GENERALIZED JAMES PRODUCT AND THE HOPF CONSTRUCTION

Kisuke Tsuchida

(Received May 4, 1965)

1. Introduction. I. M. James [6] discussed the homotopy theory of maps into an H-space and defined a product $\left\langle\alpha, \beta>\in \pi_{p+q}(X)\right.$ for $\alpha \in \pi_{p}(X)$ and $\beta \in \pi_{q}(X)$ which induces a bilinear pairing of $\pi_{p}(X)$ with $\pi_{q}(X)$ to $\pi_{p+q}(X)$. We generalize these results to the generalized homotopy groups of an H-space. First, by means of the mapping cone, we generalize the notion of sepration elements in [6].

In his paper 'The generalized Whitehead product', M. Arkowitz gave a generalization of Whitehead product and then introduced a homotopy equivalence between the product space of suspension spaces and some mapping cone. As a main tool of our generalization of James product, we shall use this homotopy equivalence.

In §5 we give an alternative definition of the Hopf construction and we give its characterization. Theorem 5.5 is a generalization of Lemma 8.2 in [5] and our definition of the Hopf construction is a generalization of Definition 8.3 in [4].

The author is grateful to H. Miyazaki for his valuable advice.
2. Preliminaries. Throughout this paper all spaces have base points denoted by * and respected by maps and homotopies. Here we list some definitions and notations which we shall use throughout.

Following Eckmann and Hilton [2], we shall say that $X \xrightarrow{f} Y \xrightarrow{p} Y / f(X)$ is a cofibration if, for any space Z and maps $g: X \rightarrow Z, G: Y \rightarrow Z$ with $g=G \circ f$, each homotopy of g can be obtained by composing f with some homotopy of G.

The (reduced) suspension ΣX of X is the space obtained from $X \times I$ by identifying $X \times \dot{I} \cup * \times I$ to a point. We denote the point of ΣX by $<x, t>$.

The (reduced) cone $C X$ of X is the space obtained from. $X \times I$ by identifying $X \times 0 \cup * \times I$ to a point. We denote the point of $C X$ by (x, t).

Given a map $f: X \rightarrow Y$, the mapping cone C_{f} of f is the space obtained from $C X \cup Y$ by identifying ($x, 1$) with $f(x)$.

We denote by $X \vee Y$ the subspace $X \times * \cup * \times Y$ of $X \times Y$. The collapsed
product $X \# Y$ of X and Y is the space from $X \times Y$ by identifying $X \vee Y$ to a point. An H-space is a pair consisting of a space X and a map $\mu: X \times X$ $\rightarrow X$ such that $\mu \mid X \times *=$ identity $=\mu \mid * \times X$. The map μ is called multiplication.

For the notational convenience we abbreviate $\mu(x, y)$ to $x \cdot y$. Following I. M. James, we refer to countable $C W$-complexes with one vertex as special complexes. Any connected countable $C W$-complex can be deformed into a special complex without altering its homotopy type. Let X_{∞} denote the reduced product space of X, as defined in [4]. Then it is well known ([4]) that, if X is a special complex, then X_{∞} is a special complex which contains X as a subcomplex, and that X_{∞} is an associative H-space with $*$ as the unit and multiplication by juxtaposition. Let X and Y be special complexes and let $f: X \rightarrow Y$ be a map. Then the induced map $f_{\infty}: X \rightarrow Y$, as defined in $\S 1$ in [4], is multiplicative.
3. Separation elements. Let $f: A \rightarrow X$ be a map. Then we have a cofibration $X \rightarrow C_{f} \rightarrow \Sigma A$. Let Y be any space and let $u, v: C_{f} \rightarrow Y$ be maps such that $u|X=v| X$. Then a map $w: \Sigma A \rightarrow Y$ is defined by

$$
w<a, t>= \begin{cases}u(a, 2 t) & 9 \leqslant t \leqslant 1 / 2 \\ v(a, 2-2 t) & 1 / 2 \leqslant t \leqslant 1\end{cases}
$$

We denote the homotopy class [w] of w by $d(u, w)$ and we say it a separation element of u and $v . d(u, v)$ generalizes one defined in [6]. The following relations are easily verified and we shall omit the proofs except (3.3).

