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Introduction. The following Liebmann-Suss theorem^ :
A convex hypersurface M with constant mean curvature in Euclidean

space E is a sphere of dim M,
has been generalized by Y. Katsurada2) (1964) [2] to the case in which E is
replaced with an Einstein space admitting a suitable conformal vector field.
Her tools of the verification of the theorem are some integral equalities and
the first one of the Newton inequalities on symmetric square matrices.

On the other hand, S. S. Chern (1959), [1] has proved uniqueness theorems
for closed hypersurfaces in Euclidean spaces, making use of some integral
formulas which are obtained by a remarkable method by virtue of moving
frames due to E. Cartan.

The object of this note is to prove theorems more generalized than
Katsurada's theorem, making use of Chern's methods.

1. Preliminaries. Let M and M be oriented differentiable Riemannian
manifolds of dimensions n and n-\-l respectively, and let x:M—>M be an
isometric immersion. Let F(M) and F(M) be the bundles of orthonormal
frames of M and M such that their orientations are coherent with those of
M and M. Let g(j>), p£ M, be the unit normal vector at x{p) such that for
any orthonormal frame b = {p, eu , en] € F(M), b = {x(p), dx(eλ), , dx(en),
£(/>)} € F(M). We denote this mapping of F(M) into F(M) by x. Let ωλ be
the basic forms for the frame bundle F(M)Ό and ωλμ= — ωμλ be the connection
forms for the Levi-Civita's connection of M, then we have

(1.1) dωλ = Σ ωβ/\ωμ,χ , dωλβ = Σ ΰ>λP/\ωpιι + Oλμ ,

1) This theorem dues to H. Liebmann (1901) [3] in case dim£ = 3 and W. Suss (1929) [4] in
case dim£>3.

2) K. Yano [5] has recently generalized Katsurada's theorem to the case in which E is replaced
with suitable Riemannian manifolds.

3) In this note, Greek indices run from 1 to n + 1 and Latin indices from 1 to n.
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(1. 2) Qλμ = - £ - Σ - R V P ®iΆ®p> Kλμi p = ~ Rλμpv

Putting ωλ = 2c*ωλ, ωλμ = 2c*ωλμ, as is well known, ωh and ω^ are the basic
forms and the connection forms on F(M) for the Levi-Civita's connection of
M, and so we have

(1. 3) dωt = Y^ωj/\ ω5i, dωi5 =

(1. 4) Ωi5 = Ύ^lRmkωhf\ωk , i?UΛfc = -Rijkh

Furthermore we have

ωn+1 = 0 , Σ ωt Λ ω« n+i = 0

and

β « = %*ΩtJ — ωi n+lΛδ)j n + 1 .

Hence, putting

we have

(1. 5) i ? w

where hi5 are the components of the second fundamental tensor of the immer-
sion of M into M.

2. Integral formulas. In this section, assume that a vector field ζ is
given on M. According to Chern [1], we introduce the differential (n— l)-form
on M

(2.1) A = ff,g,<fe,-:-

where J x = ^ ω ^ , δ = [p, el9 , en} € F(M), and the expression is a deter-
minant of order n + l in the following sense, whose columns are the components
of the respective vectors or vector valued differential forms with respect to
frames b or xφ), with the convention that in the expansion of the determinant
the multiplication of differential forms is in the sense of exterior multiplication
and (el9 , en, en+1) = 1, e% identifying dx(e%) and en+1 = ξ(j>).
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Since ζ = ζλeλ, Dξ = (dζλ+ωμ

λζιι)eλ = ζλ,μ &»eλ, putting ωμ

λ = ωμλ etc., on M
and D(dx) = {dωi + ωj

i f\ω5)e.ι = 0 on M, we have

dA = (Dζ, ξ,dx,-- , dx) + (?, Dξ, dx, , dx)

= (~ ϊ)*-1^', ι^eh dx,--, dx, en+1)

