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1. Introduction. I. M. James [6] discussed the homotopy theory of maps
into an ίί-space and defined a product <a,β> £ τrp+Q(X) for cceτrp(X) and
β € 7i*g(X) which induces a bilinear pairing of τrp(X) with 7Γα(X) to rτr

p+Q(X).
We generalize these results to the generalized homotopy groups of an f/-space.
First, by means of the mapping cone, we generalize the notion of sepration
elements in [6].

In his paper 'The generalized Whitehead product', M. Arkowitz gave a
generalization of Whitehead product and then introduced a homotopy equivalence
between the product space of suspension spaces and some mapping cone. As
a main tool of our generalization of James product, we shall use this homotopy
equivalence.

In §5 we give an alternative definition of the Hopf construction and we
give its characterization. Theorem 5.5 is a generalization of Lemma 8.2 in
[5] and our definition of the Hopf construction is a generalization of Definition
8.3 in [4].

The author is grateful to H. Miyazaki for his valuable advice.

2. Preliminaries. Throughout this paper all spaces have base points
denoted by •* and respected by maps and homotopies. Here we list some defini-
tions and notations which we shall use throughout.

f P
Following Eckmann and Hilton [2], we shall say that X^Y^>Y/f(X) is

a cofibration if, for any space Z and maps g : X —> Z, G :Y —> Z with g — G ofy

each homotopy of g can be obtained by composing f with some homotopy
of G.

The (reduced) suspension 2X of X is the space obtained from Xxl by
identifying X x / u * x / to a point. We denote the point of 2X by <x,t>.

The (reduced) cone CX of X is the space obtained from Xxl by identify-
ing X x θ u * x / to a point. We denote the point of CX by (x,t).

Given a map / : X —> Y, the mapping cone Cf of / is the space obtained
from CXuY by identifying Or, 1) with f(x).

We denote by XVY the subspace X x * ( j * x Y of XxY. The collapsed
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product X # Y of X and Y is the space from X x 7 by identifying XVY to
a point. An //-space is a pair consisting of a space X and a map μ: XxX
—>X such that μ | X x # = identity=/i|*xX. The map μ is called multiplication.

For the notational convenience we abbreviate μ(x,y) to .r^. Following
I. M. James, we refer to countable CW-complexes with one vertex as special
complexes. Any connected countable CW^-complex can be deformed into a
special complex without altering its homotopy type. Let X* denote the
reduced product space of X, as defined in [4]. Then it is well known ([4]) that,
if X is a special complex, then XM is a special complex which contains X as
a subcomplex, and that X^ is an associative //-space with * as the unit and
multiplication by juxtaposition. Let X and Y be special complexes and let
/ : X—• Y be a map. Then the induced map /oo: X-> Y, as defined in §1 in [4],
is multiplicative.

3. Separation elements. Let / : A —» X be a map. Then we have a cofib-
ration X —> Cf —> Σ A. Let Y be any space and let u, v :Cf —> Y be maps such
that u I X= v IX. Then a map τx>: ΣA —> Y is defined by

( ( )
w<ayt> ={

[ v(a,2-2t)

We denote the homotopy class [zv] of w by d(u, zv) and we say it a separation
element of u and τ;. ύ?(w, v) generalizes one defined in [6], The following relations
are easily verified and we shall omit the proofs except (3.3).

THEOREM 3.1. Let u,v:Cf->Y be maps such that u\X=v\X. Then
u~v rel X if and only if d(u,v) = 0.

COROLLARY. If u:Cf->Y is a map, then d(u, u) = 0.

THEOREM 3.2. Let u,v,w:Cf->Y be maps such that u\X=v\X=τv\X.
Then d(u, zv) = d(u, v) + d(v, zv).

COROLLARY. Let u,v be maps such that u\X=v\X. Then
d(u, v) + d(v, u) = 0 .

THEOREM 3.3. Let δ€ ττ(ΣA, Y) and u:Cf-*Y be a map. Then there
exists a map v:Cf->Y such that v \ X=u \X and d(u, v) = δ.

