of x and ζu,<Wu on U.
These ζu,wΌ determine θπ of εθ on U. From the definition of E and εθ, we
see that

(1.5)

Then we can verify

(1. 6) φ*h = <Xg + εw ®εθ + εθ ®εw + βεw ® εw ,

where ® means the tensor product. To see this, it is enough to compare both
sides substituting the pairs (εζ, εξ), (εζ, u) and (u, v) where u and v are vector
fields which belong to the distribution D. Though εζ, εw and εθ axe not tensor
fields, restricting ourselves to some neighborhood we consider (1. 6) as a tensor
equation. Of course, for U,Vz {U}, the expressions (1.6)^ in U and (1.6)F in
V are equivalent, because 6's appear twice in the last three terms. It is
evident that the decomposition of φ*h given by (1.6) is unique in the sense
that (1. 5) holds. From the definition of β it follows that

(1.7) Ct + β = h(φ%φεζ) φ,

where we have used, and shall use φ to denote also the differential of ψ.
As for the distribution ψD induced by ψ on iV, one has δ£ and δη on N

similar to εζ and εw on M, satisfying

(1.8)

for any vector field X on N. We also fix a covering {V} of N.

LEMMA 1.1. For any (m — l)-conformal transformation φ, we have oί>0
and <X+β>0. And the following conditions are eqivalent:

( i ) 9 = 0.
(ii) φ% = "μ'ξ, for some *V .

In the above lemma, ^μ is a symbol of {βu>v\, and μu>v is a differentiable
function on φUΠ Ύ. Namely for xaM, if y=ψx, we take some neighborhoods
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U of x and Ύ of y, then φζu = μu'vξ>v on ^ [ / Π T . In this case by (1.7), we

see that μz

π,v(<pp) = cc(ρ) + l3(ρ) for />

PROOF. Following the above notation, we show (i) —» (ii). By the defini-

tion of <pD, we have φ*η,v = Ί>vuWu for some differentiate function Ί,vυ on

UΠφ"\/V). In the following we write this relation by

(1.9) φ*δη = 8εVεW.

Let u be any vector field on M such that εw(u) = 0. If εθ = 0 holds in

(1.6), then we have

Thus <ρεζ is orthocomplementary to φD. This means that φ% is proportional

to 8f. And by (1.9), we have φεζ = (N ^"1)8?- τ h a t i s

?

 w e g e t

where

(1.10) βV = V p - 1 , V

In the next place we prove (ii)—>(i). (1.4) means that

εθ(u) = h(<pu,φεξ).φ-ag(u,εζ) - βεw(u)

= h(φu,ε8μ8ξ).<p

= 0

for any vector field u^Ό. This completes the proof.

PROPOSITION 1.2. Let φ be an (m — l)-conformal transformations of M

to N, and let 8εKN, 8εKM be angles determined by φεξ and %εζ and φ~ιδξ

respectively. Then we have

an) ^ ' ^

(1.12) cos"KM = sgnfγ)
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PROOF. In the formula

(1.13) «

we substitute (φ*h)(ξ, ξ) = a+β and

then we get (1.11). Similarly e have the formula

(1.14) c o s * * =

First we have

And in order to estimate g(φ~ιSξ,φ~l8ξ), we decompose φ~ιδξ into orthogonal
components as follows:

(1.15) φ-^ξ = *zv(φ-ι'ξyξ + (ψ~lδξ- °w(φ-ιsm)

Then we have

where

and

since the 2nd term of the right hand side of (1.15) belongs to the distribution
D. Then we have
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( δ ε ) 2 λ ( β f ε f ) Ψ

Therefore, subsituting these into (1.14), we get (1.12). q.e.d.

It is geometrically obvious that φ~ι is also an (m — l)-conformal trans-

formation of N to M with respect to the distribution <pZ), applying φ"1* to

(1.6) we have

h = (a ^r 1 ) ^ - ^ + ^ - l ι w α ; ® φ~x*εQ + ^ " 1 * ^ ® ^-1*βw

Hence

(1.16) φ'1 *g = (-L.φ-^h + 8η ® δλ + δλ ® δτ; + ^ ®

where we have put

(1.17) δλ = - (Λ-1 V 1 φ-iXφ-l**0 - εθ(φ~l8ξ) *η) ,

(1.18) p = -(tf

The right hand side of (1.17) contains £, and so δλ may be written

formally as εδλ. However β appears twice in each term. Thus εδλ does not

depend on the choice of the neighborhood Uz {U}. Therefore we can omit

£ from εδλ. Similarly the right hand side of (1.18) contains £ and 8 twice in

each term respectively. So p does not depend on the choice of neighborhoods.

DEFINITION. The most standard (w —l)-conformal transformation of M

to N is one which satisfies εθ = 0, we call such an (m — l)-conformal trans-

formation a special {m — ΐ)-conformal transformation and we denote it by an

(?n — l)s-conformal transformation.

DEFINITION. If we consider an (m-l)-conformal transformation φ of M

onto itself, we sometimes assume that φ preserves the distribution. And we

denote such φ by an [m — l]-conformal transformation. Namely by an [ra — 1]-

conformal transformation of M onto M we understand an (m — l)-conformal

transformation such that <pD=D.
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ABBREVIATION. In the subsequent sections, we abbreviate £ or δ in
εζ> δζ, εδV> * J frequently in the case where there is no confusion.

2. Commutability of an (m—l)s-homothety and the parallel trans-
lations. In this section, we study some properties of the (m — l)s-homothety
of M to N satisfying some additional conditions, concerning the parallel
translations with respect to the Riemannian connections. We denote by r
and V, T and 'V the parallel translations along certain curves and covariant
differentiations with respect to the Riemannian connections for g, h respectively.
We utilize the fundamental formula:

(2.1) 2g(VjZ, Y) = X g(Y, Z) + Z g(Y,X) -Y g(Z, X)

+ g{X, [Y, Z}) + g{Z, [Y, X]) - g(Y, [Z, X})

for any vector fields X, Y and Z.

THEOREM 2.1. Let φ be an (m — l)s-homothety of M to N and suppose
that the distribution D in M is completely integrable. If a curve I = {lt:
0 ^ t ^ 1} in M, joining two points l0 and lu is a segment of an integral
curve of the distribution D. And if uίQ is a tangent vector at l0 which
belongs to D,o and rmuh £ Dh for any ί O g ί g l , l(t)= {ls:O^s^t}, then
we have

PROOF. We can assume that / does not have any self-intersecting point.
Let u be a vector field on M such that u coincides with uh — τm uίo on lt:
0 fg t :g 1, and belongs to D. And let v be a vector field on M such that v
is tangential to the curve I and belongs to D.

Of course, such u, v exist. In fact, let ΰ be any vector field on M which
coincides with uh on lu then u — ΰ—εw(u)εζ satisfies the required property.
In this case εw(ΰ)£ζ is a globally defined vector field, since it has two £'s.

Now, in (2.1) we set X=φv, Z—qm and replace g by h, then we have

(2. 2) 2ACV*, φu, Y) = φv-h(Y, φu) + φu h(J, φv) - Y h(φu, ψv)

+ h(φv, [Y, φu]) + h(φu, [Y, φv]) - h(Y, [φu, φv])

for any vector field Y on N. By the assumption εθ = 0 and w(u) = 0, and by
(1.6), we have
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φv h(Y, φu) = V (φ^h^φ'1 Y, u)*φ~ι

And we have

h(φv, [Y, φu]) =

(2. 3) h(Y, [φu, φv]) = Ctg(φ-Ύ, [u, v]) φ~ι

As the distribution D is completely integrable, w([w, v]) = 0 holds good, and so

(2.4) KV^φu.Y) = CLg(S7vU,φ-ιY)-φ-1 .

If w is parallel along l,Vυu = 0 holds on / and we have 'S7φυφu — 0 on φl.

q.e.d.

As a natural consequence, we see that, under the assumption in Theorem

2.1, if / is not only an integral curve of D, but also a geodesic, then φl is

also geodesic. However this holds without the asumption of the complete

integrability of D.

THEOREM 2.2. Let φ be an (m — ί)s-homothety. If I is an integral curve

of D and geodesic with respect to g, then φl is an integral curve of φD and

geodesic with respect to h.

PROOF. If I is a geodesic, in the above proof we may assume that u — v.

In (2. 2), we replace φu by φv, then (2.4) replaced u by v holds good, since

the 2nd term of the right hand side of (2.3) is zero. And hence V ^ ^ O on

I means "Vφυφv = 0 on φl.

THEOREM 2.3. Suppose that the distribution D is completely integrable

and each trajectory of εξ is a geodesic. If an {m — Vf-homothetic trans-

formation φ satisfies β=constant. Then, denoting by I — {lt: 0 g t :g 1} a

segment of the trajectory of εζ, we have

for any tangent vector uίo at l0 which belongs to Dlo.

PROOF. AS ζ is autoparallel and ullt is orthogonal to ζlo, τmuh is also
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orthogonal to ξlt. Let u be a vector field on M such that utt = τΛt)uh and

w(u) = 0. Using (2.1) for φζ and φu, we get

2h('Vφξφu, Y) φ = 2ag(Vζu,φ~ιY) + βu w ^ - 1 Y)

1 Y, «]) - βw(qrιY) w([u, ζ])

for any vector field Y on iV. If we put Y = φv, where v belongs to D, as

D is integrable, we have

(2. 5) K\/φζ(pu, φv) - ag(Vζu,v) ^r1 .

Next we put Y=<p£, and notice that

where L(ζπ) means the operator of the Lie derivation with respect to ξπ. It is

known that L(ζu)wu = 0 if and only if each trajectory of ξV is a geodesic,

since w(£) = l. And so we have

(2. 6) h('Vφζ<pu, φζ) = Gty(V<κ ,?) ^ J .