+ ( - l ) n <ζ,en+1> (ωn+iei9dx9 , dxyen+1),

that is

(2.2)

where

(2. 3) P^H) = \ Σ. ha , H = ((Λy)) ,

(2.4) j y = ωι/\ω2/\ ••• Λ®n •

Now, for any two vector fields η, p of M along Λ: :M—>M, we define
a vector field of M by

(2. 5) Dη(p) = Σ <7λ, f p λ ^ , Dη = ^ λ, tω
f βλ ,

especially

Let ξ be the orthogonal projection of ξ onto T(M), that is

(2.6) £ = ? - <?,*>*,

then the above equation can be written as4)

(2.7) Dξ(ζ) = ωn+I

i(ζ)ei.

Then, we introduce the second differential (n— l)-form on M

(2.8) _

w - 1

4) ζ is here identified with its horizontal lift on F(M) with respect to the Levi-Civita's con-
nection of M.
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from which we have

= (ΣKDξβ)),ξ,dx,. ,dx).

By (2.7), we have

D(Dξ(ζ)) = LKω^med

= {d(ωn+[(£)) + »»+*(£)»}}*, + »«+

Making use of the same notations for the basic horizontal tangent vector field
corresponding to e4 and ξ on F(M) and using (1.1), we get

{d(ωnA{ζ)) + «.

+ί - «n+ί Λ »J)(β,, f) + ».M»

Λ

On the other hand, we have

Dξ> = dξ* + f'ai + ξn+1ωn+{ = dξ} + f I», ί+f"+ 1» l.+ί,

(2.9) ς>,t = ξ\t - <ξ,ξ> V

Let Rxμ. = R£pμ, be the components of the Ricci tensor of M. Then we have
finally

.+ί0>ί}(ei) = R ^ ^ t " - f(tr (H))-h,T,ι- <ξ,

Now we define Pr(H) by means of the equation

(2.10) det (7+fίy) = Σ ( " )

We have easily

A/V - tr ί/2 = nXPά

Using the above equations, we get
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(2.11) dB = ( - I f 1 n\ [- <ζ,ξ> WP/ϋ))' - (»-l) P,(H)}

1 c— 1 —

n j n n

From (2. 2) and (2.11), we get a formula

(2.12) dB+P^H) dA = ( - 1 ) - 1 * ! [(n-

3. Liebmann Suss Theorem in general cases. According to Katsurada

[2], assume furthermore that M is compact and ζ is conformal. Then

(3.1) ξx,β + fμ.x

in M and along x' M^-M

tr (F.f) = nφ , A/ r.i = " | - Aυ(f ί. + fu) = ? tr (H) =

Hence (2.12) becomes

(3.2) dB+PriH)dA = (-ly-'nl t(»-l)<f,f>

THEOREM 3.1. Lei iV? 6e an orientable (n + 1)-dimensional Riemannian

manifold admitting a conformal vector field ξ. M be a compact orientable

n-dimensional Riemannian manifold and x : M—>M be an isometric immersion.

Let ζ be the vector field of M which is the naturally defined orthogonal

projection of ξ onto T(M). If the mean curvature of M in M is constant,

ξ is not tangent to x(M) everywhere, and ζ and the normal vector field ξ

of M is conjugate with r~espect of the Ricci tensor of M, then M is umbilical

at every point.

PROOF. By the assumption we have

PX(H) = const., ζ{PAH)) = 0 ,

(3.3) ϊ?Λ,|λr = 0.



340 T. OTSUKI

From (3.2), we get

0= \
JM

By the Newton inequality, we have

(3.4) PIH) ̂  (Λ(

By the assumption. <ξ, ξ> =j= 0 at every point, we must have

P2(H) = (ΛCH))2,

which implies that H=Pι(H)I. Hence, M is umbilical at every point.

REMARK. In this theorem, if M is an Einstein space, the condition (3.3)

is satisfied automatically. In this case, Theorem 3.1 becomes Katsurada's one.