THEOREM 3.1. Let $u, v: C_{s} \rightarrow Y$ be maps such that $u|X=v| X$. Then $u \simeq v$ rel X if and only if $d(u, v)=0$.

Corollary. If $u: C_{f} \rightarrow Y$ is a map, then $d(u, u)=0$.
THEOREM 3.2. Let $u, v, w: C_{f} \rightarrow Y$ be maps such that $u|X=v| X=w \mid X$. Then $\quad d(u, w)=d(u, v)+d(v, w)$.

Corollary. Let u, v be maps such that $u|X=v| X$. Then $d(u, v)+d(v, u)=0$.

THEOREM 3.3. Let $\delta \in \pi(\Sigma A, Y)$ and $u: C_{f} \rightarrow Y$ be a map. Then there exists a map $v: C_{f} \rightarrow Y$ such that $v|X=u| X$ and $d(u, v)=\delta$.

Proof. Let δ be represented by a map $d: \Sigma A \rightarrow Y$. Then we define a map $v: C_{f} \rightarrow Y$ as follows:

$$
\begin{aligned}
& v(x)=u(x) \quad x \in X, \\
& v(a, t)= \begin{cases}d<a, 1-2 t> & 0 \leqslant t \leqslant 1 / 2 \\
u(a, 2 t-1) & 1 / 2 \leqslant t \leqslant 1 .\end{cases}
\end{aligned}
$$

Now $d(u, v)$ is represented by a map $c: \Sigma A \rightarrow Y$ given by

$$
c<a, t>= \begin{cases}u(a, 2 t) & 0 \leqslant t \leqslant 1 / 2 \\ u(a, 3-4 t) & 1 / 2 \leqslant t \leqslant 3 / 4 \\ d<a, 4 t-3> & 3 / 4 \leqslant t \leqslant 1\end{cases}
$$

Thus we have $d(u, v)=\delta$.

THEOREM 3.4. Let $u_{\iota}, v_{l}: C_{f} \rightarrow Y$ be homotopies such that $u_{\imath}\left|X=v_{l}\right| X$. Then

$$
d\left(u_{0}, v_{0}\right)=d\left(u_{1}, v_{1}\right) .
$$

THEOREM 3.5. Let $u, v: C_{f} \rightarrow Y$ be maps such that $u|X=v| X$ and $h: Y \rightarrow Z$ any map. Then $d(h u, h v)=h * d(u, v)$.
4. Generalized James product. Throughout $\S 4, \S 5$ of this paper, we shall work in the category of connected countable $C W$-complexes.

Following Arkowitz [1], the following results are known; Let $\widetilde{k}: \Sigma\left(A_{1} \# A_{2}\right)$ $\rightarrow \Sigma A_{1} \vee \Sigma A_{2}$ be a G.W.P.-map determined by injections $i_{1}: \Sigma A_{1} \rightarrow \Sigma A_{1} \vee \Sigma A_{2}$ and $i_{2}: \Sigma A_{2} \rightarrow \Sigma A_{1} \vee \Sigma A_{2}$. Then there exists a homotopy equivalence F : $C \Sigma\left(A_{1} \# A_{2}\right), \Sigma\left(A_{1} \# A_{2}\right) \rightarrow \Sigma A_{1} \times \Sigma A_{2}, \Sigma A_{1} \vee \Sigma A_{2}$ such that $F \mid \Sigma\left(A_{1} \# A_{2}\right)=\widetilde{k}$. Also a map $G: C_{\overparen{k}}, \Sigma A_{1} \vee \Sigma A_{2} \rightarrow \Sigma A_{1} \times \Sigma A_{2}, \Sigma A_{1} \vee \Sigma A_{2}$ with $G \mid \Sigma A_{1} \vee \Sigma A_{2}$ $=$ identity is defined by F and it is a homotopy equivalence.