By (2. 5) and (2. 6), V ^ = 0 on / means that '\7φζφu = 0 on <£>/.

THEOREM 2.4. Suppose that the distribution D is completely integrable

and I— \lt: 0 <= t ^ 1} « α segment of an integral curve of D. If an (?n — l)s-

homothetic transformation φ satisfies β—constant and ζζ is parallel along Z,

then δξ is parallel along φl.

PROOF. Let v be a vector field stated in the proof of Theorem 2.1. By

(2.1) we get

2ACV φ υ φζ,Y)-φ = 2ag(Vvζ,φ~ιY) + v

+ βwCt^-1 Y, T;]) - βτv{φ~ι Y) w([ζ, v]) .

By the similar argument to the proof of Theorem 2.3 we have

(2.7) h('Vψυφζ, Y) = ag(Vv ζ, φ-1 Y) φrι.

This completes the proof.
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3. The case where each trajectory of εξ is a geodesic. In this section

we do not necessarily assume that a is constant.

THEOREM 3.1. We assume that M and N admit an {m-l)s-conformal

transformation φ such that a+β is constant. If each trajectory of εζ is

a geodesic, each trajectory of sξ is also geodesic.

PROOF. In (2.1), putting φζ and Y, we get

(3. 1) 2hCVφζφξ9Y) φ = 2ζ. (a + β) w{φ-' Y)-φ~lY

By the assumption that a+β is constant and that each trajectory of ζ is a

geodesic, we see that the right hand side vanishes when we put Y — φζ and

Y = φu respectively, u denoting a vector field which belongs to D. So we

have 'S7φξφζ = 0. As φζ = μξ, \μ\2 = a+β9 we see that Vξξ = 0.

THEOREM 3.2. Suppose that each trajectory of % and δ£ is a geodesic.

Let φ be an (m — l)s-conformaί transformation of M to N9 and u be a vector

field on M which belongs to D. Then we have L(u)(a+β) = 0.

PROOF. We utilize (3.1) and putting Y = φu, we have

(3.2) 2ACVvtψζ, φu) φ = -u (a+β).

On the other hand, as (φζ)ΨX = μφxξφχ,μU = (a+β)x, x^M, we get

(3.3) 'Vφξφζ=('Vφξμ)ξ,

where we have used 'V^ = 0. By (3.2) and (3.3), we have u*(a + β) = 0.

PROPOSITION 3.3. Suppose that each trajectory of εξ and δξ is a geodesic.

Let φ be an (m — l)s-conformal transformation of M to N such that ζ (a+β)

= 0. Then a-\-β is constant.

PROOF. Any tangent vector vx at x$M is written as

vx = (vx - w(v)ζx) + w(v) ξx ,

where vx — w(v) ξx e Dx. By Theorem 3.2 we have (vx — w(v) ζx)(a+β) = 0 .
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Thus we see that a+β is constant.
From Theorem 3.2 we see geometrically the following

PROPOSITION 3.4. Suppose that each trajectory ofεξ and 8ξ is a geodesic.
Let φ be an (m —l)s-conformal transformation of M to N and let I be a
trajectory of εζ. If for each I and for any points x, yz Z, we can join x
and y by a piecewise dijferentίable integral curve of D. Then a + β is
constant.

4. Transformation of the ChristoffeΓs symbols. Let φ be an (m — 1)-
conformal transformation of M to N and x be an arbitrary point of M and
y — φx. On some coordinate neighborhoods U of x and V of y, we have
Wu, ζπ, θu, ζ'v and we write them simply w, ζ,θ,ξ> We write their components
zv\ ξa, etc. with respect to the local coordinates x\ y* : z, a — 1, 2, , m.
For convienience, we write wι for ζι sometimes. Let

then (1.6) is written as follows:

(4.1) Gtj — agtj + WiOj + θζWj +

We put v = θid
i—a{aJrβ), where θi = gijθj and gίj is the inverse matrix of gijm

Then the inverse matrix (G~ι)jk of G i ; is given by

(4. 2) (G-ιyk = —g* + — (wΨ+θjwk) - - ^ - ΘΨ + — (β - —

where r = 0,0'. If 0 = 0, (4.2) reduces to

(4.3) ( C - i y . = ^ _

Denoting by j z 7 [, j ι 1 \ the ChristoffeΓs symbols with respect to Gih îr-

respectively, generally we see that

(4.4) V*(9>*λ) M -(**(V/0)«,=('{^|-{^

holds good, where V and 'V are covariant differentiation with respect to g
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and h. The second term of the left hand side of (4.4) vanishes. Making up
(4. 4) in the simplified form, we get

(4.5)

We calculate " j l j by (4.1), (4. 2) and (4.5) and we have

(4.6)

βw5wk +

2aβuwk) + 2a(β- -^-

where we have used the notations \7iWό — wjii9 at = da/dx\ ak = gkicti, βk

~ 9kiβi> Ka — w^i, and ( ) for indices means half of the sum of two terms
interchanged two indices, for example

and finally we have put

(4.7) ([θ]) = 2a-'ghi{w{kφmj)-θό)th) + θik(wlhU)-wj)>h)}

+ v-ιwi{2auθk)-{θd)gjk-(θβ)wjwk-2aθu>k)

- 2βwu(wk)tS-w{slk))ds

- 2wυ(θk)tS-θls]tk))θs

- 2(β-rcc-iχθϋwk)ySw
s + w(jψk),s-θ]sUk))ws)}

gjk + {a-ιθβ
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- 2arxaφk) — 2βwuwlc)iSw
s

- 2(wυ(θk)fS - θ{sl)k))zvs + θvWk)tSw
s)

+ 2a~l βwu(wk))S - wlsltk))θs

+ 2a-χwuφk),s - 0lslk))θs + θ(j(wk))s- wls\,k))θs)} .

Contracting with respect to i and k, we have

(4. 8) 2Ψ{\\ = 2\ y + (r^a~l + Z3^"1 - 2rcrιv-χ)as - ^z;-1^ + V'
xr$.

THEOREM 4.1. Lei φ be an {m — Vf-conformed transformation of M to
N. If φ is an affine transformation, we have

( 1 ) a and β are constant.
And as a necessary condition that M and N admit such φ satisfying β ^ 0,
we have

( 2 ) εξ is a parallel field.

PROOF. By the assumption the last term of the right hand side of (4.7)

vanishes and j ι-y i = \ l i \ holds good. Transvecting (4. 6) with wύwu we get

(4.9) Λ* + & = 0.

And from (4. 8), it follows that

(4.10) (m(a+β) - β)ak + aβk = 0 .

(4. 9) and (4.10) give the following relation

(m-l)(a+β)ak = 0.

Thus ci is constant and, by (4. 9), β is also constant.

In the next place we prove (2). Transvecting (4. 6) with wjwk and using
the fact that a and β are constant, we get

(4.11) βw\όw
3 = 0.

If β v̂ 0, by (4.11) we get wuw
5 = 0. Transvecting (4.6) with wi9 we have

(4.12) β(wJtk + wktj) = 0 .
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Thus ξu has a property of a Killing vector field. Transvecting (4. 6) with τvk

we have

(4.13) β(wu - wJti) = 0 .

Hence ζ is a parallel field. q.e.d.

REMARK. In (2) of the Theorem 4.1, the assumption ^ 0 means that

φ is an essentially (m — l)s-conformal transformation.

As a converse, next theorem follows from (4. 6) immediately.

THEOREM 4.2. Suppose that φ is an {m — Vf-homothetic transformation

of M to N such that β is constant. If εξ is a parallel field. Then φ is an

affine transformation.

5. (m —l)s-conformal and projective transformation. By definition a

projective transformation ψ of M to N is one which transforms the system

of geodesies in M into the same system in N. Namely as a necessary and

sufficient condition that φ is a projective transformation we have

(5.1) 2*| j j - 2{ĵ f = 2δj

where ψ is a differentiable function on M.

Suppose that φ is an {m — l)s-conformal and at the same time projective

transformation. Contracting with respect to i and j in (5.1) and using (4. 8),

we get

(5.2)

Thus, if a and β are constant, ψk — 0 holds good and we see that φ is an

affine transformation.

PROPOSITION 5.1. Let φ be an (m — iy-conformal and at the same time
projective transformation. Then we have

(5.3) 2dψ= dloga.

PROOF. Transvecting (4.6) with wjzvi and utilizing (5.1), we get
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(5. 4) 2ζψ wk + 2ψk = ^

Transvecting (5. 2) and (5. 4) with zvk, we obtain

(5.5)

(5.6)

Eliminating ζψ from (5. 5) and (5. 6), we get

(5.7) (a+2β)ζa =

By (5. 6) and (5.7), we get 2ξψ = — ζa. And so, by virtue of (5. 2), (5. 4) is

written as

(5.8) ((m-ΐ)β-a)ak - maβk + (m + iχa+β)ζa*wk = 0.

Transvecting (4.6) with gjkWi and using (5.1), (5.7) and 2<xζy}r = ζa, we get

(5.9)

Transvecting (4.6) with wswk and g}k respectively and using (5.1), (5.2), (5.7)
and (5.9), we have

(5.10) 2(α+β)ζd'tϋk- a{ak+βk) + 2 aβ wk,tw
ι = 0,

(5.11) (-?

Eliminating tvt |{w* from the two above equations

(5.12) ( (3- m'Xrt+/8)+2/3) ak-2aβk + (m - l)(m + l)(α+β) ζa • wk = 0 .

Eliminating wk from (5. 8) and (5.12), as m > 2, we get

(5.13) (α+2/9)α4 - aβk = 0.
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From (5. 2) and (5.13), we deduce (5. 3).

THEOREM 5.2. Let φ be an (m — l)s-homothety and at the same time
projective transformation. Then φ is an affine transformation. Further β
is constant and 'ζ is a parallel field.

