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1. Introduction. I.M. James [6] discussed the homotopy theory of maps
into an H-space and defined a product <a,B8> € m,,(X) for acm,(X) and
Be my(X) which induces a bilinear pairing of 7, (X) with 7(X) to =, (X).
We generalize these results to the generalized homotopy groups of an H-space.
First, by means of the mapping cone, we generalize the notion of sepration
elements in [6].

In his paper ‘The generalized Whitehead product’, M. Arkowitz gave a
generalization of Whitehead product and then introduced a homotopy equivalence
between the product space of suspension spaces and some mapping cone. As
a main tool of our generalization of James product, we shall use this homotopy
equivalence.

In §5 we give an alternative definition of the Hopf construction and we
give its characterization. Theorem 5.5 is a generalization of Lemma 8.2 in
[5] and our definition of the Hopf construction is a generalization of Definition
8.3 in [4].

The author is grateful to H.Miyazaki for his valuable advice.

2. Preliminaries. Throughout this paper all spaces have base points
denoted by * and respected by maps and homotopies. Here we list some defini-
tions and notations which we shall use throughout.

Following Eckmann and Hilton [2], we shall say that X—]:Y—ILY/ f(X) is
a cofibration if, for any space Z and maps ¢: X —Z, G:Y — Z with g=G of,
each homotopy of ¢ can be obtained by composing f with some homotopy
of G.

The (reduced) suspension 3X of X is the space obtained from X xI by
identifying XxIUx%xI to a point. We denote the point of SX by <z,t>.

The (reduced) cone CX of X is the space obtained from X x I by identify-
ing Xx0U%xI to a point. We denote the point of CX by (z,¢).

Given a map f: X — Y, the mapping cone C, of f is the space obtained
from CXUY by identifying (x,1) with f(x).

We denote by XVY the subspace X x#U%xY of XxY. The collapsed
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product X#Y of X and Y is the space from X xY by identifying XVY to
a point. An H-space is a pair consisting of a space X and a map p: X xX
—X such that u|X x*=identity=p|%*xX. The map u is called multiplication.

For the notational convenience we abbreviate u(x,y) to x-y. Following
I.M. James, we refer to countable CW-complexes with one vertex as special
complexes. Any connected countable CW-complex can be deformed into a
special complex without altering its homotopy type. Let X.. denote the
reduced product space of X, as defined in [4]. Then it is well known ([4]) that,
if X is a special complex, then X., is a special complex which contains X as
a subcomplex, and that X, is an associative Fl-space with * as the unit and
multiplication by juxtaposition. Let X and Y be special complexes and let
f:X—Y be a map. Then the induced map f..: X — Y, as defined in §1 in [4],

is multiplicative.

3. Separation elements. Let f: A — X be a map. Then we have a cofib-
ration X > C; —>3A. Let Y be any space and let #,v:C; —Y be maps such
that #|X=v|X. Then a map w:3SA —Y is defined by

l u(a, 2t) 9<t1/2

w<a, t> =
| v(a,2—20) 1/2<t<1.

We denote the homotopy class [w] of w by d(«, w) and we say it a separation
element of «# and v. d(u, v) generalizes one defined in [6]. The following relations
are easily verified and we shall omit the proofs except (3.3).

THEOREM 31. Let u,v:C,—Y be maps such that u|X=v|X. Then
u=~v rel X if and only if d(u,v)=0.

COROLLARY. If u:C;,—Y is a map, then du,u) = 0.

THEOREM 32. Let u,v,w:C;—Y be maps such that u| X=v|X=w|X.
Then d(u, w) = du,v) + d(v, w).

COROLLARY. Let u,v be maps such that u|X=v|X. Then
du,v) + dv,u) =0.

THEOREM 3.3. Let 8¢ m(3A,Y) and u:C,—>Y be a map. Then there
exists a map v:C, —Y such that v|X=u|X and d(u,v) = 8.

PROOF. Let 8 be represented by a map d:%A—Y. Then we define a
map v:C; —Y as follows:
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v(x) = u(x) xe X,
(d<al-2t> 0<t<1/2

v(a,t) =
| w(a, 2¢ — 1) 1/2<e<1.