PROOF. Let δ be represented by a map d: ΣA —> Y. Then we define a
map v\Cf-+Y as follows:
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v(x) = u(x) X € X,

( d<a91 - 2t> 0 < t < 1/2

I ( 2 1)

Now d(w, T;) is represented by a map c : ΣA —> Y given by

w(α, 2ί) 0 < t < 1/2

c <a91> = I u(a, 3-4t) 1/2 < ί < 3/4

J<α,4ί-3> 3/4<ί<l .

Thus we have d(u,v) = h.

THEOREM 3.4. Let ut,vt:Cf->Y be homotopies such that uί\X=vi\X.

Then d(u09 v0) = d(ul9 vλ) .

THEOREM 3.5. Let u,v: Cf-^Y be maps such that u\X=v\X and

h : Y^Z any map. Then d(hu, hv) = h*d(u, v).

4. Generalized James product. Throughout §4, §5 of this paper, we
shall work in the category of connected countable CW-complexes.

Following Arkowitz [1], the following results are known; Let k : X(A1#A2)

—>XA1\/XA2 be a G.W.P.-map determined by injections i1:ΣA1-+ΣA1\/ΣA2

and i2: ΣA2-*ΣA1\/'ΣA2. Then there exists a homotopy equivalence F:

CS(A 1 #A ϊ ),2(A 1 #A 2 )->2A 1 x2A 2 ,2A 1 V2A a such that F\2,(A1#A2) = k.

Also a map G i f t , XA, V ΣA> ->XAι x XA29 ΣΛVΣA 2 with G | 2 Λ V 2 A 2

— identity is defined by F and it is a homotopy equivalence.

Then we have a commutative diagram:

(4.1)

where p and q denote the projection and φ is a map defined by G. φ is a

homotopy equivalence and we denote its homotopy inverse by ψ. From (4.1)

we have a commutative diagram:
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2ΛV2A2 — Cΐ -£~ 22(A#A2)
(4.2) \id _ JG

Let X be any space and let u, v: ΣAλ xΣA2 - > I be maps such that
ΣAa = z IΣAjVΣAa. Consider the composite maps uG, vG : Cι-+X,

then evidently uG \ XA1 V ΣA2 = vG | ΣAx V ΣA 2. Hence from §3 d(uG,vG)
£ TΓCΣ'CAX # A2), X) may be defined. We now define d(u, v) z τr(ΈlAι #ΣA 2 , X)

to be ψ*d(uG, vG).
Especially let X be an //-space with multiplication μ in the rest of this

section. Let a z π(%Al9 X), β^τr(!lA2,X) be represented by / : ΣAx -> X,
g : ΣA2 —> X respectively. We define maps hy k : ΣAX x ΣA2 -» X by

where T is the transposition in 2Aj xΣA2 . Then it is clear that h\XA1 VΣA2

= ^IΣAXVΣACJ. Hence by the above arguments a separation element d(h,k)
€ TT(1IA1#XA2, X) may be defined and it depends only on the homotopy classes
of f and g. Thus we may write

(4.3) <cc,β> =d(h,k).

In case Ax and A2 are spheres, <#, β~> reduces to one defined in [6].
If, in the diagram (4.2), we interchange factors ΣAX with ΣA2, then we

have a similar diagram:

— Cz, — Σ2(A2#Λ)
(4.4) «ί G'

'S? Λ \/ ~K Δ ^. V Δ v "V /4 -1 ,
^ X l 2 V ^lJLX\ ^ J6^XX2 ^ ^JΓXi *

where G\ φ' are homotopy equivalences corresponding to G, φ respectively.
We denote by ψ ' the homotopy inverse φ'. We employ the same notation
T for the maps induced by transposition T, for example, T: 2Aj # ΣA2

li etc. Then we have

THEOREM 4.4. </3,a> = -T*<a,/3> .

PROOF. We set h' — μG(gxf) and k' = p ( / Xg)oT, where T is the
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transposition in ΣA2xΣAι. Then we have k' = hoT and K = koT. By
definition

T* <ct, β> = T*ψ*d(hG, kG)

= ψ*T*d(hG,kG)

= ψ*d(hGT,kGT)

= ψ*d(hTG\kTG')

= ψ*d{k'G\h'G).

However, by Corollary to Theorem 3.2, we have d(k'G', h'G') = — d(h'G\ k'G').

Thus the theorem is proved.

Let Y be a space and let X be an Jf-space. The product of two maps

u, v : Y-+X is the map u v :Y —• X which is defined by

(4. 5) ( μ - v ) ( y ) = u ( y ) v ( y ) yzY.