PROOF. AS OL is constant, we have ψk = 0 by Proposition 5.1, hence φ
is an affine transformation. Then we can apply Theorem 4.1.

THEOREM 5.3. Let φ be an (^n — Vf-conformed transformation and at
the same time projective transformation such that a-\-β is constant. Then
we see that a and 3 are constant and φ is an ajfίne transformation.

PROOF. This is an immediate consequence of (5.13).

COROLLARY 5.4. Let φ be an (m — l)s-conformal transformation of M
onto itself and at the same time projective transformation such that φ%
= ±:εξ. Then φ is an affine transformation.

6. The Riemannian curvature, Ricci curvature and scalar curvature.
Let φ be an {m — l)-conformal transformation of M to N. We denote by Rιjkι>
Rjk, R and φRί

jkι,
 φRjk, φR the Riemannian curvatures, Ricci curvatures, scalar

curvatures with respect to g and φ*h = (G^ ) respectively. First we have

(6.1) ' # , « = Rι

m + W%a - WJlit + WτιW
r

}lt - WwW'n ,

where covariant derivative ( , ) is the one with respect to J ι., I and

The verification of (6.1) is as follows: When we calculate φRi

jkι by

1 l'k I + ^ f c > w e n a v e t n e right side of (6.1) and the terms which contain j ι-i | ' s .

At any point x of M, we can find local coordinates xι such that V-Λ = 0
I jR) x

holds good. Then we have (6.1) at x, and as (6.1) is a tensor equation, we
get (6.1).

Contracting with respect to i and /, we have the relation of the Ricci
curvatures by;

(6.3) *Rlk = Rjk + W]kΛ - W)lΛ + WUWr

ik - WίkW% .
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Transvecting (6. 3) with (4.2), we get

(6. 4) *R ± JL ^ j ±R + (W3*Λ ^ O W + j^WlWίg

+ -J- {2Rιψ,ζ)+2Wi

3kΛθ
!wk-Wι

ji,k{wsθk+xrfθί)

+ 2Wi

irW
r

}kw
ίθk-2Wi

krWj-iθ
kw}}

_l_ ί R (β ff) + ( TV*!. + W i Wι W7 ir-i-Wi *Wr )θ^θkλ
civ

where i?x denotes the Ricci curvature.
As a special case, we consider an (m — l)s-homothetic transformation of

M to N assuming that ζ is a parallel field. By (4. 6), we have

(6.5) 2W]k = - - i - fl*^^ + T ^ ^ V (/3(?/3) ̂ w * + 2Λflϋtt;Λ)) .

Then by (6. 3) we have

(6.6) 4*RJk = 4RJk +

^yWjwk{-2(a+θγ

βr - β(ξβ)2}

And finally from (4. 3), we have

where we have used Rijw
iw3 = 0, which follows from the fact that wl is a

parallel field.
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Now, next Proposition is evident:

PROPOSITION 6.1. Suppose that εζ is a parallel field and φ is an (m — l)s-

homothety of M to N such that β is constant. Then the scalar curvatures

are in the relation 'Rφx = Rx,χzM. Particularly if both scalar curvatures

are constant and equal to R =̂ 0, then φ is an (m — l)s-isometry.

As usual, we denote by δ the dual of d (i.e. codifferentiation), then we

have β\i = -hdβ.

THEOREM 6.2. Suppose that εζ is a parallel field and φ is an {πι — Vf-

homothety of M onto itself such that ΰdβ = 0 and ζβ = 0 hold good.

• ( i ) If R = 0, β is constant.

(ii) If R = constant < 0, then a ^ 1 .

(iii) If R = constant > 0, then a ̂  1.

In (ii) and (iii) equality holds if and only if β is constant.

PROOF. If R is constant by (6.7) we get

(6.8) J^Tβf $rβr = 2(a-l)R,

where we have used βjtlw
jwι = {βfuυ^^w1 = 0. From (6.8), (i), (ii) and (iii)

follow. If a = 1, then βrβ
r = 0 holds, hence β is constant,

THEOREM 6.3. Suppose that εζ is a parallel field and φ is an (m — Vf-

homothety of M onto itself such that β is constant. If the scalar curvature

is bounded and not equal to 0 somewhere, then φ is an (m — ί)s-isometry.

PROOF. By (6.7) we have φR= R namely Rφx = Rx , x being a

( 1 \k

— ) Rχ>

As R is bounded, we can conclude that cc = l.

THEOREM 6.4. Suppose that εξ is a parallel field and φ is an (m — l)s-

homothety of M onto itself which prese?-ves the Ricci curvature.

( i ) / / Sdβ = 0 and ζβ = 0, then β is constant.

(ii) If M is compact orientable, then dβ is proportional to w.

(iii) If M is compact and there exists a point x such that Rx ^ 0, then
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PROOF. Noticing that φRjk = Rjk, we transvect (6.6) with wjwk, and get

(6.9) 2βjtlw>w' - 2β\% + - ^ j βr& - -~β-(£βf = 0 .

Then (i) is clear. To prove (ii), if we integrate (6. 9) over M, we have

where we have used I βjtίw
jwιdσ = I (βjW5wι)Λdσ = 0, and dσ denotes the

volume element of M. As cέ + β is positive and (βrβ
r-(ξβ)2) = (βr-(ξβ)wr)

x(βr—(ξβ)wr) is non-negative, we have βr=(ξβ)wτ, namely dβ is proportional

to w. On the other hand, transvecting φRjk=^Rj}c with (G~ι)jk in (6. 6), we have

φR= R. As M is compact, R is bounded, so we have a = l.

REMARK. Assume that ξ is a parallel field and φ is an [m — l]s-homothety

of M onto itself, then we have (i) and (ii). Because φR1(ζ,ξ)=μ2R1(ξ,ξ) φ=O.

7. The sectional curvatures in the case where εξ is parallel along D.

We say that εζ is parallel along D, if Vw£ = 0 holds for any vector field u

which belongs to the distribution D i.e. w(u) = 0. First we prove

LEMMA 7.1. If Bζ is parallel along D, then D is completely integrable.

PROOF. Suppose that u and v belong to D, then we have

(7.1) w(Vvu) = Vv(w(u)) - Vυw u = 0,

from which we have

(7. 2) w([u, v]) = w(Vuv - Vvu) = 0 .

This completes the proof.

LEMMA 7.2. If εζ is parallel along D and if φ is an (m — Vf-homothety

of M to N. Let u, v be vector fields which belong to D, then we have

(7.3) '\/φvφU
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PROOF. If u and v belong to D and φ is an (m — l)s-homothety we have

(2. 4), equivalently

(7. 4) AC V^ w 7) - a(φ-ι*g){φV*u, Y)

for any vector field Y on N. By (1.16), we have

(7.5) ^ ^ =

And we get

(7. 6) (η®η)(<pS7υu, Y) =

Then by virtue of (7. 4), (7. 5) and (7. 6), we get

(7. 7) h(Vφvφu, Y) = h(φVυu, Y).

As (7. 7) holds for any Y, we have (7. 3).

PROPOSITION 7.3. Let φ be an {m-Vf-homothety of M to N such that

β is constant, then two following conditions are equivalent:

( i ) εζ is parallel {along D res p.).

(ii) δξ is parallel {along φD resp.).

PROOF, (i) -» (ii). We use (2. 7). If ξ is parallel along D, Vvξ = 0 holds

good provided that v belongs to D, and we have fVφvφζ' — 0. Then V'ct + β ξ,

and so ξ, is parallel along φD. If ξ is parallel, each trajectory of ζ is a

geodesic. By Theorem 3.1 we see that each trajectory of ξ is also a geodesic.

Then ξ is parallel field. The case (ii) -> (i) reduces to the first case by taking

the inverse <p~ι.

THEOREM 7.4. Suppose that εξ is parallel along D and φ is an (m — 1)*-

homothety of M to N. Let u, v, r be vector fields which belong to D, then

we have

(7. 8) 'R(ψu9 ψv) φr = φ{R{u, v)r),

where R and 'R denote the Riemannian curvature tensors with respect to g

and h.

PROOF. The expression of the Riemannian curvature tensor is as follows :
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(7.9) -R(μ,v)r = VuVυr- VυVwr- V ^ r .

Thus, if u, v, r belong to D, by Lemma 7.2, we have

— rR(φuyφv)φr = 'V 'ΨύV'φ vφr — 'S/φV"\/φuφr — 'V[φu

= -φ R(u,v)r,

completing the proof.

We denote by Kx(u, v) the sectional curvature denned by the tangent

vectors u and v at a point x, then

ẑ  /„ Λ̂ - . ^ ( ^ ( w ' v) u> v)

where I^Λ^I is th e area of the parallelogram with u and t; as adjacent sides:

(7.10) \uΛv\2= \u\*\v\*-(g(u,v)γ.

REMARK 1. If εζ is a parallel field, we have R^^iv3 = 0. Therefore the

sectional curvature K(ζ,u) determined by ξ and any other vector u is equal

to zero.

THEOREM 7.5. Assume that εξ is parallel along D and φ is an (?n — l)s-

homothety. Let u, v be tangent vectors at x^M which belong to Dx, then

we have

(7. 11) Kx(u, v) = Cί'Kφx(φu, φv) ,

where 'K{φu, φv) is the sectional curvature determined by φu and φv -with

respect to h.

PROOF. By Theorem 7.4, we have

(7. 12) h{ fR(φu, φv) φu, φv) = h(φ R(u, v) u, φv)

= ag(R(u, v) u, v) φ~λ .

From (7.10), it follows that

(7.13) \φu\φv\2 = <X2\u/\v\2 φ-1 .
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By (7.12) and (7.13), we get (7.11). q.e.d.