Then we have a commutative diagram :

where p and q denote the projection and φ is a map defined by $G . \varphi$ is a homotopy equivalence and we denote its homotopy inverse by ψ. From (4.1) we have a commutative diagram :

Let X be any space and let $u, v: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ be maps such that $u\left|\Sigma A_{1} \vee \Sigma A_{2}=v\right| \Sigma A_{1} \vee \Sigma A_{2}$. Consider the composite maps $u G, v G: C_{\vec{k}} \rightarrow X$, then evidently $u G\left|\Sigma A_{1} \vee \Sigma A_{2}=v G\right| \Sigma A_{1} \vee \Sigma A_{2}$. Hence from §3 $d(u G, v G)$ $\in \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), X\right)$ may be defined. We now define $d(u, v) \in \pi\left(\Sigma A_{1} \# \Sigma A_{2}, X\right)$ to be $\psi^{*} d(u G, v G)$.

Especially let X be an H-space with multiplication μ in the rest of this section. Let $\alpha \in \pi\left(\Sigma A_{1}, X\right), \beta \in \pi\left(\Sigma A_{2}, X\right)$ be represented by $f: \Sigma A_{1} \rightarrow X$, $g: \Sigma A_{2} \rightarrow X$ respectively. We define maps $h, k: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ by

$$
h=\mu \circ\left(f \times g^{\prime}, \quad k=\mu \circ(g \times f) \circ T\right.
$$

where T is the transposition in $\Sigma A_{1} \times \Sigma A_{2}$. Then it is clear that $h \mid \Sigma A_{1} \vee \Sigma A_{2}$ $=k \mid \Sigma A_{1} \vee \Sigma A_{2}$. Hence by the above arguments a separation element $d(h, k)$ $\in \pi\left(\Sigma A_{1} \# \Sigma A_{2}, X\right)$ may be defined and it depends only on the homotopy classes of f and g. Thus we may write

$$
\begin{equation*}
<\alpha, \beta>=d(h, k) \tag{4.3}
\end{equation*}
$$

In case A_{1} and A_{2} are spheres, $\langle\alpha, \beta\rangle$ reduces to one defined in [6].
If, in the diagram (4.2), we interchange factors ΣA_{1} with ΣA_{2}, then we have a similar diagram:

where $G^{\prime}, \phi^{\prime}$ are homotopy equivalences corresponding to G, ϕ respectively. We denote by ψ^{\prime} the homotopy inverse ϕ^{\prime}. We employ the same notation T for the maps induced by transposition T, for example, $T: \Sigma A_{1} \# \Sigma A_{2}$ $\rightarrow \Sigma A_{2} \# \Sigma A_{1}$ etc. Then we have

THEOREM 4.4. $<\beta, \alpha>=-T^{*}<\alpha, \beta>$.
Proof. We set $h^{\prime}=\mu \circ(g \times f)$ and $k^{\prime}=\mu \circ(f \times g) \circ T$, where T is the
transposition in $\Sigma A_{2} \times \Sigma A_{1}$. Then we have $k^{\prime}=h \circ T$ and $h^{\prime}=k \circ T$. By definition

$$
\begin{aligned}
T^{*}<\alpha, \beta> & =T^{*} \psi^{*} d(h G, k G) \\
& =\psi^{\prime *} T^{*} d(h G, k G) \\
& =\psi^{\prime *} d(h G T, k G T) \\
& =\psi^{\prime *} d\left(h T G^{\prime}, k T G^{\prime}\right) \\
& =\psi^{\prime *} d\left(k^{\prime} G^{\prime}, h^{\prime} G^{\prime}\right)
\end{aligned}
$$

However, by Corollary to Theorem 3.2, we have $d\left(k^{\prime} G^{\prime}, h^{\prime} G^{\prime}\right)=-d\left(h^{\prime} G^{\prime}, k^{\prime} G^{\prime}\right)$. Thus the theorem is proved.