Now d(u,v) is represented by a map c:3A —Y given by

u(a, 2t) 0<<eL1/2
¢ <a,t> =1 u(a, 3—4t) 1/2 <
d<a dt—3> 3/4<t

Thus we have d(u, v)=3.

THEOREM 3.4. Let u,,v,:C;, —Y be homotopies such that u,|X=v,|X.
Then d(uy, vo) = d(uy, vy) .

THEOREM 35. Let w,v: C;,—Y be maps such that u|X=v|X and
h:Y—Z any map. Then  d(hu,hv) = hxd(u,v).

4. Generalized James product. Throughout §4,85 of this paper, we
shall work in the category of connected countable CW-complexes.

Following Arkowitz [1], the following results are known; Let k: S(A#A,)
—3A,VIA, be a GW.P.-map determined by injections 7,:3A, >3A,VIA,
and 7,: SA, >3A, VA, Then there exists a homotopy equivalence F:
C3(A, #A,), S(A, #A,) > SA, xSA,, A, VZA, such that F|3(A,#A,) = k.
Also a map G: C;, SA,VIA,—>3A, x3A,, SA VIA, with G|ZA,V3IA,
=identity is defined by F and it is a homotopy equivalence.

Then we have a commutative diagram :

G
C‘]E, EAl \/ zAz I EAI X EAZ, ZAI \/ EAQ
(4.1) lf’ 1q

SHA#A) - SA#3A,

where p and ¢ denote the projection and @ is a map defined by G. @ is a
homotopy equivalence and we denote its homotopy inverse by Y. From (4.1)
we have a commutative diagram :
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sA VsS4, -~ & Leosaa)
(4.2) l id 1 G 1 P
J q

ZAl \/EA2 - ZAl XEAQ I— ZAI#EAQ .

Let X be any space and let u,v: SA, x3A,— X be maps such that
u|SA,VIA, = v|SA,VZA,. Consider the composite maps uG, vG: C; — X,
then evidently «G|SA,V3IA, = vG|SA, VIA,. Hence from §3 d(uG,vG)
e m(Z¥(A,# A,), X) may be defined. We now define d(u, v)e m(SA, #34,, X)
to be ¥*d(uG, vG).

Especially let X be an H-space with multiplication w in the rest of this
section. Let acm(ZA,X), Bem(ZA,, X) be represented by f:3A — X,
g: ZA, — X respectively. We define maps 4, k: 3A, x3A, - X by

h=po(fxg', k=p(gxf)eT,

where T is the transposition in 3A, x3A,. Then it is clear that 2|SA,VZA,
= k|3A, VIA,. Hence by the above arguments a separation element d(h, k)
e m(ZA,#3A4,, X) may be defined and it depends only on the homotopy classes
of f and g. Thus we may write

(4.3) <a,B> = dh, k).

In case A, and A, are spheres, <a,B> reduces to one defined in [6].
If, in the diagram (4.2), we interchange factors XA, with 3A4,, then we

have a similar diagram :

sAVEA —— o 2L osqaa)
(4. 4) lid ) lG' | .ldi

SA,VSA, 1 sA,x354, L. sA,#35A,

where G’, ¢’ are homotopy equivalences corresponding to G, ¢ respectively.
We denote by 4 the homotopy inverse ¢’. We employ the same notation
T for the maps induced by transposition 7', for example, T: SA, # 3A,
— A, #3A, etc. Then we have

THEOREM 4.4. <B,a> = —T*<a,B> .

PROOF. We set A" = uo(gxf) and & = po(fxg)oT, where T is the
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transposition in 3A,x3A,. Then we have 2 = hoT and A = koT. By
definition

T* <a, 8> = T*y*d(hG, kG)
= P T*d(hG, kG)
= ¥*d(hGT, kGT)
= ¥ *d(W TG, kTG
= ARG, WG,

However, by Corollary to Theorem 3.2, we have d(¥G',h'G)= —dh'G,k'G).

Thus the theorem is proved.

Let Y be a space and let X be an H-space. The product of two maps
u,v: Y — X is the map u-v:Y — X which is defined by

(4.5) w-v)(y) =u(y)-v(y) yeY.