Let ux,vx be two tangent vectors at x and let u,v be their extension to

vector fields. Then the value of the function K(u, v) at x is equal to Kx(ux, vx).

Now we prove

THEOREM 7.6. Assume that εζ and 8ξ are parallel fields and φ is an

{m — Vf-homothety. Then we have

(7.14) Kiu, v) = (a+ tfϊffl) 'K{φu, φv) φ,

for any vector fields u and v, where we have put

(7.15) Q(φ, u, v) = β(a2g(v, v) + b2g(u, u) - 2abg(μ, v)) ,

a and b denoting εw(u) and εw(v) respectively.

PROOF. We decompose u and v as follows:

(7.16) u =

where u0 and v0 belong to D and a=εa = εw(u), b = εb=εw(v). Then φu = φuQ

+ ^aφ-ι)φζ = φuQ + ̂ aφ-ι)ε*μ,%μ2-φ = a+β, and as ζ and ξ are parallel fields,

we have

(7. 17) h(R(φu, φv)φu, φv) — h(^R(φu0, φv0) φu0, φv0)

= <Xg(R(u0, Vo) u0, v0) φ~λ

— ctg(R(u, v) u,v) φ"1 .

On the other hand, using (7.10) and φζ = μξ, μ2 φ=ct+β, we can show the

following relation

I φu l\ φv 12 φ = OL2\uf\v\2 + aίβ(a2g(v, v) + b2ff(u, u) — 2abg(u, v)) .

Thus we have

*λ ( λ \ K
, V) = I — j

a

\u/\v\2

t,φv) φ).
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Now we have (7.14).

THEOREM 7.7. Assume that εζ and 8ξ are parallel fields and φ is an

(m — Vf-homothety. If M is of non-negative curvature (non-positive curvature

respectively), then N is of non-negative curvature (non-positive curvature

respectively).

PROOF. By (7.17) we see that K(u, v) and 'K(φu, φv) have the same sign

+ or - .

REMARK 2. In Theorem 7.6 and 7.7, if φ is an (m — l)s-homothety such

that β is constant, then the assumption that 8ξ is a parallel field may be

removed by Proposition 7.3.

8. (m—1)-Einstein spaces. Let Mand i?x be an m-dimensional Riemannian

manifold and Ricci curvature.

DEFINITION. If M admits an (?n — l)-dimensional distribution D such that

Rι(u,v) = eg(u,v) holds good for u,ve D, e denoting a scalar field, we say that

M is an (m — 1)-Einstein space with respect to the distribution D.

Let εξ, ετv be ones defined in §1. By the similar argument we see that

i?i is written as follows

(8.1) R^ eg + εw®εK + εK®εzv + fεvυ®εvυ ,

where / is a scalar field on M and εK defines a 1-form Kπ in each U in §1.

Namely in U, we have

(8. 2) Rtj = egi5 + WiK, + KiWj 4-

where Kiw
i = 0. Transvecting (8.2) with gίj, we get

(8.3) R^me-Yf.

By the same letter K we denote the contra variant vector: Kι = gijKj. Using

δ, we have (Sw)=—wi

ti.

Now we prove

THEOREM 8.1. Suppose that M is an (m— 1)-Einstein space (m>3) with
respect to D. If in (8.1), the three conditions:

(1)
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(2) Rβv, ξV) = constant,

(3) hKπ = 0 , VξuKπ + Vκπζu = 0

<zr£ satisfied for each U, then e and f are constant on M. Further the

scalar curvature R is constant.

PROOF. Multiply wlwj to (8.2) and contract with respect to i and j,

then we have

(8.4) Riόw
ιwj=e +f.

Hence, by (2) we have

(8.5) ek+fk = 0.

Differentiating covariantly (8. 3) we have

(8.6) Rtt = mek+fk.

And from (8. 2), we get

(8. 7) gίsRίk,s = R^ = ek +fiw
ίwk ,

where we have used τv\i = 0, wktiw
i = 09 Kι

tt = 0 and KkΛw
iΛ-ewkΛK

i = 0. Using

the well-known identity RΛ = 2Riki\ (8.6) and (8.7) show that

(8.8) (m

Eliminating fk from (8. 5) and (8. 8), we have

(8.9) (m-3)ek = 2ξf τuk.

Transvecting (8. 5) and (8. 9) with wk, we get

ζe+ξf=O, (m-3)ζe =

Thus we get (m-ΐ)ζe = 0 and ζe=O, ζf=O. Then from (8. 5), (8. 6) and (8. 9)

it follows that ek=fk = 0 and Rtk = 0.

COROLLARY 8.2. In an (m — 1)-Einstein space (m>3), if % is a parallel

field and if δKπ=0, Vζ[/Ku = 0 (in particular if K=0) hold good. Then e,

f and R are constant.
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PROOF. (1) of the Theorem holds good. By Ricci's indentity, we have
RijXvicwj — 0y satisfying (2).

PROPOSITION 8.3. In the above Theorem, if m = 3, i.e., M is a (3-1)-
Einstein space satisfying (1), (2) and (3). Then

ξe=ζf=0 and £i? = 0.

PPOOF. By (8.9) we have ξf=O. And so ζe = 0 and ζR = O follow from
(8. 5) and (8. 6).

DEFINITION. We call M a ε<zx>-Einstein space if M is an (m — 1)-Einstein
space with respect to D and satisfies εK=0 in (8.1).

REMARK 1. In the study of contact manifolds, some authors treated with
?/-Einstein spaces, η denoting a contact form ([11], [12]).

REMARK 2. In the Theorem 8.1 and Proposition 8.3, if M i s a εw-Einstein
space, the condition (3) is satisfied always.

If M is an Einstein space (R^O), a transformation which preserves the
Ricci curvature is an isometry of M. So there is no essentially [m — 1]-
conformal transformation of M which preserves the Ricci curvature. This
is one of the reasons why we consider (m — 1)-Einstein spaces.

THEOREM 8.4. Let Mbe an (m — 1)-Einstein space. If a transformation
φ of M preserves the Ricci curvature and the distribution εw = 0, then φ is
an [m — l]-conformal transformation.

PROOF. By assumption we have

Rλ{φuyφv) = eg((pu,φv) + w(φu)K(φv) + K(φu)w(φv) + fw{φu)w{φv)

for any vector fields u, v on M. And we have a family ^'y = {juv} of scalar
fields such that φ*w = Ίw. As Rλ{φu, φv) φ = Rx(u,v), we have

(8.10) ψ*g = ^ g +

+ (K-Ίφ*K)®W + — {f~y\f φ)) W®W
e φ e φ
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Though this is not a canonical form of an (m — l)-conformal transformation,

we see that φ is an [ τw — l]-conformal transformation. If K—yφ*K is pro-

portional to w, φ is an [m— l]5-conformal transformation. And if e is

constant, φ is an [m — l]s-isometry.

COROLLARY 8.5. Let M be a εzυΈinstein space (m>3) and suppose that

φ preserves the Ricci curvature and the distribution εzv = 0. If (1) δτvzr=O,

V^ξV=0 and (2) jR ξ̂V, ξV) is constant, then φ is an [m — l]s-isometry.

PROOF. AS K=0, by Theorem 8.1, we see that e and f are constant.

Thus by (8.10), we get

(8. 11) φ*g = g+-£- (1-72) W®W .
e

COROLLARY 8.6. In Corollary 8.5, in particular if 2?i(£V, ?σ) = non-zero
constant. Then φ is an isometry.

PROOF. From φ*w = Ίw, φξ = (Ύ φ~ι)ζ follows. By contraction (8.11)
with ξ, we get

As e + / ^ 0 , we have Ύ2 = l, and hence ψ^g—g-

9. The group of [m — l]-conformal transformations. In m-dimensional

manifold M, let D be an (m — l)-dimensional distribution of class C°°. By Π

we denote the set of all [m — l]-conformal transformation of M on itself with

respect to the distribution D. Let <ply φ2 and <p3 be elements of Π, then

(9. 1) φλ*w = ΎλW ,

(9. 2) (φx*g)x - Λλ(Λ:)flrχ + wx®(θλ)x + (flλ

λ = l,2, 3, where Ίλ,aλ,βλ are scalar fields and 0λ defines 1-form in each local

neighborhood. Then the composition <p2 ψ\ satisfies

(9. 3)

(9. 4)
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+ Wx ® [at(φιx)(θ1)x + VxixXφfθύΔ

+ Vcίlφ.xXθ^ + ^ ( J ; ) ^ ! * ^ , ) J ® wx

+ [rttC^iΛ:)A(Λ;) + Afotf) iί(x)\ wx ® wx ,

(9. 5) ((^ 3 φ2 ^)*5f) = Cί1{x)a2{φιx)

where ( ) means three terms corresponding to the 2, 3, 4th term in the
right hand side of (9. 4). The inverse transformation of φ satisfies

(9.6) {φ-ι*rv)»

(9.7) (φ-^gU = (-^-) Or)gφ* + w

( Wφ

Here we notice that (9. 4) and (9. 7) are not canonical expression of (m —1)-
conformal transformations.

We use the notations for the subgroups of the transformation group Π as
follows:

IF : The totality of \πι — l]5-conformal transformations.
Θ : The totality of [m — l]-homotheties.
Φ : The totality of \m— l]-isometries.
Θ s : ΘΠΠ% Φ s : ΦίΊff.

Next theorem is an immediate consequence of (9.5) and (9.7).

THEOREM 9.1. Φ and Φs are normal subgroups of 'Θ and Θs respectively.

THEOREM 9.2. Any finite subgroup of Θ is a subgroup of Φ.

PROOF. Let φz Θ, then by (9.4) we have

and by k times iterations we have
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where (*) and (**) denote the terms which contain wx. So, as cik is not
bounded unless <X = 1, the assertion is true. q.e.d.