Let Y be a space and let X be an H-space. The product of two maps $u, v: Y \rightarrow X$ is the map $u \cdot v: Y \rightarrow X$ which is defined by

$$
\begin{equation*}
(u \cdot v)(y)=u(y) \cdot v(y) \quad y \in Y . \tag{4.5}
\end{equation*}
$$

Lemma 4.6. Let $h, k, h^{\prime}, k^{\prime}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ be maps such that h, k have the same section and h^{\prime}, k^{\prime} have the same section. Then

$$
d\left(h \cdot h^{\prime}, k \cdot k^{\prime}\right)=d(h, k)+d\left(h^{\prime}, k^{\prime}\right) .
$$

Proof. Evidently $h \cdot h^{\prime}$ and $k \cdot k^{\prime}$ have the same section and hence $\left(h \cdot h^{\prime}\right) \circ G$ and $\left(k \cdot k^{\prime}\right) \circ G$ do so. It is sufficient to prove that $d\left(\left(h \cdot h^{\prime}\right) \circ G\right.$, $\left.\left(k \cdot k^{\prime}\right) \circ G\right)=d(h G, k G)+d\left(h^{\prime} G, k^{\prime} G\right)$.

We easily see that $\left(h \cdot h^{\prime}\right) \circ G=h G \cdot h^{\prime} G$ and $\left(k \cdot k^{\prime}\right) \circ G=k G \cdot k^{\prime} G$. Now, by definition, $d(h G, k G)$ and $d\left(h^{\prime} G, k^{\prime} G\right)$ are represented by maps $w, w^{\prime}: \Sigma^{2}\left(A_{1}\right.$ $\left.\# A_{2}\right) \rightarrow X$ which are given as follows;

$$
\begin{gathered}
w<x, t>= \begin{cases}h G(x, 2 t) & 0 \leqslant t \leqslant 1 / 2 \\
k G(x, 2-2 t) & 1 / 2 \leqslant t \leqslant 1\end{cases} \\
w^{\prime}<x, t>= \begin{cases}h^{\prime} G(x, 2 t) & 0 \leqslant t \leqslant 1 / 2 \\
k^{\prime} G(x, 2-2 t) & 1 / 2 \leqslant t \leqslant 1\end{cases}
\end{gathered}
$$

By [7; p. 6, Theorem 1.5] we may regard that $d(h G, k G)+d\left(h^{\prime} G, k^{\prime} G\right)$ is represented by a map $w \cdot w^{\prime}: \Sigma^{2}\left(A_{1} \# A_{2}\right) \rightarrow X$. However,

$$
\begin{aligned}
\left(w \cdot w^{\prime}\right)<x, t> & = \begin{cases}h G(x, 2 t) \cdot h^{\prime} G(x, 2 t) & 0 \leqslant t \leqslant 1 / 2 \\
k G(x, 2-2 t) \cdot k^{\prime} G(x, 2-2 t) & 1 / 2 \leqslant t \leqslant 1\end{cases} \\
& = \begin{cases}\left(h G \cdot h^{\prime} G\right)(x, 2 t) & 0 \leqslant t \leqslant 1 / 2 \\
\left(k G \cdot k^{\prime} G\right)(x, 2-2 t) & 1 / 2 \leqslant t \leqslant 1 .\end{cases}
\end{aligned}
$$

This shows that $d\left(\left(h \cdot h^{\prime}\right) \circ G,\left(k \cdot k^{\prime}\right) \circ G\right)=d(h G, h G)+d\left(h^{\prime} G, k^{\prime} G\right)$.
Let $f: \Sigma A_{1} \rightarrow X, g: \Sigma A_{2} \rightarrow X$ be the sections of a map $h: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$. We now define $h^{\prime}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ by $h^{\prime}(x, y)=f(x) \cdot g(y)\left(x \in \Sigma A_{1}, y \in \Sigma A_{2}\right)$. Then h and h^{\prime} have the same section. We write

$$
\begin{equation*}
\delta(h)=d\left(h^{\prime}, h\right) . \tag{4.7}
\end{equation*}
$$