LEMMA 46. Let h k,h', k' : ZA x3A,— X be maps such that h, k have
the same section and h', k' have the same section. Then

dh-k,k-E)=dh k) + dk, F).

PROOF. Evidently A-h" and k-& have the same section and hence
(h+h)oG and (k+k)oG do so. It is sufficient to prove that d((h-h)-G,
(k- k) oG) = d(hG, kG) + d(h'G, k' G).

We easily see that (h+h)oG = hG-h'G and (k-%k)oG=kG-k'G. Now, by
definition, d(hG, kG) and d(h'G, k'G) are represented by maps w,w : Z*(A,
#A,) — X which are given as follows;

hG (z, 2t) 0t <1/2

w<x,t> =
kG (x,2—2t) 1/2<t<1
Jk'G(x, 2t) 0<e<1/2

w <z, t> =

| #G(z,2—20)  1/2<e<1 .

By [7; p.6, Theorem 15] we may regard that d(hG,kG) + d(h'G,kE'G) is
represented by a map w-w’: 3*(A,#A,) —> X. However,
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hG(z, 20)- k' Gz, 2t) 0< <12
(ww) <z, t> =
EG(x, 2—28)- K G(z, 2—2t) 1/2<t<1
{ (hG -1 G)(x, 2¢) 0<t<1/2
| (G- K G)(x, 2—26) 1/2<t<1.

This shows that d((h-h")o G, (k-k)oG) = d(hG, hG) + d(h'G, k' G).

Let f: A, —> X, g: A, — X be the sections of a map h:3A, x3A, —> X.
We now define h':3A, x4, > X by h'(x,y) =f(x)-g(y)(xc2A,,ycZA,).
Then A and A" have the same section. We write

4.7) S(h) = d(i', h).

If £:3A, x3A,— X is another map with the same section as A, then %/,
defined as in A, is equal to A". It follows from (3.2) that

8(k) = 8(h) + d(h, k).

THEOREM 4.8. Let h,h': SA, x3A, — X be given maps. Let f:5A,—X,
g:3A, — X be the sections of h and f:3A, — X, g : ZA; —> X the sections
of . Setting a=[f1, a'=[f1, B=Ig] and B =Ig), then

3(h-1) = &) + &by + <a', B> .

REMARK. Products f{z):f(x)-¢(y)- g(y) and flx)- g(y)-f(x)- g(y) do not
depend on the order in which products are taken. We prove only the former.

We define a homotopy f;: A, — X by

2t
fi<a,t> = If<a’é_f}> 0<t<1/2
| 1/2<t<1,
and we replace f: 3A, - X by
f1<a,t> =
* 1/2<e<1.

By an analogous homotopy we replace ' : 2A, — X by

* 0<t<1/2

fi<a, t> = {
f<a,2t—1> 1/2<t<1.
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By the same way we replace g¢,¢" by ¢, ¢i. Then fi(x)-fi(x):g:(»):9i(»)
does not depened on the order in which the product is taken.

PrROOF OF THEOREM 4.8. The proof follows as in [6]. We define
hy=fop: ZA xZA,—X and h=gop, where p;: ZA, xZA,—3ZA; is the
projection 7 =1,2. Using f* and ¢’, we define A; and A, in the same way.
Setting k=h,-h, and k'=h;-h;, we have 8h) = d(k,h) and 3h") = d(k',h").
By Lemma 4.6 d(k-k,h-h’) = d(k, h)+d(k',h") = 8h)+8(h’). Since H=(h,+h;)
«(hy+h;) have the same section as h-h',8(h-h") = d(H,h-h'). By Theorem
32 dH,h-h)=dH,k-k)+ dlk-k,h-h’). On the other hand

<a,7 /8> = d(hi'hm h2 'h;)
= d(h,*h,) + d(hi+ hy, hy+ hy) + d(h;, h;) by Cor. to 3.1
= d(h,(hi*h,), hy+ (hy ) + d(hs, hy) by 4.6
= d(hy+(hi* ho) - hiy by + (hy - hi) - B) by 4.6

=dH, k-k) by Remark.
Thus the proof of Theorem 2.7 is complete.

THEOREM 49. (a,B)— <a,B8> is a bilinear pairing of w(SA,, X)
X m(2A,, X) into m(SA, #2A,, X).