Some answers to the question "Under what conditions does certain subgroup
of Πs make a Lie group ?" are given in §15.

10. (m—l)-conformal transformations of complete or compact M. Let
φ be an {πι — l)-conformal transformation of M onto itself satisfying (1.6) or
(4.1). We take an arbitrary point x of M and take suitable local coordinates
xι in a local coordinate neighborhood U about x such that (gij)x = Bij9 wx=(0,
• , 0,1). This is possible as ζu is a unit vector field. And let (θu , θn-u 0)
be components of θu, where we have used θm = 0 as θ(ξ) = O. Then we have

\Gtί\ =

a 0

0 a

0

../« 0 0m_2

where | G t i | denotes the determinant of the matrix Giό. Thus

α;

holds at x. As Σ θ\ = g(β, θ) and | Gio \, | gr̂  j are positive, we get

I
JM

If M is compact and orientable, we can integrate (10.1) over M, denoting

dσ— \M\, we have

THEOREM 10.1. Suppose that φ is an (m — l)-conformal transformation
of a compact and orientable manifold M onto itself. Then the following
equation is valid:



PARTIALLY CONFORMAL TRANSFORMATIONS 387

As an immediate consequence of Theorem 10.1, we get

THEOREM 10.2. Let φ be an (m — l)s-homothety of a compact and
orientable manifold onto itself such that β is constant. Then φ is an
isometry, except the case cc^l and β—aι~m — a.

As a corollary we have

COROLLARY 10.3. In a compact orientable manifold, (i) if φ is an
(m — iy'-homothety such that φ% = ±Bζ, then φ is an isometry. (ii) if φ is an
{m — Xf-isometry such that β is constant, then ψ is an isometry.

Next we prove

THEOREM 10.4. Let φ be an (m — l)s-conformal transformation of a
complete Riemannian manifold M. If <x<ao<l and a + β<cco<l on M
(or a>ato>l and a + β>cto>ϊ) for some constant ct0, then there exists a
unique fixed point of φ in M.

PROOF. Let x be an arbitrary point of M and l = x(t) (0 ̂  t rg 1) be any
differentiate curve which joins x=x(0) and x(l) = φx. We denote by \l\ the
length of /. Now we have

dx dx\ I dx dx\ Ω ί ( dx

dx dx
We decompose —j~~ as —j— = vt + rtξ, vt€ Dx(o, then

dx dx \
~dΓ) = a*

dx dx

Thus the length \φl\ of φl is smaller than \l\. By iteration we get |φkl\
< Λo I / I for any integer k. Therefore (x, φx, , <pkx, ) is a Cauchy
sequence. By completeness of M, we have limit point x: φx — x.

In the case a > ct0 > 1 and a+β> ao> 1, we have \φkl\ > ak\l\. Thus
this case reduces to the first case by consideration of φ~ι. Uniqueness of x
is seen as follows: If there exist two fixed points x, χf of φ, we can join x
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and x' by the shortest curve /', then φV is of the smaller length than \V\

which is a contradiction.

COROLLARY 10.5. Suppose that εζ is a parallel field and let φ be an
(m — ϊ)s-homothety of a complete Riemannian manifold M such that β is
constant satisfying a < 1 and a + β<l {or (X>1 and a + β>l). Then M is
{locally) Euclidean.

PROOF. By Theorem 4.2, <p is an affine transformation of M. And by
Proposition 10.4, φ has a fixed point x. Then by [2], or [5], M is locally
Euclidean.

11. Supplimentary results, (i) Space of constant curvature. A manifold
M is said to be constant curvature if the Riemannian curvature R satisfies

(11.1) R(u, v)z — κ{g(v, z) u — g(u9 z) v]

for any vector fields u, v, z on M, where K is constant.

THEOREM ILL Let M be of constant curvature and φ be (m — l) s-
conformal transformation of M onto M. If εw{z) = 0, then we have

(11. 2) R(φu, φv)φz = <p(ctR(u, v)z) .

PROOF. By (11.1), we get

R(φu,φv)φz = κ{g(φv , <pz)φu — g(φu>φz)φv}

= φ(aR(u9v)z),

because g(φv, φz) = oίg(v9 z) φ'1.

(ϋ)

THEOREM 11.2. We assume that Rx(
εξ, εξ) = T and the scalar curvature

R are constant and R^T. If φzΏ* leaves JRj invariant, then φz Φ s. Further
if T^rOy φ is an ίsometry of M.

PROOF. AS T is constant and φξ=μξ, μ2 φ=<X+β, we have

(11.5) T=

On the other hand, we have
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R = 9R = (G~ψRi5 = — R- , β ^ T.

Namely, we have

(11.6) {a+β)(a-1) R + βT = 0.

We add -( t f+£-l)T=0 to the last equation, getting

(a+β)(cc-ί)R - (Λ-l)T = 0.

If we use again (11.5), the last equation turns to (a+β)(a—ϊ)(R—T) = 0. So
a = l follows. Furthermore, if T^=0, β = 0 follows from (11.6).

Chapter II

12. Infinitesimal (ra—l)-conformal and [m — l]-conformal transforma-
tions. Let D be an (m— l)-dimensional distribution and φt(\t\ <q for some
positive number q) be a local 1-parameter subgroup of Π, then we have

(12.1) <pt**w = yt

Bw9

(12. 2) φt*g = atg + *w®*θt +
 ε^®eze; + /3£

ε^(8)εw,

for t: \t\<q. In this section too, we abbreviate frequently 8 in εzv or ε0.
As <po(t = O) is an identical transformation of M, we have

(12. 3) L(v) w = lim ^ T 1 w,
ί->0 ί

(12. 4) L(v)g = lim ^~^g + w® (lim-^-) + (lim -^Λ ® w+ Um-^- w®w ,
v t-*o t v \ ί—o t / \t-+o t / ί->o ί

where t; is a vector field on M defined by φt. From these, we define that
an infinitesimal transformation u is an infinitesimal [m — l]-conformal trans-
formation if it satisfies

(12.5) L(u)w = cw,

(12.6) (L(ιθ0)(r,5) = O

for any vector fields r, s which belong to D. In (12. 5), c does not depend on
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the choice of U9 so c is a scalar field.

By the similar fashion to §1, we see that L(u)g is written as

(12.7) L(u) g = ag + w®F + F®w + bw®τv ,

where α and & are scalar fields, and F = (εF) defines a 1-form Fσ in each

neighborhood £7 in such a way that wσ and JFV are orthogonal. When we

use the local coordinates xι in U, τv and F are treated as covariant tensors.

If F = 0, v is called an infinitesimal [m — l]s-conformal transformation. If a is

constant, v is called an infinitesimal [m—l]-homothetic transformation, etc..

But in many cases, we consider infinitesimal transformations which satisfy only

(12. 6), and we denote them by infinitesimal (m — l)-conformal transformation.

THEOREM 12.1. Let u be an infinitesimal [m— 1]-conformal transforma-

tion. Then L(u)εξ = pεξ holds good for some scalar field p if and only if

F^=0, i.e., u in an infinitesimal [m—l]s-conformal transformation. And

we have —2p = 2c = a + b.

PROOF. Operating Lie differentiation to rwi = wigij with respect to u, we

get

CWJ = (L(w) w*) grtj + (α+δ)wj + Fό .

If L(u) wι = pw\ we get i^ = 0. Conversely if Fj = 0, transvecting the last

equation with g3k

y we obtain

L(u)zvι = (c—a—b)wi.

THEOREM 12.2. If ξV ά ^ ^ infinitesimal [m — l]-conformal transforma-

tion in each U. Then it is an infinitesimal [m — If-conform al transformation

in each U and each trajectory of εξ is a geodesic,

PROOF. By the equation L{ζ)wi = cwiy we see that

Transvecting the last equation with w\ we get c=0 and ϊVijXv5 = 0. This

means that each trajectory of ζ is a geodesic. Next as L(ζ)g = wttj-\-Wjtt9

we get

(12. 8) Wij + wόΛ = αgr̂  + te;4ίj + FiZVj +
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Multiplying (12.8) by wlw5 and contracting, we have a+b = 0. If we transvect

(12.8) with zvj and use wifJte^ = 0, we have (a + b)wi + Fi = 0. Thus ^ = 0. q.e.d.

In the above proof, we see also the following

THEOREM 12.3. If ζu is an infinitesimal (m —1)-conformal transforma-

tion in each U. And if each trajectory of Bζ is a geodesic, then ζπ is an

infinitesimal [m — l]s-conformal transformation and satis fie a + b = 0.

Furthermore we have

THEOREM 12.4. If ζu is an infinitesimal {m — l)-conformal transforma-

tion and satisfies Zwn — ̂ . Then it is an infinitesimal {m — l)-isometry in

each U.

PROOF. Transvecting (12.8) with zviwi and gίj, we have a + b = 0 and

ma + b = 0. Thus a = 0 and b = 0 hold good.

THEOREM 12.5. If ξπ is an infinitesimal {m —V)-conform al transforma-

tion in each U. And if each trajecoty of ξV is a geodesic and hzvv = 0.

Then ζπ is an infinitesimal isometry.

PROOF. By Theorem 12.4, we have a = b = 0. On the other hand by

Theorem 12.3, we have Fj = 0 completing the proof.

THEOREM 12.6. Suppose that ξV be an infinitesimal (m — ί)-conformal

transformation, then pξπ is also an infinitesimal [m — \)-conformal trans-

formation for any scalar field p.

PROOF. First we have

On the other hand, pt is written as

Pi =(pj-ZP'™i) + ζp-

Therefore, from (12. 8) we get

L(pζ)gu = apgίj + WttβFj + pj-ξp-w,) +

+ (bp+2ζp)wiwj.