LEMMA 4.6. Let h, k, h\ k': 2AX x ΣA2 —• X be maps such that h, k have

the same section and h', k' have the same section. Then

d(h -h',k k') = d(h, k) + d(tϊ, k') .

PROOF. Evidently h K and k k' have the same section and hence

{h h')°G and (k k')°G do so. It is sufficient to prove that d((h h')oG,

(k *') o G) = d(hG, kG) + d(h'G, k'G).

We easily see that ( A . A > G = hG h'G and (k k')oG=kG>k'G. Now, by

definition, d(hG, kG) and d(h'G, k'G) are represented by maps zv, w : Σ2(Aχ

# A 2 ) —> X which are given as follows

\hG(x,2t) 0<£<l/2
w<x,t> =

UG Or, 2-2*) l/2<ί<l

lh'G(x,2t)
w'<x,t> = I

[k'G(x,2-2t)

By [7; p. 6, Theorem 1.5] we may regard that d(hG,kG) + d(h'G,k'G) is

represented by a map w w \ Σ2(Aί#:A2)—>X. However,
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hG{x, 2t) h'G(x, 2t) 0 < t < 1/2
(w w') <x, t> = <

1 £GOr, 2-2ί) k'G(x, 2-2t) 1/2 < £ < 1

(AG KG){x9 2t) 0 < ί < 1/2

£'G)(.r, 2-20 1/2 < ί < 1

This shows that d((h A')oG,(ί Jfe')oG) = rf(AG,AG) + J(A'G,k'G).

Let / : ΣAj —>X, g : ΣA2 -^Xbe the sections of a map h : 1IA1 x2A2 -> X.

We now define A': 2A£ xΣA2 ->X by h'(x,y) = f(x)- g(y)(x * 2Al9ys ΣA2).

Then A and A' have the same section. We write

(4. 7) δ(A) - d(h\ A).

If k : ΣAX x ΣA2 —> X is another map with the same section as A, then &',

defined as in A', is equal to A'. It follows from (3.2) that

δ(jfe) = δ(A) + d(A, A) .

THEOREM 4.8. Let A, A': !lA1xXA2 ->X be given maps. Let f: Σ A ^ X ,

g: ΣA2 —> X be the sections of A and f : ΣAj -+X, g : ΣA2 —• X ίAe sections

of K. Setting a=[f]9 a' = [f ], 0 = [</] αnJ ^ - [g']9 then

8(A A') = δ(A) + δ(A') + <a',β> .

REMARK. Products /( r)«/(x)mg(y) g(y) and /(x) g(y)-f(x) g{^) do not

depend on the order in which products are taken. We prove only the former.

We define a homotopy fs: ΣAX —> X by

fs<a,t> Jf<*>->
I * 1/2 < ί < 1 ,

and we replace / : 1IA1 —>X by

ί/<α,2ί> 0<ί<l/2
/,<α,ί> =

I * 1/2 < ί < 1 .

By an analogous homotopy we replace f : ΣAj —> X by

ί * 0 < t < 1/2

f[<a,t> =
\f'<a,2t-l>



GENERALIZED JAMES PRODUCT 325

By the same way we replace g, g by gl9 g[. Then fι(x)-f[(x)- gλ{y) gΊ(y)
does not depened on the order in which the product is taken.

PROOF OF THEOREM 4.8. The proof follows as in [6]. We define

h1=fopι: ΣΛxΣA 2 ->X and h = gop2 where ρt: XA1xllA2->llAi is the
projection i — 1, 2. Using / ' and g', we define h[ and h'z in the same way.

Setting k = hι h2 and k' = h[ Kz, we have h(h) = d(k,h) and δ(A') = d(k',A').

By Lemma 4.6 d(k-k',h-h') = d(k,h) + d(k',h') = δ(Λ) + δ(A'). Since H=(h1-hΐ)

• (A2 AQ have the same section as h h\ S(h h') = J( i ί , A Λ'). By Theorem

3.2 d(H, h-h') = d(H, k-k') + d(k k',h- V). On the other hand

= d(h, Λ2) + J(Aί h2, h2 Λί) + d(hί, K) by Cor. to 3.1

- d(hx (Λί h2), hx (Aa. hi)) + d(Aί, Aί) by 4.6

- d{hλ (Λί h2). Aί, Ax (Aa Aί) Aί) by 4.6

= rf(H, £ A') by Remark.