PROOF. The proof is analogous to that of [6; Theorem 3.7]. For a,a’
em(ZA,, X) and B m(ZA:, X), we only prove

<a+a,B> = <a,B> + <a’,B8>.

Let f:3A4,— X, f': 3A, — X be the representatives of & and &’ respectively
and let g: 34, — X be that of 8. We may replace f, /' by fi,f1 given by

f<a,2t> 0<<e1/2
f’<a’t>:{ « 1/2<t<1
fremen o]t =
f<a,2t—1> 1/2<e<1.

We now define i, A" : SA, x2A, — X by

Wz, y) = g()-filx), H(x,y) =fi@).
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Then (h-h")(x,y) = (g()-fi(x)-filx) = g(y)-filx)-(fi(x)). Since a+a’ is
represented by a map f-f": A, —» X, we have

<a+a,B8> =8h-h").

Hence by Theorem 4.8 <a-+a’,8> = 8(h)+ 8h') + <a',B>. However &)
= <a,B> and 8(h)=0. This completes the proof.

5. The Hopf construction. Following Arkowitz [1], we define a map
H: C3(A,#A)), 3(A #A,) —>C;,2A, VA, to be the composition of the
injection CS(A,# A,)CCI(A, # A,)UZA, VA, and the projection CZ(A, # A,)
USA, VSA, >Cr. Then H|3(A,#A,)=% and H induces homology
isomorphisms. Also we have F = GoH.

Let f:3A — X, g:34,—>X represent a < w(3A4,,X), B ¢ m(2A4,,X)
respectively. Let X.. be the reduced product space of X. We now define
a map h:3A, x3A, — X, by h(z,y) = f(x)- g(y), where the dot - denotes
multiplication in the reduced space X.. Then A=hA|3A,VZA,:ZA,VIA,—X.
Consider a pair of maps (Zoz, hoF);

s, #4) 25 x
¢ l )

hoF
Ci(A #A;) —— X..,
where ¢ and 7 denote the inclusions.

Since the homotopy class [(ﬁoz, hoF)]e m(C3(A,# A,), (A, #A,); X, X)

depends only on @ and 8, we may write

(5.1) (a,B} = [(hok, hoF)].

If 9:7w(C3(A,#A,), 3(A,#A,); X.,X) > m(3(A,#A,), X) is the boundary
homomorphism (cf.[7]), then we have

ola, B} = [hok] = [a,8],
where [«, 8] is the generalized Whitehead product [1] of a and 5.
Let J: m(S%(A,#A,), X..) > m(CE(A#£Ay), 2(A1#£A,) ; X.., X) be a homo-
morphism defined in [7; §4].

THEOREM 52. Let acm(ZA,,X), Bew(ZA, X). Then
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{a,B} — T*{B,a} = Jp*<ixa,iyB>,

where iy denotes the homomorphism induced by the inclusion i: X — X...

PROOF. By definition of H we have the next commutative diagram ;

H G
CE(AI#A2)9 3(A, HA) — Ci,2AVZA, — 3A,x3A,, SA VA,
? q
id l 4 é
3HA #A) - 22(A1#A2) A #ZA, .

—_—

Hence we may regard that ¢* <iy.a,i B> is equal to d(hF, kF) where k
SA XZA,—

~ is defined by k(x,y) = g(y):-f{x). Then J¢*<iya,iyB>
e m(CS(A, #A,), S(A, # A,); X.., X) is represented by

S(A#4) —— X

‘ |

CS(A,#4,) —— X..,

where w’ is induced by w: S*(A,#A,) — X,

hF(z, 2t)

kF(x, 2—2t)

0<t<1/2

w<x,t> =
1/2<<t <1

Let Z' . Z(Ag #Al) - zAg\/zA], F' : CZ(A2#~A1)> E(AZ#AI) - EA2 X EAD zAz
VA, be defined as in §4 corresponding to %, F respectively. Define /: 3 A,

x3A, — X. by Iy, x) = g(y)-flx)(xc SA,,ye 2A,) and set [ =1|5A,VZA,.
Then T*{B, a} is represented by

T Tok
Z(AI#A2) - E<A2#A1) — X

.

li
[oF”
C3(A, #A2) — CZ(AZ#AI) — X. .