This completes the proof.
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Conversely, we have

THEOREM 12.7. If pζπ is an infinitesimal (m — ί)-conformal trans-
formation for some non-vanishing scalar p. Then ξσ is also an infinitesimal
(m — ί)-conformal transformation.

PROOF. We refer to the proof of Theorem 12.6.

Now let u and pu be two infinitesimal (m — l)-conformal transformations,
then we have

(12. 9) uiti + ujti = agυ + WiFj + FtWj +

(12.10)

where α, a\ b, b\ are scalar fields. Subtracting (12. 9) multiplied by p from
(12.10), we get

(12.11) pjUi + ptuj = (ά-pά)gi5 + w^Fj-pFj) + {F -pF^w^ + (b'-pb)WiW5.

If m > 2, there exists a vector field which is orthogonal to u and f, thus
a!—pa — Q follows form (12.11). Transvecting (12.11) with zviwi and gίj

respectively, we get

2zv(u)ζp = b'' — pb ,

2uρ = bf — pb ,

from which we get up = τv(u)ζp. Next transvecting (12.11) with uι and wl

respectively, we have

(12.12) up uό + (uiu
i)pj = w(u)(F;-pFj)

-f (Ft-pFi)uιWj + (b'-pb)w(u)wό,

(12.13) fr w, + w{u)p3 = (F - ^ ) + (b'-pb)w5.

Subtracting (12.13) multiplied ?x;(z/) from (12.12) and using up = w(u)ζp, we
get

(12.14) («iW*- wf(«))ft = (fi
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THEOREM 12.8. Two different infinitesimal {m — Xf-conformed trans-
formations, both of which are not proportional to εζ almost everywhere in
M, cannot have the same streamlines, if m>?>.

PROOF. In (12.14), as jFandi^' vanish, we have {uiu
i-w\u))pj = 0.

That uι is not proportional to wι almost everywhere means, as usual, that the
set of the point where uι is proportional to wι is of measure zero. And uι

is proportional to wι at a point x of M if and only if u μ1 — w\u) at x.
Thus we have pj = O almost everywhere, and hence everywhere on M. This
means that p is constant.

13. Lie derivative of the ChristoffeΓs symbols by an infinitesimal
(m — l)-conf ormal transformation and relations with an infinitesimal affine
transformation and projective transformation. Let u be an infinitesimal
(m — l)-conformal transformation :

(13.1) Lit^g^ = agi}

Into the following formula (see [22], p. 52)

(13. 2) 2L(u) I j Λ | = glrC7jL(u)grk + V

we substitute (13.1), then we have

(13. 3) 2L(u) I * I = afil + akty - a*gjk + bsw
ιwk + b^Wj - bι

+ wXFj,k+FkJ) + (Fj-Ftfw* +

Analogously to Theorem 4.1, we prove

THEOREM 13.1. Let u be an infinitesimal {m — Vf-conformal trans-
formation. If u is an infinitesimal affine transformation, then we have

(1) a and b are constant.
And as a necessary condition that M admits such u satisfying b^O, we have

(2) εξ is a parallel field.

PROOF. Transvecting (13.3) with wkWι, δ* respectively and utilizing
F = 0 , we get
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(13. 4) aj + bj = 0 ,

(13. 5) maό + b3 = 0.

Then we see that a and b are constant. Next we transvect (13. 3) with wiwk

and, noticing aj~bj = 09 we get b τvi

ij

tw3: = 0. Transvecting (13. 3) with w3 and
Wi respectively, we have b(wίtk — wkii) = 0 and b(wί)k + wkti) = 0. Thus Wi is
a parallel field, if

Conversely the following Theorem is obvious by (13. 3).

THEOREM 13.2. If εζ is a parallel field and u is an infinitesimal {πι~ l) s-
homothetic transformation such that b is constant. Then u is an infinitesimal
affine transformation.

An infinitesimal projective transformation u is characterized by

(13. 6) 2L(u) j ί j = 28JΨ* + 2δίψ,,

where ψ is a scalar field on M.
Analogously to Theorem 5.2, we prove

THEOREM 13.3. If u is an infinitesimal (m — l)s-homothetic transformation
and at the same time infinitesimal projective transformation. Then u is an
infinitesimal affine transformation. Further b is constant and εξ is a parallel
field.

PROOF. Transvecting (13.6) with δf, wkWi and using (13.3) with F= 0,
we have

(13.7)

(13. 8) 2f ψ τv3 + 2ψs = b5.

From (13. 7) and (13. 8) we deduce the relations ζb = 0 and ζψ = 0. Then it
is easy to see that ψj vanishes. That ξ is a parallel field follows from
Theorem 13.1.

14. Lie derivative of the Riemannian curvature tensor by an infini-
tesimal (m — l)-conformal transformation. If we substitute (13.3) into the
following formula ([22], p. 17)
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(14.1) 2L(«)R ι

m = 2 V,L(«) jj^) -

we get

(14. 2) 2L(u)Rι

m = 2aJΛl^ - 2 α i

) [ ^ ] j + 2wt6A[lw;Jb] + 2w5wφ\k]

+ 2&/?x/,[iwA;] + w^ijcii) + 2δi(z£;Λ[A;tε;i] 4-

+ 2bh{zvkλ{w\j-WjΛ) - τVkϊ'Wj + w^jw1)

;i

i7— w/O + 2(w\m - ze /V)

— 2w[/t]wj + 2wi

[ize;A:])j + 2wiw[kΛm

4- R\kιw
rWi - wWj

Contracting with respect to i and Z, we have

(14.3) 2L(u)Rjk = (2-m)aJtk - a\rgjk + 2ξb wUtk)

+ 2w\rbuwk) + 2wrφr,uWk) + b(jwk)tr)

ulifc) + 2w r, (,(^ ) > r - 2FlrU))

),r + 2wik(Frj)r-Fj)'
r

r)

e;7 ) j ) r - te ; j )

 r

r ) + 2wϋfk)rFr + 2FU)k)rw
r

On the other hand, we have

(14.4) £ O V f c = ~agjk - wjFk - Fjwk - bwjwk,
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(14. 5) L(u)R = L(u)g* Rjk + gjkL(u)Rj!c.

Transvecting (14. 3) with g5k, and substituting the result into (14. 5), we have

after calculation

(14.6) L(u)R = - aR- 2Rjίcw
jFc - bRjkw

jwk + (l-m)a\r

- b\r + [2ζb wr,r + ζ(ζb) + w

+ 2Fr,rze;^ + 2wι>rFr,ι + w r (F

where we have used 0 = (w^ί1*),/ = w A ^ + 2wfc'rί;,r +

We sometimes write Fcr to denote not only 1-form but also for a con-

travariant vector field on U associated with it. And εF= {Fπ}.

PROPOSITION 14.1. Suppose that u is an infinitesimal (m — l)-conformal

transformation on M. Then we have

(14.7) L(u)R + aR + 2RX{% Ψ) + bRtfζ, εξ) = 8(α, βf),

where (u, εξ) denotes a certain 1-form on M.

PROOF. The sixth term indicated by { ) of the right hand side of (14. 6)

is equal to

(ζ Wr)r + (b WrWl

 r)l + Φ WlWr

 r) ι
( * )

Although ξ, F and w are generally neither globally defined vector field nor

1-forms, each term of the above (*) contains two of ζ, F, w. Thus each

term can be considered as a δ-image of a globally defined 1-form. As a and

b are scalar fields, we have (14.7) from (14. 6).

PROPOSITION 14.2. Suppose that ξπ is an incompressible vector field on

each U and each trajectory of ξV is a geodesic. Then an infinitesimal

(m — l)s-conformal transformation u on M satisfies

L(u)R = -aR- bR^ξv, ξV) ~(l-m)8da + ξv(ξϋb) + Sdb .

PROOF. In (14.6), we put F=0 and use the relation w\jwj = 0, 7X^ = 0.

Then Proposition 14.2 follows.
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COROLLARY 14.3. Besides the assumptions on ξV as in Proposition 14.2,
we suppose that M is of constant scalar curvature and u is an infinitesimal
(m — l)s-homothety such that b is also constant. Then we have

aR + bR&nζπ) = 0 .

Particularly,
(1) If M is an Einstein space, we have (am + b)R = 0. So if i?^=0, we get

(2) If εζ is a parallel field and R ^ 0, then u is an infinitesimal (rn— l) s-
isometry.

Propositions 14.1 and 14.2 are useful in §16.
The properties of an infinitesimal (m-l)-conformal transformation, which

leaves R,Rjk, or Ri

m invariant respectively, will be studied in other papers.

15. Lie algebras of infinitesimal (m—l)-conformal transformations
and Lie transformation groups. In this section, we prove that the groups
of certain [m— l]-conformal transformations are Lie groups, if the Riemannian
manifold satisfies some conditions.

Let u be an infinitesimal [m— l]-conformal transformation:

L(u)g = ag 4- w®F+ F®w + bw®w,

L(u) xv = cw .

Then we have a local 1-parameter group φt {\t\ <q(x)) of local transformations
of M:

ux = l im M ,
ί->0 t

where q is a positive function on M. We fix a point x0, a positive number
q0 and neighborhoods U and V of x0 satisfying φtV(zU, for any t: \t\<.q0

<q(x0). As a first step, we consider maps φt\ V—>φtV.

LEMMA 15.1. There exists a family of differentiate functions Ύt (\t\

<qQ) on V such that φt*w = Ίtw.

Proof is standard and similarly done as the proof of Lemma 15.2, so we
shall omit it.

LEMMA 15.2. Each φt {\t\ <q0) is an (m—ί)-conformal transformation
of V onto φtV.
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PROOF. First let X, Y, A, B be any tangent vectors at x0 which belong

to the distribution DXo, such that the inner products of X, Y and A, B are

not zero. Then we have a real number λ such that gXo(X,Y) = \gXo(A,B).