If $k: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ is another map with the same section as h, then k^{\prime}, defined as in h^{\prime}, is equal to h^{\prime}. It follows from (3.2) that

$$
\delta(k)=\delta(h)+d(h, k) .
$$

THEOREM 4.8. Let $h, h^{\prime}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ be given maps. Let $f: \Sigma A_{1} \rightarrow X$, $g: \Sigma A_{2} \rightarrow X$ be the sections of h and $f^{\prime}: \Sigma A_{1} \rightarrow X, g^{\prime}: \Sigma A_{2} \rightarrow X$ the sections of h^{\prime}. Setting $\alpha=[f], \alpha^{\prime}=\left[f^{\prime}\right], \beta=[g]$ and $\beta^{\prime}=\left[g^{\prime}\right]$, then

$$
\delta\left(h \cdot h^{\prime}\right)=\delta(h)+\delta\left(h^{\prime}\right)+<\alpha^{\prime}, \beta>.
$$

REMARK. Products $f(x) \cdot f(x) \cdot g(y) \cdot g(y)$ and $f(x) \cdot g(y) \cdot f(x) \cdot g(y)$ do not depend on the order in which products are taken. We prove only the former. We define a homotopy $f_{s}: \Sigma A_{1} \rightarrow X$ by

$$
f_{s}<a, t>=\left\{\begin{array}{cl}
f<a, \frac{2 t}{2-s}> & 0 \leqslant t \leqslant 1 / 2 \\
* & 1 / 2 \leqslant t \leqslant 1
\end{array}\right.
$$

and we replace $f: \Sigma A_{1} \rightarrow X$ by

$$
f_{1}<a, t>= \begin{cases}f<a, 2 t> & 0 \leqslant t \leqslant 1 / 2 \\ * & 1 / 2 \leqslant t \leqslant 1\end{cases}
$$

By an analogous homotopy we replace $f^{\prime}: \Sigma A_{1} \rightarrow X$ by

$$
f_{1}^{\prime}<a, t>=\left\{\begin{array}{cl}
* & 0 \leqslant t \leqslant 1 / 2 \\
f^{\prime}<a, 2 t-1> & 1 / 2 \leqslant t \leqslant 1
\end{array}\right.
$$

By the same way we replace g, g^{\prime} by g_{1}, g_{1}^{\prime}. Then $f_{1}(x) \cdot f_{1}^{\prime}(x) \cdot g_{1}(y) \cdot g_{1}^{\prime}(y)$ does not depened on the order in which the product is taken.

Proof of Theorem 4.8. The proof follows as in [6]. We define $h_{1}=f \circ p_{1}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ and $h=g \circ p_{2}$ where $p_{i}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow \Sigma A_{i}$ is the projection $i=1,2$. Using f^{\prime} and g^{\prime}, we define h_{1}^{\prime} and h_{2}^{\prime} in the same way. Setting $k=h_{1} \cdot h_{2}$ and $k^{\prime}=h_{1}^{\prime} \cdot h_{2}^{\prime}$, we have $\delta(h)=d(k, h)$ and $\delta\left(h^{\prime}\right)=d\left(k^{\prime}, h^{\prime}\right)$. By Lemma $4.6 d\left(k \cdot k^{\prime}, h \cdot h^{\prime}\right)=d(k, h)+d\left(k^{\prime}, h^{\prime}\right)=\delta(h)+\delta\left(h^{\prime}\right)$. Since $H=\left(h_{1} \cdot h_{1}^{\prime}\right)$ $\cdot\left(h_{2} \cdot h_{2}^{\prime}\right)$ have the same section as $h \cdot h^{\prime}, \delta\left(h \cdot h^{\prime}\right)=d\left(H, h \cdot h^{\prime}\right)$. By Theorem $3.2 d\left(H, h \cdot h^{\prime}\right)=d\left(H, k \cdot k^{\prime}\right)+d\left(k \cdot k^{\prime}, h \cdot h^{\prime}\right)$. On the other hand