However we see that [oF oT=IlocToF=FkoF and lok oT'=Fok. Hence T*{B,a)}
is also represented by
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S(A,#A,) Eg—) X
lb o li

CS(A,#A,) — X.. .

On the other hand {a, B} is represented by

hok
(A #A) — X

| |
csazay 2 x

Obviously %ok = hok. Hence applying [3; §1.5 Lemma 4] we may conclude
the theorem.

Let 7;: 3A; > 3A, x3A, be the injection and let p;:3A,xZA;,—3A;
be the projection j =1,2. Define h:3A,x3A,— (A, x3A4,).. by h(z,vy)
= i,(x)-i,(y). Then {i,4,} is represented by

hok
E(AI#A2) — A, xZ2A,

e

F
C(A#A4A,) —— (ZA, xZA,). .

Consider the following exact sequence [7]:

J
W(Ez(Al#A2)> (EAI X EAz)w)‘_"’T(CE(Al#A2>, E(AI#AZ); (EAI X 2A2)°°’2A1 X EAZ)
2
—> W(E(Al #AQ) 5 E.Al X EAz) .
By [1, Proposition 5.1] we have [;,7,] = 0. Hence there exists y e w(3(A4,#A,),
(ZA, x2A,). such that J(y) = {i,7,} . Define p;: 3A, xZA, — 34, xZA, by
p;=1i;°op; j=1,2, then
(5.3) piopi=p;  i=1,2, pop;=+ for ixj.
Let (pj): (24, X2A,).. — (S3A, xZA,).. be the multiplicative map determined

by p;. Then (p;).. induces the endomorphism p;y of m(C3(A,# A,), (A, #A,);
(ZA, x3A,)., ZA, xZA,). Now ;onsider pixf{tits}. pix{iy, 5} is represented by
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hok
SA#A) ——> SAXSA, —s SA x3A,

l ¢ I 7
hOF 100
CS(A#A) 2 (SAXZA). —7s (SA,x3A)...

However we easily see that hA=j:3A,V3A,—>3A, xSA, and sz F.. Also
it is easy to check that Zp, = p;.h. Therefore the above diagram is reduced
to the diagram

F
S(A,#A4,) —> CS(A,#A4,) — A xSA,

l 3 l ipy=p1h
F Pih
CZ(AI #Ag) I ZAI X EAZ - (EAl X EAZ)M .

Here we shall remark that the following lemma is easily proved.

LEMMA 5.4. Consider the commutative diagram :

A Yo tix
lb P g 13

cA - x Sv.
Then [(fi,BF)] =0 in m(A,BRB).

Therefore we have p,«{7,,7,} = 0. Similarly p,y{7;,7,} = 0. Hence Jp,«(y)
= pixJ(y)=0 and Jpys(y) = 0. Set x = y—p1x(y)—psx(y), then the following
conditions are satisfied ;

. (1) J(x) = {il’ 7‘2} ’
(5.5)
(ii) pix(x) =0 and p,u(x) =0.

Let ' be another element satisfying the above conditions (i), (ii). Since

w(SHA A, SA, X SA;) — w(SAAHA,), (SA, xSA,).)

J
— m(C3(A#A,), (A H#A,); BA, xZA)., ZA, XZA,)

is exact, there exists z ¢ m(S%(A,#A4,), XA, xS A,) such that iy(z)=x—z. By
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the properties of the direct product (cf.[2]), we have
(S A, #A,), SA xZA) =~ Imp,y + Im p,y.  (direct sum).

Hence we may write 2= p,(u)+p,y(v) for some u,ve m(Z(A,#A4,), S A, X A,).
Then

=2 = i(2) = 1xpr1x() + i1xpax(v) = prxin(te) + Paxin(v) .

By (5.3) and (5.5) (ii), pixix(®) = pix(x) — piy(x) = 0.  Similarly p,yiy(v) = 0.
Hence we can conclude that z=x'. Thus we have the next theorem;

THEOREM 5.6. There exists only one xemw(Z(A,#A,);(ZA, XZA,).)
such that

J(x) = {i;,4,}  and  pix) = po(x) = 0.