We prove gφtXo(φtX,φtY) = XgφtXo(φtA,<ptB), for this purpose we put

(15.1) B(ί) = (φt*g)(X, Y) - \(fPt*gXA, B).

It is clear by definition that S(0) = 0. As Ξ is a function of t (Ξ : (—qo,qo)

—>JR), we can differentiate it and get

dB = φt+*g-φt*g ( χ γ ) _ χ φt+.*g-φt*g ( A

at s-*o s v J
 S-Λ s v

9-9 { ψ i X > φtY)-χ lim ̂ ' 9 { A B )

= (L(μ)gXφtX9φtY) - \(L(u) gX<ptA9 <ptB)

= ag(φtX,φtY) - Xag(φtA,φtB) ,

since φtXyφtY,φtA and φtB belong to DφX9 by Lemma 15.1. Therefore we get

(15.2) -^-=a(φtx

This means that Ξ is of the form pe^adt, p denoting a constant. By Ξ(0) — 0,

we have Ξ(ί) = 0 identically. Thus we get

for all X,Y,A,Bz DXo, g(X9Y)±?0, g(AyB)^0. And φt is an (m-l)-conformal

transformation.

LEMMA 15.3. If u is an infinitesimal [m—l]s-conformal transformation,

ίAe^ ?̂ί Z5 αw {yn—Vf-conformal transformation of Vt onto φtV.

PROOF. By Lemma 15.2, we have at, βt and θt of functions and 1-forms

on V such that

(15. 4) φpg = atg + w®^ + θt®w + βtw®w .

We prove ^ = 0. Let X be any tangent vector J:0 belonging to DXo. Then
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t->θt(X) defines a function S': (-qo,qo)^R As θt(X) = (φt*g)(ζ, X), we
have

Thereby Ξ'(ί) = 0 holds and so θt = 0 follows.

LEMMA 15.4. 7/ u is an infinitesimal [m—l]-homothety, then φt is an

(m—l)~homothety. In particular, if u is an infinitesimal [m—l]-isometry,

then φt is an (m—l)-isometry.

PROOF. We put

S"(ί,x) = at(x) \t\<q0, xzM.

Then we have

_ r aiφtx)at(x)-at(x)
o x V"> ̂ J — A A i A A _ >
Ot s-+o S

since <xt+s(x) = <xs(φtx)at(x) by (9.4). Thus we get

(15. 5) ^ - (t, x) = at(x) ^ - (0, φtx)

= αB"(ί, J:) ,

3Ξ"
because by assumption, —7̂ 7— (0, J:) = a — constant. And as a solution of (15. 5),

we have

(15.6) H"(t,x)=f(x)eat,

where / is a function on V independent of t. On the other hand B"(Q>χ)

= QLO(X) = 1, and so /(x) = l. This shows that a"{t,x) = Έ"(t) is constant eat

on V for each t:\t\>qQ. In particular, if a — 0, then ^ = 1.

Similarly we can prove

LEMMA 15.5. If c is constant, then Ίt in Lemma 15.1 is constant.
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We use the notations:

5)3 = {u: infinitesimal [m— l]-conformal transformation},

ξ) = [u: infinitesimal [m—l]-homothety},

£j — {u: infinitesimal \m— l]-isometry},

5β* = [u: infinitesimal \m—l]5-conformal transformation).

And we put

By definition we have 5(5 D £ 3 $ , concerning a bracket operation, we have

PROPOSITION 15.6.

(15.7) [S

(15.8) [Φ

(15.9) [ξ

By preceding Lemmas, we have

PROPOSITION 15.7. If u is an element of % §, ^ , 5)3% &' or ^ss and

generates a 1-parameter group φt (t z R) of global transformations of M,

then each <pt belongs to Π, Θ, Φ, II s, Θs or Φs respectively.

LEMMA 15.8. Let u be an infinitesimal transformation such that L(u)g

= ag + bw <g) w, where b is a constant. Then the set of all such u is finite

demensional.

PROOF. Let u be an element of the set such that b is not zero. We

define u by ΰ = (l/b)u, then

(15.10) L(u)g — &og + w®w.

where a0 is a differentiate function on M. Then for any element v of the

set:

(15.11) L(v)g = ag + b'

we have

(15.12)
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where v—b'ΰ is an infinitesimal conformal transformation. Thus the set of

such v—b'u is finite dimensional, whence the set of such v is also finite

demensional.

THEOREM 15.9. The subgroup of Θs, τvhose element satisfies φ*wv = ΊvuWιτ

for some constant ΊvU, is a Lie group.

PROOF. By R. S. Palais' theorem [13], it is enough to prove finite

dimensionality of the Lie subalgebra of ξ>% whose element generates a 1-

parameter group of global [m— l]s-homotheties which satisfy φt*zvv = ΎtvuWa

for some constant ΊtvU for each t £ R.

Any element u of the Lie subalgebra satisfies L(u)w — czv and L(u)g = ag

-\-bw®w, where c and a are constant. Then b is also constant. Thus by

Lemma 15.8, the Lie subalgebra is finite dimensional.

LEMMA 15.10. If ξσ is α Killing vector field for each U and if u is

an element of ψ. Then L(ζu)a = 0.

PROOF. Taking the Lie derivative of L(u)g with respect to ζ we have

(15.13) L(ξ)L(u)g = ζa-g + ζb-w®w,

where we have used L(ξ)g = 0 and L(ζ)w = 0. And as

L(cξ) = -L([u,ζ]) = -L(u)L{ζ) + L(ζ)L(u)

and L{cζ)g=dc®w + w®dc, we have

(15.14) dc®w + w®dc = ζa g + ζb w®w .

In the above equation each term excepting ζa g contains w, so we see that

ζa = 0.

LEMMA 15.11. Suppose that the distribution defined by εξ is regular,

ζπ is a Killing vector field, and each trajectory of εξ is complete. Then the

set M/Bζ — M of all trajectories of εζ becomes a Riemannian manifold and

each u£ 9(ss induces an infinitesimal conformal transformation u on M-

PROOF. Following [21], first we assume that there exists a point x of M

such that the trajectory l(x) which passes through x is closed. Then we

have the length s=\l(x)\ of l(x), and we take a sufficiently small tubular

neighborhood W=W(l{x)) of l{x).
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On W we can define a vector field ζ such that ζ\u=ζπ or —ζπ for each
U if U Π W is non-empty. Then ζ is a Killing vector field on W and generates
a 1-parameter group φt(t € R) of isometries of W. And as f is also regular, we
can conclude that φs is an identity transformation of W and each trajectory
of ξ and hence Γξ is of constant length s ([21]).

Therefore either all trajectories of εξ are homeomorphic to a circle, or all
trajectories are homeomorphic to the real line R. By [13] or [21], M/εζ is a
differentiatee manifold which has Riemannian metric h such that g = τr*h
+ w®w, 7Γ denoting the natural projection: M—> M/εξ=M.

It may be remarked that if εζ is a globally defined vector field, then M/εζ
is a principal fiber bundle.

Now let u£ ψ. As L(ζ)u= — L(u)ξ = cξ, by the differential iτ of TΓ, TΓU = U
is a vector field on M Denote by φt and ^ έ the (local) 1-parameter groups
of (local) transformations generated by u and uy then they satisfy τrφt = ^JTΓ.

Using the fact that φt is an \m— l]s-conformal transformation, we have

= h(τrφtτr~1X, 7rφtτr~ι Y)

for any tangent vectors X, Y at x^M, where we consider π~ιX as a tangent
vector &t χ£χ such that ze;(7r~1X) = 0 and τr(τr~1X) = X. Of course τr~ιX at x
is uniquely determined and we can prove that the value of hφ^x{irφxφtxir~ιX^,
rπ'φ7φtx

ψrf~'ίYz) does not depend on the choice of xz x and the choice of ττ~ιX
or ir~ιY so far as τr(τr"'1X) = X and TT^TΓ'Ύ) = Y are satisfied, because the
difference is of the form kξ, for some real number k. Then, as

= Λίjr + βtw®zv —

we obtain

Y) =

= ath(X, Y).

Notice here that ctt is constant on each trajectory of %'. Namely by Lemma
15.10, we have ξa = 0 and by the almost similar method in Lemma 15.4, we
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can show that ξat=0. Therefore u is an infinitesimal conformal transformation
on M

THEOREM 15.12. Suppose that the 1-dimensional distribution by εζ is
regular, ξπ is a Killing vector field and each trajectory of εζ is complete.
Then the subgroup Π sc of Πs which consists of the element φ satisfying

on UCλφ~ιV for some constant Ίvu is a Lie group.

PROOF. We devide the proof into two parts.
(1°) The case: εξ is not a parallel field.
Denote by $ s c the Lie subalgebra of 5βs which consists of all u satisfying

L(u)w = cw for some constant c. The map π: u—>u gives a homomorphism
of 5)3% also of 5)3S% into the set of all infinitesimal conformal transformations
on M as Lie algebras. The kernel of ΊΓ is the set of the form εfεξ for some
εf fir is a scalar field on each U. As ζπ is a Killing vector field, εfεζ belongs
to 5)3SC if and only if L(fξ)w = df = rw for some constant r. Taking the
exterior differentiation of dfπ — rwσ, we have rdτvu—^ on each U. However,
εζ is a Killing vector field and not a parallel field, there exists U on which
dzvπ^O. Consequently we get r = 0. Then we have dfπ=0 for each U. So
Iε/1 of εfεζ i s constant. Of course as εfεξ must be a vector field, if M admits
non-trivial εf we can assume that ξ is a globally defined vector field by suitable
choice of ζu,—ζu- And so the kernel is given by {tζ,tzR}. Thus, as the
set of all infinitesimal conformal transformations on M is finite dimensional,
5βsc is also finite dimensional.