4. Tensors derived from the second fundamental tensor H. For the

second fundamental tensor H of the immersion x\ M—> M, we introduce some

tensors of type (1,1) and (2,2) as follows.

Let hi = hi5 be the components of H with respect to an orthonormal frame

b = (p,eιr-*,en)zF{M). Let

(4.1) P{yyH) =
r=0

where y is a parameter.

Now, we denote the cofactors of hf and the minor Mh) — h\hj (i<j,k<l)

of H by H$ and Hl$ respectively and use the analogous notations for the

identity matrix / = (δf). Let

(4.2)

and

(4.3)

Pl*(y,H) == det (J

det (/g

Γ(«) _4_
• ( i ) ^

$ +

= "£ (n~1) P

LEMMA 4.1. (— l)i+k Pi{r)(H) are components of the tensor H{r) defined by
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= (

r = 0,l,2,. . . , n - 1 .

PROOF. With respect to a suitable frame b$ F(M), H is written as

k, 0 1

H =

0 K )

Then, we get easily Pt*(y,H) = 0 and so Ptfn(H) for i
we have

det

. For £ = k = 1,

hence

The right hand side is equal to the corresponding component of (n )//.

LEMMA 4.2. (~-l)i+j+k+ιP%{r)(H) are components of the tensor
defined by

(4.5)

^

+ (-iy(r

fLs)Pr-s(H)(H°Λl+H°-1AH+

= 0,l,2, . ,»-2
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PROOF. Analogously to the proof of Lemma 4.1, we have Pϊj(y,H) = 0
and so P$ir)(H) = 0 for (ί, ./) + (*,/). For i = k = l, j = l = 2, we have

de« <m+BB,) = α+

r=0

hence

+ V"1*! + + ̂ ^2

s- i+^2

s)+ + {-iγiks+kΓ'h

+ -" + k.k/-1 + k/).

The right hand side is equal to the corresponding component of the tensor

REMARK. From (4. 4) and (4. 5) we have especially

and

Λ
a)

5. Main theorem. As in §3, we shall assume that M is compact and ξ
is conformal. Putting

by (3.1) we have along x: M-> M
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that is

(5.2) Dξ = ή>dx + Σ'SλjωUλ.

Now, we introduce the differential forms on M

(5. 3) Ars = ps(ξ9 ξ, Dξ,-y9Dξ, dx, j , Ac)

r

(5.4) Z) r s = P

s(ξ

where p is an arbitrary function on M. For simplicity, put

We have

Λlr. = p Cf,/*, ,Dξ,dx, ,dx) -ps(ξ,Dξ, - .,Dξ,Dξ,dx9 -. ,dx)

+ (n-r-l)P

s(ξ, ξ, D% Dξ, . . , £)f, Ac, , dx) +

We have

(?, Df, , Df, ^ , , ̂ ) = z(ξ, Dξ, -, Df, Ac, , JΛ:) ,

f D f , - , D f , D f , A c , y , A c ) = $ ( f , Z>f, , Z>f, d x , - - - y

r r + 1

+ (I, Df, , Z>£, Σ ^ ω ^ λ , dx,.. ,dx)
r

and

because Dξ = — ̂ 2,hl5ω
5eh hi5 = hόί, Si5 = — *Si£. Hence we have

dArs = zDrt-$Dr+U9 + (n-r-l)ps(ξ,ξ, D% Dξ,. •, Df, ^ , , dx)

+ sdlogp/\Ars.
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Now, we prepare some equalities for the above equation. Firstly

",Dξ,dx, ,d

= (-1)" Σ ε^-. uW'+ω^y) Λ Λ (ω' ' + ω^
<i, .i.