DEFINITION 57. Let acw(SA;,X) and Ben(ZA,, X). We say that
h:3A x32A,— X is of type (a,8) if [h|ZA,]=a and [h|ZA,]=8. Suppose
that there exists a map A:3A; x2A,— X of type (a,8). Let f: 2A, —> X,
g: %A, — X represent a,f respectively and let 7: X — X. be the injection.
We define A,A":3A,x3A4;,—X. by A =ioh and A"(x,y)=flx): ¢(y)
respectively. By definition ¢*8(h") = ¢*d(h”, h) is represented by

WF(x, 2  0<t<1/2
w <z, t> ={ <z, t>e S A, #A,).
Wz, 2—2t) 1/2<t<1

Recall that 2"F(x,1) = E%(x) By [1; Proposition 5.1] 2%k = . We denote
this nullhomotopy by %,. We now define w’: 3%(A,# A,) — X.. by
h"F(x, 2t) 0<e<1/2

w' <x, > ={
Ty, () 1/2<t<L1.

On the other hand {a, 8} is represented by

Rok
E(Al #Az) — X

e b

h
C3(A,#4A,) — X.
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where 2" = h”"|SA,VSA,. Since t: (A, #A,) — C3(A,#A,) is a cofibration,
the deformation #, of Aok may be extended to the deformation v, of A o F
given by

h'F(x,(1+5s)t) 0<et<1/(1+59)

vy(x, t) =
| ity ssr() 1/(1+s)<t<1.
Then
J h"F(x, 2¢) 0<<e<1/2
‘U](l', t) =
| sy, () 1/2<t<1.

Hence we see that {«a, B8} = J[w']. Next we define U: C3(A,#A,)— X.. by
U(<a,s>,t)=iu,_<a,s> ac A# A, Then U(<a,s>,1) = iF’/Z<a,5> and
U(<a,s>,0)=%. Now we shalll show A'F=U rel. 3(A,#A,). For the
simplicity we set A=A, #A,. We define a map G: AxIxIxITUAxIx1xI
UAXIxIxI— X. by

Gla,s,t,0) = WF(<a,s>,t),
Gla,s, t,1) =U(<a,s>,t),
Gla,s,1,u) = ihkE<a, s>,

Gla, e t,u) = * e=0,1.

Using a retraction IxIxI—Ix1xIUIxIxIuIxIxI, we may extend G to
a whole map G: AxIxIxI— X.. We now define a homotopy v, : CZA —
X.. by Yvu(<a,s>,t)= G(a,s, t,u(1+2¢)/(t+u(l+¢))). Then 4, is well defined
and it provides " F=U rel. 3(A,# A,). Therefore we obtain the following
theorem :

THEOREM 58. Let acm(SA,, X) and Benw(ZA,, X). If there is a map
h: SA, x3A,— X of type (a,B), then

Jo*8(h') = {a, B},
where h' denotes the com position of h and the inclusion i: X — X...

DEFINITION 59. Let f: A, x3A,— X be a map and let xe n(Z*A,
#A,), (ZA, xZA,)..) be an element which is obtained by Theorem 5.6. Moreover
let f» denote the homomorphism induced by multiplicative map f..: (24,
X 3A). — X.. Then we say that c(f) = f«(X) is obtained from f by the
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Hopf construction.

THEOREM 5.10. ¢(f) is characterized uniquely by the following three
properties:

i) if f: SA x3A,— X isof type (a, &), where a,c m(ZA;, X) i=1,2,
then

J(e(f) = {a, a} .
ii) Let g: X—Y be a map, then
c(gof) = gne(f).

iii) Let f: SA x3A,—>3A, xZA, be either of the projections (x,ry)
—(x, %) or (x,y)— (%,y) where xe A,y 3A,, then

(f)=0.

PROOF. It follows from Theorem 5.6 and Definition 5.9 that c¢(f) satisfies
the conditions i) and iii). ii) is easily checked. The uniqueness of this
characterization follows from the above theorem and definition.

THEOREM b5.11. Let h: 3A, xZA,— X be a map and let b’ denote its
inclusion into X... Let c(h) denote the element of w(Z*A,#A,), X.) which
is obtained from h by the Hopf construction (see Definition 5.9). Then

c(h) = ¢8R .