(2°) The case: εζ is a parallel field.
In this case, we take the universal covering manifold M of M and define

Ίj,Bζ~y

εw and ΰ for ue 5βsc naturally on M by the local diffeomorphisms. Then
u is also an infinitesimal [m—l]s-conformal transformation on M. So it suffices
to show the finite dimensionality of the set {ΰ} in M. As εζ is parallel and
M is simply connected we may assume that ζ is a globally defined vector field
on M And it is easy to see that ζ is also regular, so we have M/ξ and
a Riemannian metric h on M/ζ M/ζ is also simply connected, and M is a
principal fiber bundle over M/ζ. w defines an infinitesimal connection on M>
and w = 0 is completely integrable. Similarly to the case (1°), we consider
the projection of ΰ by the projection M^M/ζ, and study its kernel. Then
any element of the kernel is of the form fζ for some scalar field f satisfying
dj — rw for some constant r. As a special case we take r = l, then the solution
f0 of w — dj is uniquely determined, if we fix a horizontal global section S
in M and give the initial condition /Ό = l on S, because f is constant on
each horizontal section. So general solution of df = rw is / = rf0 + s for
constant r and s. That is to say the kernel is [r(foζ) + sξ: r,s£ R} and
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at most 2-dimensional, Thus 5βsc is finite dimensional. Therefore in both
cases (1°), (2°), Πsc makes a Lie group.

REMARK 1. If M admits an element u in ψc such that L(u)w = cw
for a constant c\0. Then εζ is necessarily regular (see [18], §4).

PEMARK 2. In (1°) above, if εξ cannot define a globally dinned vector
field by any choice of ξV, — ζπ. Then the dimension of $ s c is not greater
than that of the set of all infinitesimal conformal transformations on M

PEMARK 3. In the above Theorem, if M is complete, then each trajectory
of εζ is complete.

16. The cases where M is compact and the scalar curvature R is
constant. In the first place, we prove general theorems.

THEOREM 16.1. Suppose that M is compact and orientable and u is
an infinitesimal (m—1)-conformal transformation, then we have

(16.1) ί

PROOF. Contracting (13.1) with gίj and noticing that L{u)giό = Utj+uJtt,
we get

2u\i = am + b .

Integration of the last equation over M is (16.1).

In the following, we denote the left hand side of (16.1) by a global inner
product <am + b, 1>.

D E F I N I T I O N . We call M a ζ-space, if

( i ) 82x^=0, (i.e. ζu\ volume-preserving),

(ii) \/ξuζu=0, (i.e. each trajectory of ξV is a geodesic),

(iii) R1(ζu,ξu) = T= constant

for each U. If M satisfies only (i) and (ii), then we say that M has properties
(i) and (ii).

EXAMPLES. (1°) ^-contact manifold is a f-space such that T = m

([17], p. 329).
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(2°) If a manifold M admits a parallel direction field εξ. Then M i s a

f-space with T = 0 .

THEOREM 16.2. Suppose that M is compact and orientable and has

properties (i) and (ii), if L(u)wu = cwσ, then

(16. 2) <c, 1> = 0 .

Further if u is an infinitesimal [m — l]s-conformal transformation then

we have

(16. 3) <a, 1> = 0, <b, 1> = 0 .

PROOF. Expression of L(u)w = cw by local coordinates is as follows:

(16. 4) wUru
r + wru

r

fi = cWί.

Transvecting (16. 4) with wι, we have

(16. 5) c = wru
r

tiw
ι = {wru

rwi)Λ

because w\t = 0 and wrΛτvί = 0. Although w is not a globally defined tensor,

(zvru
rwi) is a globally defined vector field. So if we integrate (16. 5) over M,

we have (16.2). By Theorem 12.1, if u is an \πι—l]s-conformal transformation,

we have 2c = a-\-b. Thus

(16.6) <a+b,l> = 0.

Then (16.1) and (16. 6) yield (16. 3).

COROLLARY 16.3. In a compact orientable M with properties (i) and

(ii), if the scalar field c in L(u)wu=cwσ is constant, then c = 0.

THEOREM 16.4. In a compact orientable M with properties (i) and (ii),

every infinitesimal \m~Vf-homothety is an infinitesimal [m — l]s-isometry.

PROOF. This is an immediate consequence of Theorem 16.2.

LEMMA 16.5. If M is compact and orientable, and if the scalar curvature

R is constant, we have

(16.7) <aR + bT,l> =0
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for any infinitesimal (m — l)s-confo?~mal transformation u.

PROOF. (16. 7) follows from Proposition 14.1.

LEMMA 16.6. In a compact orientable M with properties (i) and (ii),

we have

(16. 8) (m -1) <da, da> - <α, aR + bT> - <a, L(u) R>

+ <da-(ζά) w, db-(ξb) w> = 0

for any infinitesimal irn — Vf-conformal transformation u.

PROOF. AS δ is dual to d, we have

(16. 9) <da, da> - <a, Bda> = 0 .

On the other hand, by virtue of Proposition 14.2, we get

(16.10) (τn-ΐ)Sda = aR + bT + L(u)R - hdb - ζ(ξb).

And we get

<a, Mb> = <da, db> ,

<α, ζ{ζb)> = <aw, d(ξb)>

= - <ζa, ζb> ,

since h(aw) = άbw—ζa and δw = 0. Moreover

(16.11) <da- (ξa) w, db-(ζb) w> = <da, db> - <ζa, ζb> .

Substitution ΰda of (16.10) into (16. 9) using above relations yields (16. 8).

LEMMA 16.7. In a compact orientable M, if wu is a closed form, then

we have

(16.12) <da - (ξa) w, db- (ξb) w> = - <da, da> + <ζa, ζa>

for any infinitesimal \m~Vf-conformal transformation.

PROOF. (16.12) is valid always with respect to the (local) inner product

which we denote by ( , ). So we prove here (16.12) for the inner product.
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As L(u)w = cw for some scalar field c, we have dL(u)w = dc/\w + cdw by
exterior differentiation, where Λ denotes the exterior product. Since d and
L(u) are commutative and Jze; = 0, dc/\w = 0 follows. Thus dc is proportional
to w and dc = ζc w. By Theorem 12.1, we have daΛ-db = ζ(a+b) w. And
so we consider the inner product with da, and get

(da,da+db) = (ζa,ξa+ξb),

from which we have

(16.13) (da, db) - (ζa, ζb) = - (da, da) + (ζa, ζa) .

Here we notice that (16.11) holds also with respect to the inner product. Then,
from (16.11) and (16.13), relation (16.12) for the inner product follows.

LEMMA 16.8. As for T we have-,
If Wu is a harmonic form,

(16.14) T = - 2( Vw, V w) ^ 0.

If ζu is a Killing vector field,

(16.15) T = 2(Vw, Vw) ^ 0.

Proof is easy, since ξV is a unit vector field.
As a general statement, we have

PROPOSITION 16.9. In a compact orientable M, we assume that wu is
a harmonic form for each U. Then an infinitesimal [m—l]s-conformal
transformation u is an infinitesimal [m—l]s-isometry if and only if it satisfies

(16.16) <a, aR + bT + L(u)R> g 0 .

PROOF. If w is a harmonic form, we have dw = 0 and ΰw=0. The
length of w being equal to 1, Vζζ = 0 follows from dw=0. Then, by Lemma
16.6 and 16.7, we have

(16.17) (m-2)<da,da> - <a,aR+bT+L(u)R> + <ζa,ζa> = 0.

If (16.16) holds, (16.17) means that each term is zero. So da = 0 follows, that
is a is constant. Moreover, by (16. 3^ in Theorem 16.2, a is equal to zero.

q.e.d.
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If ζ is a parallel field, M is a £-space with T=0. Therefore we get

THEOREM 16.10. In a compact orientable M, if εζ is a parallel field

and R = constant :g 0. Then any infinitesimal [m — lf-conformal transforma-

tion is an infinitesimal [m—l]s-isometry.

REMARK 1. In the above Theorem, essencially we need the condition that

a compact orientable M is a ζ-space satisfying T=0, dvυ — 0 and R — constant

^ 0 . However, if £-space satisfies dw = 0, zvu is a harmonic form. So T is

non-positive by Lemma 16.8. Thus if T=0, wπ is necessarily a parallel field.

Next we consider the case where an infinitesimal [m— l]s-conformal trans-

formation u satisfies c = 0. Of course, the only possible case of c — constant is

the case c = 0 in the manifold with properties (i) and (ii) by Theorem 16.2.

Now as 2c = a + b, we have da= — db. On the other hand

(16.18) <da- (ζa) w, da - (ξa)w> g <da, da> .

If we utilize (16. 8) and (16.18), we get

(16.19) (m-2)<da,da> - <a9aR-aT+L(μ)R> gO.

So, if the second term is non-negative, we have da = 0 and a = 0. Consequently

we have also b = 0 and u is a Killing vector field. Thus we have

PROPOSITION 16.11. In a compact orientable M with properties (i) and

(ii), an infinitesimal [m—l]s-conformal transformation u such that L(u)w = 0

is an infinitesimal isometry if and only if it satisfies

(16.20) <a, aR- aT + L(u)R> ^ 0 .

THEOREM 16.12. In a compact orientable M, if ζu is a Killing vector

field and R = constant ϋ̂ 0. Then any infinitesimal [m—l]s-conformal trans-

formation u satisfying L(u)w = cw for some constant c is a Killing vector

filed.

PROOF. AS ζ is a unit and Killing vector field, M has properties (i) and

(ii). c = 0 follows from Corollary 16.3. By (16.15) in Lemma 16.8, T is non-

negative. And R is a non-positive constant, (16.20) holds good. Then by

Proposition 16.11, u is a Killing vector field.
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