= (-l^ΛlCβ + β^+x )̂ Λ Λ (ωn+ωl+1y)

= (-l)"n! det {I-Hy)ω1/\

hence

(5.5)

Now, put

Since Dξ = ©i+i^i, ^) 2 ί = (^®n+i + <»} Λ ®n+i)^, we get

= ( - I ) " " 1 Σ fii. . t.e ΩS+i Λ (ω'' + ω' +1y) Λ ' ' ' Λ
ii. Λ

( w " 2 )
o 7

Using Lemma 4.2, we get

Σ

- (-1)—(»-2)! ΣC-iy^-'Cr'ΩLα-^Ωt^Λ^ + ω^^) Λ

• . Λ C^+^-fi^) Λ * * * Λ (i^+«S+iy) Λ Λ (con + <ol+ιy) 5 )

5) The notation " y \ " means the omission of the symbols under it.
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(5.6) Fr = (-lΓ 1(/z-2)! ΣQ?R*+i3* - ξjϊ

Lastly, we have

', Dξ, , Dξ, dx, , dx, i

= (-I)""1 (?, Λc+Dfy, , dx+Dty, ξ)

= (-I)"" 1 Σ «*.- f (« +ωi

B'+13') Λ Λ C

^ ) Λ

Λ ••• Λ ( )

X ω1 Λ ' * * Λ *>Λ Λ * Λ ω"»

hence

(5.7) Ar0 = (-l)'(«-l)! ΣC-iy-Wu-i-nCHXΛ Λ«fcΛ Λ "

Putting

d\ogp = —Σ
r i

and using Lemma 4.1, we get

(5. 8) d l o g p Λ A r 0 = ( - i r ( n - l ) ! Σ ξ f H ?

Using the above equations, we get finally

(5.9) dArs = ( - l)rn\[zpsPn-r(H) + φpΨ^.

A
(n-2-r)

km ]dv.
(n-l-r)J
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Now, we assume that Pn-2-.r(H) 4 s 0 at every point of M. Putting

p ~ Pn-t-r(H) '

we have from (5. 9) the formula

(5.10) d(.Ar0+Ar+1>ι) = (-iγn\ \z\pn.r(H) - ( p-'-ffif \

k l

X j (n-r-1) (H Λ H% - (n-r-2) p"~'"rfS (H Λ H)g f

U \ Γn^2_r{Jrl) J,k (n-a-r)

THEOREM 5.1. L ^ M be an orientable (n-\-ϊ)-dimensional Riemannian
manifold admitting a conformal vector field ζ, M be a compact orientable
n-dimensional Riemannian manifold and x : M—>M be an isometric immersion.
Let ζ be the vector field of M which is the naturally defined orthogonal
projection of ζ onto T(M). Let ξ and H be a normal unit vector field and
the second fundamental tensor with respect to ξ of the immersion. If <£, ξ >
has the same sign except a subset with measure 0 of M, Pn.r-2(H)=j=0 at

every point, ζn'ι~r(^ is constant, and tr t(ζ AR(ξ))((n-r-l) P n - r - 2 (H) H
r \ t l )

Λ H-(n-r-2) Pn-r-i(H)H /\ H) = 0, then M is umbilical at every point
(w-r-2) (rc-r-3)

of M.
Where ζf\R(ξ) denotes the transformation on T(M)/\T(M) itself such

that ζ A R(ξ)(XAY) = ξ A R(ξ, XY) .

PROOF. By (5.10) and the assumption, we have

ί p Z

Since ——z has a fixed sign except a set with measure 0 and by the
Γn-r-2(H)

Newton inequalities
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Pn-r(H)Pn-r-t(H) ^ (Pn-r^

it must be

which impJies H— PX{H)I. Hence M is umbilical at each point of M.

R E M A R K . Since

for r = n— 2, (5.10) becomes to

(5.11)

This formula implies also Theorem 3.1.
On the other hand, by (3.2), (5.8) and A=An-ltθ9 we get

= (-1)"-1*! [(n-l)z{P2(H) - (JP

Hence Theorem 5.1 is a natural generalization of Theorem 3.1.
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