Thus the proof of Theorem 2.7 is complete.

THEOREM 4.9. (a, β)-* <a, β> is a bilinear pairing of

xτr(ΣA2,X) into

PROOF. The proof is analogous to that of [6 Theorem 3.7]. For d9a'

X) and B e 7r(ΣA2? X), we only prove

<a+a',β> = <<x,β> + <a',β> .

Let / : 2Ax —> X, / ' : 2A2 —> X be the representatives of α: and ^ ' respectively

and let g: 2 A 2 - > X be that of β. We may replace/,/ ' by / , / ί given by

fx<a9t> =

I *
* 0<ί<l/2

fί<a,t> =

We now define A, A': Σ Λ x 2A2 -> X by

Kχ> y) =
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Then (A h')(x9 y) = (?(y) •/&)) -fί(x) = ,g(;y) •/;(*) (/;(*)). Since Λ + a' is

represented by a map /•/ ' : ΣAj, —> X, we have

<tf + α',/9> = δ(A A').

Hence by Theorem 4.8 <tf + tf',/3> = 8(A) + 8(A') + <a',β>. However 8(A)

= <a,β> and 8(A') = 0. This completes the proof.

5. The Hopf construction. Following Arkowitz [1], we define a map

H: CX(A!#A2), ^{Aλ#A2)~^Cι, ΣAX VΣA2 to be the composition of the

injection CΣ(A 1 #A 2 )cCΣ(A 1 #A 2 )uΣA 1 VΣA2 and the projection C2(Ai#A 2)

U Σ Λ V ΣA 2-^ Cjfc. Then H | Σ ( Λ # A 2 ) - * and i f induces homology

isomorphisms. Also we have F= GoH.

Let / : ΣAL -^ X, ^ : ΣA2 -> X represent α e TKΣAX ,X)9 β Z τr(ΣA2, X)

respectively. Let J*C be the reduced product space of X. We now define

a map h : ΣAi x ΣA2 -> Xoo by A(x, y) = /(α:) (̂3 )̂, where the dot denotes

multiplication in the reduced space Xoo. Then A = A|ΣAX VΣA2: ΣAjVΣAg—>X

Consider a pair of maps (h°k, hoF)

X

where 1 and i denote the inclusions.

Since the homotopy class [(h<>k, h of)] ^ τr(Cl,(A1#A2)9 Σ(Ai#A 2);

depends only on a and β, we may write

(5.1) {a9β] = [(hok,hoF)].

If 9 : irCCΣCΛ # A2), Σ(AX # A2) X,,, X) -> T K Σ ^ # A2), X) is the boundary

homomorphism (cf. [7]), then we have

d{ct,/3} = [h°k] = [a9β],

where [<X,β] is the generalized Whitehead product [1] of a and β.

Let J: τr(Σ8CAi # A2), X.) -> MCΣiA&Aά X(Aλ#A2) X., X) be a homo-

morphism denned in [7 §4].

T H E O R E M 5.2. Lei a z τr(ΣA, -X), iβ ̂  τr(ΣA2, X).
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{a, 0} - T*{β,a] = Jφ*<i*a,i*β> ,

where i# denotes the homomorphίsm induced by the inclusion i: X->Xm.

PROOF. By definition of H we have the next commutative diagram

CΣ(Λ # A,), 2(A, # A,) — CΪ, SA, V 2A, — 2A, x ΣA2, ΣΛ VΣA2

2A,#2A,

Hence we may regard that φ* < /̂ .Λ, i*β> is equal to J(ΛF, kF) where k
ΣAi X ΣA2 —> Xoo is defined by k{x, y) — g(y) f(x). Then Jφ* <i*oί, i
ζτr(CΣ(A1#A2),Σ(A1#A2);Xoo,X) is represented by

where w is induced by w: 14

2(A1#A2)—> X,

w<x,t> =
hF(x,2t)

kF(x,2-2t)