PROOF. We check that ¢*8(h) satisfies conditions 1), ii) and iii) in (5.10).
1) follows from Theorem 5.8. Let f: X — Y be a map. Then we have fi¢*8(h")
=¢x8(fh)=¢*8(fh). This proves ii). Finally let o: ZA, x3ZA, >3 A, xZA,
be defined by A(x,y)=(x,*). Denote the sections of A by f, g. Then A"(x,y)
=f(x)-g(y)=h'(x,y), and hence 8(2)=0. Thus iii) is proved.

THEOREM 5.12. A necessary and sufficient condition that a € m(3*(A,#A,),
X..) can be obtained from some map 3ZA, xZA,— X of type (a,, a,) by the
Hopf construction, where a,c m(ZA;, X) i=1,2, is

J(d) = {a,, a,} .

PROOF. Let f: SA, x3A, — X be a map of type (a,,a,). If « is obtained
from f by the Hopf construction, then a = fy(x) by Definition 5.9. Moreover
we have J(a) = Jfu(x) = fid(x) = fufi, i,} by (6.6). Recall that {7,7,} is
represented by
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hok
E(Al #Az) — 2A1 X EAZ

| ;
o

hoF
C3(A,# A,) —— (BA,xZA)).

where h: 3A x3A,— (3A,xZA,). is defined by h(z,y) = i,(x)-i,(y) and
h=h|SA,VSA, Also fx{i,,7,} is represented by

Fok
s #a) 2F saxsa, Lo x
| .
I 1
o o

hoF
C3(A,#4,) —— (CA x2A) — X. .

But foh(z,y) = fi\(y)-fi:(y), fh(x, %) = fi(x) and fh(x,y) = fi(y) x<ZA,,
ye3A, Since a; is represented fi;: SA,—~3A, x2A,— X j=1,2, it follows
that fi{), 3.} = {a, a,}.

Conversely let ac m(Z%(A,#A,),X) and a, e 7SA;,X) ¢ =1,2 be given
such that J(a)={a,, a,}. Let a;, be represented by a map f;: 3A;— X. By
the properties of the wedge product (cf. [2]), there exists a map f': 2A,VIA,
— X such that /¢, = f, and f’i, = f,. Now we have

f/x:[inizl = la,, a,] = 9{a,, a,} = a](d) =0.

Hence by [1; Proposition 5.1] there exists a map f: 2A, x2A, — X such that
f'7=f". Without the loss of generality we may assume that f'j = f”, since
j: ZAVEA:—3A, x3A, is a cofibration (Note that A, x3A, is a CW-
complex). Obviously f’ is of type (a,,a,). Setting a’ = c(if’), then J(a’)

= {a,,a,}. Since 7(Z(A,#A,),X) e, T(SA, # Ay, X..) i» 7(C3(A, #A,),
S(A,#A,); X.,X) is exact, there exists 8¢ m(Z2(A,#A,),X) such that 74(8)
=a—a’. For such a 8, by Theorem 3.3, there exists a map ¢":C; — X such
that ¢”¢" = " and d(f'G, ¢”) = 8, where ¢': ZA,VZA, — Cz is the inclusion.
Let G’ be a homotopy inverse of the homotopy equivalence G: C;y—3A, xZA,
and we set g =g oG’. Then goG=g¢" and so goGoz' = f". But Goz =:
SA, VA, — 3A, XA, and hence there exists a map ¢': 34, X3 A, — X such
that ¢'=g and ¢'j = f". Thus we have d(f'G,¢g'G) =8. We now define
l: SA xSA,—> X. by U z,y) =if i (x)-if i(y). Then

ixd(f'G,gG)=dif G,ig'G)
=difG,IG) + dlG,igG) by (3.2)
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= —[d(G,if'G) — d(G,ig G)] by Cor. to (3.2)
= —[¢*8(f") — ¢*8(ig)] by Definition
= —c(@if) + clig) by (5.11).

On the other hand ixd(f'G, gG) = i =a—a’. Hence c(ig)— c(if)=a—a
Thus we have a = ¢(ig).
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