$$
\begin{aligned}
<\alpha^{\prime}, \beta> & =d\left(h_{1}^{\prime} \cdot h_{2}, h_{2} \cdot h_{2}^{\prime}\right) & & \\
& =d\left(h_{1} \cdot h_{2}\right)+d\left(h_{1}^{\prime} \cdot h_{2}, h_{2} \cdot h_{1}^{\prime}\right)+d\left(h_{2}^{\prime}, h_{2}^{\prime}\right) & & \text { by Cor. to } 3.1 \\
& =d\left(h_{1} \cdot\left(h_{1}^{\prime} \cdot h_{2}\right), h_{1} \cdot\left(h_{2} \cdot h_{1}^{\prime}\right)\right)+d\left(h_{2}^{\prime}, h_{2}^{\prime}\right) & & \text { by } 4.6 \\
& =d\left(h_{1} \cdot\left(h_{1}^{\prime} \cdot h_{2}\right) \cdot h_{2}^{\prime}, h_{1} \cdot\left(h_{2} \cdot h_{1}^{\prime}\right) \cdot h_{2}^{\prime}\right) & & \text { by } 4.6 \\
& =d\left(H, k \cdot k^{\prime}\right) & & \text { by Remark. }
\end{aligned}
$$

Thus the proof of Theorem 2.7 is complete.
THEOREM 4.9. $(\alpha, \beta) \rightarrow<\alpha, \beta>$ is a bilinear pairing of $\pi\left(\Sigma, A_{1}, X\right)$ $\times \pi\left(\Sigma A_{2}, X\right)$ into $\pi\left(\Sigma A_{1} \# \Sigma A_{2}, X\right)$.

Proof. The proof is analogous to that of [6; Theorem 3.7]. For α, α^{\prime} $\in \pi\left(\Sigma A_{1}, X\right)$ and $\beta \in \pi\left(\Sigma A_{2}, X\right)$, we only prove

$$
<\alpha+\alpha^{\prime}, \beta>=<\alpha, \beta>+<\alpha^{\prime}, \beta>
$$

Let $f: \Sigma A_{1} \rightarrow X, f^{\prime}: \Sigma A_{2} \rightarrow X$ be the representatives of α and α^{\prime} respectively and let $g: \Sigma A_{2} \rightarrow X$ be that of β. We may replace f, f^{\prime} by f_{1}, f_{1}^{\prime} given by

$$
\begin{aligned}
& f_{1}<a, t>=\left\{\begin{array}{cc}
f<a, 2 t> & 0 \leqslant t \leqslant 1 / 2 \\
* & 1 / 2 \leqslant t \leqslant 1
\end{array}\right. \\
& f_{1}^{\prime}<a, t>
\end{aligned}=\left\{\begin{array}{cc}
* & 0 \leqslant t \leqslant 1 / 2 \\
f<a, 2 t-1> & 1 / 2 \leqslant t \leqslant 1
\end{array} .\right.
$$

We now define $h, h^{\prime}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ by

$$
h(x, y)=g(y) \cdot f_{1}(x), \quad h^{\prime}(x, y)=f_{1}^{\prime}(x) .
$$

Then $\left(h \cdot h^{\prime}\right)(x, y)=\left(g(y) \cdot f_{1}(x)\right) \cdot f_{1}^{\prime}(x)=g(y) \cdot f_{1}(x) \cdot\left(f_{1}^{\prime}(x)\right)$. Since $\alpha+\alpha^{\prime}$ is represented by a map $f \cdot f^{\prime}: \Sigma A_{1} \rightarrow X$, we have

$$
<\alpha+\alpha^{\prime}, \beta>=\delta\left(h \cdot h^{\prime}\right)
$$

Hence by Theorem $\left.4.8<\alpha+\alpha^{\prime}, \beta\right\rangle=\delta(h)+\delta\left(h^{\prime}\right)+\left\langle\alpha^{\prime}, \beta\right\rangle$. However $\delta(h)$ $=\langle\alpha, \beta\rangle$ and $\delta\left(h^{\prime}\right)=0$. This completes the proof.
5. The Hopf construction. Following Arkowitz [1], we define a map $H: C \Sigma\left(A_{1} \# A_{2}\right), \Sigma\left(A_{1} \# A_{2}\right) \rightarrow C_{\widetilde{k}}, \Sigma A_{1} \vee \Sigma A_{2}$ to be the composition of the injection $C \Sigma\left(A_{1} \# A_{2}\right) \subset C \Sigma\left(A_{1} \# A_{2}\right) \cup \Sigma A_{1} \vee \Sigma A_{2}$ and the projection $C \Sigma\left(A_{1} \# A_{2}\right)$ $\cup \Sigma A_{1} \vee \Sigma A_{2} \rightarrow C_{\tilde{k}}$. Then $H \mid \Sigma\left(A_{1} \# A_{2}\right)=\widetilde{k}$ and H induces homology isomorphisms. Also we have $F=G \circ H$.