Let I ' : Σ ( Λ # A) "^ ΣA2 VΣΛ, F ' : CΣ(AΪ#A1), 2(A 2#Λ) - ΣA2 xΣA1? ΣA2

VΣAX be defined as in §4 corresponding to k, F respectively. Define /: ΣA2

xΣA1->Xoo by l(y9x) = g(y)>f(x)(xz?,Auyz?,A2) and set T = l\XA2\JXAx.
Then T*{β, oί) is represented by

Σ(AX#A2) X

CΣ(A2#Λ)
ZoF' ^

X

However we see that loF'oT=loToF=koF and Tok'oT=kok. Hence T*{β,a]
is also represented by



328 K. TSUCHIDA

On the other hand {a, β} is represented by

I

Obviously &°£ = hok. Hence applying [3; §1.5 Lemma 4] we may conclude

the theorem.

Let ij: XAj -* 2AX x ΣA2 be the injection and let ρs: XA1 x

be the projection 7 = 1,2. Define h : 2AX x ΣA2 -> (2A2 x ΣA2)oo by

= iι(x) i<ι(y). Then {zΊ z2} is represented by

Jok

Consider the following exact sequence [7]:

)

By [1, Proposition 5.1] we have [il9 z2] = 0. Hence there exists y€

(2Ai x2Aa)co such that J(y) = {zΊz2} . Define pό: Σ Λ xΣA 2 -> Σ Λ xΣA 2 by

Pi = ^ ° A 7 = 1,2, then

(5.3) p.opi = p. i = l , 2 , pi°pj = * for

Let (p^oo: (ΣAi x ΣA2)oo -> (2-Ai x ΣA2)oo be the multiplicative map determined

by pj. Then (ft)*, induces the endomorphism ^ ^ of itipi^A^A^ Σ(A!#A 2 );

xΣA2)oo, 2-Ai xΣ^42). Now consider Pî {z*iZ2}. ft*{/i,/2} is represented by
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Σ(A#A2) ~ ^ ^

CΣ(A#A2) - ^

However we easily see that h=j : ΣAi VΣA2 —>ΣAX xΣA2 and jk — Fi. Also
it is easy to check that ipx = ρloah. Therefore the above diagram is reduced
to the diagram

CΣ(Λ #A 2 ) — - ΣA x ΣA2 ^ - (ΣAX x

Here we shall remark that the following lemma is easily proved.

LEMMA 5.4. Consider the commutative diagram :

A --* CA ^-+ X

I I β

CA — X - ^ Y.

t, β/)] = 0 £n TΓ^A, 5 ) .

Therefore we have pi^{iι,i2} = 0. Similarly /02̂ {/i,ί2} = 0. Hence Jpι*(y)
= Pi*J(y) = 0 and Jp%*(y) = 0. Set α: = y-pi*(y)-p2χ(y), then the following
conditions are satisfied

( i) J(x) = {/i,ί2} ,
(5.5)

(ii) Pi*(x) = 0 and p2*(α:) = 0 .

Let x be another element satisfying the above conditions (i), (ii). Since

ΣΛ x ΣA2) — T K Σ ^ A ^ A , ) , (ΣΛ X

<CΣ(Λ#A) XiA^A) (ΣAX x ΣA,)., ΣAX x ΣA2)

is exact, there exists z£ τr(%2(Aι#A2), ΣAX xΣA2) such that i%.(z) = x—x. By
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the properties of the direct product (cf. [2]), we have

7r(Σ2G4i#Λ2), XΛt x XA2) « Im px* + Im p2-x- (direct sum).

Hence we may write z=plχ(u) + p2#(y) for some u, v€ π(S2(Ax#A2), %A1 xΣA2).
Then

x~x =

By (5.3) and (5.5) (ii), ft */*(«) = ριγXx) - ρu^x) = 0. Similarly ρ2*i*(v) = 0.
Hence we can conclude that ^: = ̂ :'. Thus we have the next theorem;

THEOREM 5.6. TAm? e^z.9^ only one x€7r(V(A1#A2);(XAιxl,A2)oo)
such that

J(x) = {iu i2} and ρx*(x) = p2*(x) = 0 .

DEFINITION 5.7. Let Λ^7r(ΣΛ,X) and β z τr(XA2, X). We say that
h : ΣAi x ΣA2 -> X is of type (α, β) if [A | ΣAJ = a and [A | ΣA2] = β. Suppose
that there exists a map h:XA1xl^A2-^X of type (μ9β). L e t / : Σ^χ->X,
gr:ΣA2->X represent Λ,/8 respectively and let i:X-^X^ be the injection.
We define h\h" \%AιxΐA%-+X» by h'= Uh and A"0r, j/) = /(α:) . g(y)

respectively. By definition φ*8(h') = φ*d(h"', A) is represented by

ί A'TCr, 2ί) 0 < t < 1/2
w <χ, t> = <x, t> € Σ2(Λ #Λ2) .

[ h'F(x,2-2t) l/2<ί<l

Recall that K'F(x, 1) = ~h"Tι(x). By [1 Proposition 5.1] h"k^ *. We denote

this nullhomotopy by ut. We now define w : Σ2(Ai#A2) —> Xoo by

1/2
, t> =

iu2t-λ{x) 1/2 < ί < 1 .

On the other hand {Λ, β} is represented by

A'ΌF
CΣ(Λ#A 2) > X
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where ~h" = A'ΊΣΛVΣΛ Since L: Σ(Λ#A 2 )-> C Σ ( Λ # Λ ) is a cofibration,

the deformation us of h" ° k may be extended to the deformation vs of K' o F

given by

f h"F(x, (1 + 5) ί) 0 < ί < 1/(1 + s)

\iut+st^{x) 1/(1+ *)<*< 1.

Then

h"F(x, 2£) 0 < t < 1/2

iu2ί-λ(x) 1/2 < ί < 1 .

Hence we see that {cί9β} = J[w']. Next we define U: Clί(Aι#A2) -> Xoo by

U(<a,s>,t) = iuι_t<a,s> ae Aλ#A2. Then C7(<α,5>,l) = ih"~k<a,s> and

C/(<α,s>,0) = * . Now we shalll show KF — Ό rel. Σ(Λ#Λ>). For the

simplicity we set A = AX#A2. We define a map G: Ax/xlx/'u Ax/xl x/

uAx/x/x/->X» by

G(α, s, t, 0) = h'F(<ay s>9t),

G(a, s, t, 1) = U(<a, s>,t),

G(a, s, 1, w) = ih"k<ia, s> ,

G(a, β, £, w) = -x- € — 0 , 1 .

Using a retraction / x / x / — > / x l x / u / x / x / u / x / x / , we may extend G to
a whole map G: Ax7x7x7->Xoo. We now define a homotopy ^ w : CΣA —>
Xoo by ψw(<α,5>,ί)= G(a,s, t,u(l + 2t)/(t + u(l + t))). Then ^ M is well defined
and it provides h'F^U rel. Σ(Aλ#A2). Therefore we obtain the following
theorem:

THEOREM 5.8. Let aeτr(XAuX) and B z τr(ΣA2, X). If there is a map

h: ΣΛ x ΣA2 -+X of type (a, β), then

Jφ*Kh')= [a,β],

where K denotes the composition of h and the inclusion i: X —> X^

DEFINITION 5.9. Let / : 2,Aίx?<A2-*X be a map and let x

#A 2), (ΣA.! xΣA2)oo) be an elem.ent which is obtained by Theorem 5.6. Moreover

let fx denote the horαomorphism induced by multiplicative map f^: 0£Aι

o-̂ Xuo. Then we say that c(f)=f*(X) is obtained f rom/ by the



332 K. TSUCHIDA

Hopf construction.

THEOREM 5.10. c(f) is characterized uniquely by the following three
properties:

i) if f: Σ A x Σ A -> X is of type (aλ ,a2), where at £ τr(ΣA, X) z = 1,2,

ii) Le£ g: X—>Y be a map, then

iii) Let f: Σ A x ΣA 2—> Σ A x ΣA2 &£ either of the projections (x,y)

Λ:, *) or (#, 3>) —» (*, 3>) where xz XAuy^ ΣA2, then

PROOF. It follows from Theorem 5.6 and Definition 5.9 that c(f) satisfies
the conditions i) and iii). ii) is easily checked. The uniqueness of this
characterization follows from the above theorem and definition.

THEOREM 5.11. Let h: 2 A x : 2 A 2 - > X be a map and let K denote its
inclusion into X^. Let c(h) denote the element of ΊΓ(2,2(A1#A2), X™) which
is obtained from h by the Hopf construction (see Definition 5.9). Then

c(h) = φ*8(A/).

PROOF. We check that φ*h(ti) satisfies conditions i), ii) and iii) in (5.10).
i) follows from Theorem 5.8. Let f: X ^ Y be a map. Then we have f#φ*δ(h')
=φ*h(foJi)=φ*h(ifh). This proves ii). Finally let h : Σ Λ x Σ Λ -> 5 A x2A 2

be defined by h(x,y)=(x,*). Denote the sections of h by/, g. Then h"(x,y)
h'(x,y)j and hence δ(/&') = 0. Thus iii) is proved.

THEOREM 5.12. A necessary and sufficient condition that a € ( ( i # 2 ) ,
Xoo) can be obtained from some map 2lAιx2,A2-+ X of type (cέua2) by the
Hopf construction, where at e τr(Έ,Ai9 X) z = 1, 2, is

J(a) = {aua2} .

PROOF. Let / : ΣAX xΣA2 —> X be a map of type (al9 <x2). If a is obtained
f r o m / by the Hopf construction, then a = f#(x) by Definition 5.9. Moreover
we have J(a) = Jf*(x) = f*J(x) = f*{iuh} by (5.6). Recall that {z\ i2} is
represented by
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Σ(Λ#A2)

where h : 2A! X ΣA2 -* (ΣAX X 2A2)«x, is defined by h(x,y) = iί(x)-i2(y) and

A = A|2AiV2A2. Abo/*{*!, i2} is represented by

2(A#Λ) «
i

CΣ(A#Λ2) - ^

But fooh(x,y) ^ fiι(y) fi2(y), fh(x,*) = fi\(x) and fh(*,y) — %

y £ ΣA2. Since a3 is represented fi3: Σ A ^ Σ A i xΣA2 —> X j = l, 2, it follows
that f*{il9 i2] = {oCi, Λ2}.

Conversely let ΛC 7r(22(A!#A2),X) and rtt€ τr(ΣΛ,X) ί = l,2 be given
such that J(a)={aι,a2}. Let at be represented by a map / i : ΣA^ —>X. By
the properties of the wedge product (cf. [2]), there exists a m a p / " : 1IA1WXA2

->X such t h a t / ' / Ί = / x and / ' z 2 = / 2 . Now we have

) = 0 .

Hence by [1 Proposition 5.1] there exists a map / ' : ΣAi x ΣA2 —> X such that
fj^f". Without the loss of generality we may assume that fj =f", since
j : 2 A 1 V 2 A 2 ^ 2 A 1 x 2 A 2 is a cofibration (Note that l^A.xXA, is a CW-
complex). Obviously / ' is of type (aua2). Setting a = c(if), then J(a')

= {au a2}. Since TΓCΣ^Λ # A2), X) - ^ ^ 2 ( A X # A2), X.) -^ τr(CΣ(A1 # A 2 ) ,
Σ(Ai#A 2); Xoo,X) is exact, there exists h e ir{V{Aλ#A2\ X) such that z*(δ)
= ct—a!. For such a 8, by Theorem 3.3, there exists a map g":Cι->X such
that g" ϊ — f" and d(f'G,g") = δ, where z': Σ A I V Σ A 2 - ^ C Λ is the inclusion.
Let G' be a homotopy inverse of the homotopy equivalence G: Ci—^Ai x ΣA2

and we set g = g"°G'. Then goG^g" and so goG°ϊ =f". But GoΓ =7":
ΣAι\fΣA2-*ΣA1xΣA2 and hence there exists a map ̂  : Σ A χ X Σ A 2 ^ X such
that g =g and #'y = / " . Thus we have d(J G, g'G) — δ. We now define
/ : ΣAX x ΣA2 -+ X . by Z(x, y) = if iγ(x) if i2(y). Then

iχd(f'G, g'G) = d(if'G, i g G)

- rf(ί/'G, IG) + J(/G, ί^'G) by (3.2)



334 K. TSUCHIDA

= ~[d(lG, if'G) - d{lG, ig'G)] by Cor. to (3.2)

= -[φ*h(if) - φ*Kig')] by Definition

+ c{ίg) by (5.11).

On the other hand i*d{fG, g'G) = i*δ = a—a'. Hence c(ig) — c{if)= a—a',
Thus we have a = ciig).
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