Let $f: \Sigma A_{1} \rightarrow X, g: \Sigma A_{2} \rightarrow X \quad$ represent $\quad \alpha \in \pi\left(\Sigma A_{1}, X\right), \beta \in \pi\left(\Sigma A_{2}, X\right)$ respectively. Let X_{∞} be the reduced product space of X. We now define a map $h: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X_{\infty}$ by $h(x, y)=f(x) \cdot g(y)$, where the dot \cdot denotes multiplication in the reduced space X_{∞}. Then $\bar{h}=h \mid \Sigma A_{1} \vee \Sigma A_{2}: \Sigma A_{1} \vee \Sigma A_{2} \rightarrow X$. Consider a pair of maps ($\bar{h} \circ \widetilde{k}, h \circ F)$;
where ι and i denote the inclusions.
Since the homotopy class $[(\bar{h} \circ \widetilde{k}, h \circ F)] \in \pi\left(C \Sigma\left(A_{1} \# A_{2}\right), \Sigma\left(A_{1} \# A_{2}\right) ; X_{\infty}, X\right)$ depends only on α and β, we may write

$$
\begin{equation*}
\{\alpha, \beta\}=[(\bar{h} \circ \widetilde{k}, h \circ F)] \tag{5.1}
\end{equation*}
$$

If $\partial: \pi\left(C \Sigma\left(A_{1} \# A_{2}\right), \Sigma\left(A_{1} \# A_{2}\right) ; X_{\infty}, X\right) \rightarrow \pi\left(\Sigma\left(A_{1} \# A_{2}\right), X\right)$ is the boundary homomorphism (cf.[7]), then we have

$$
\partial\{\alpha, \beta\}=[\bar{h} \circ \widetilde{k}]=[\alpha, \beta]
$$

where $[\alpha, \beta]$ is the generalized Whitehead product [1] of α and β.
Let $J: \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), X_{\infty}\right) \rightarrow \pi\left(C \Sigma\left(A_{1} \# A_{2}\right), \Sigma\left(A_{1} \# A_{2}\right) ; X_{\infty}, X\right)$ be a homomorphism defined in $[7 ; \S 4]$.

ThEOREM 5.2. Let $\alpha \in \pi\left(\Sigma A_{1}, X\right), \beta \in \pi\left(\Sigma A_{2}, X\right)$. Then

$$
\{\alpha, \beta\}-T^{*}\{\beta, \alpha\}=J \phi^{*}<i_{*} \alpha, i_{*} \beta>,
$$

where i_{\circledast} denotes the homomorphism induced by the inclusion $i: X \rightarrow X_{\infty}$.
Proof. By definition of H we have the next commutative diagram;

Hence we may regard that $\phi^{*}<i_{※} \alpha, i_{*} \beta>$ is equal to $d(h F, k F)$ where k : $\Sigma A_{1} \times \Sigma A_{2} \rightarrow X_{\infty}$ is defined by $k(x, y)=g(y) \cdot f(x)$. Then $J \phi^{*}<i_{\varkappa} \alpha, i_{\varkappa} \beta>$ $\in \pi\left(C \Sigma\left(A_{1} \# A_{2}\right), \Sigma\left(A_{1} \# A_{2}\right) ; X_{\infty}, X\right)$ is represented by

where w^{\prime} is induced by $w: \Sigma^{2}\left(A_{1} \# A_{2}\right) \rightarrow X$,

$$
w<x, t>= \begin{cases}h F(x, 2 t) & 0 \leqslant t \leqslant 1 / 2 \\ k F(x, 2-2 t) & 1 / 2 \leqslant t \leqslant 1\end{cases}
$$

Let $\quad \widetilde{k^{\prime}}: \Sigma\left(A_{2} \# A_{1}\right) \rightarrow \Sigma A_{2} \vee \Sigma A_{1}, F^{\prime}: C \Sigma\left(A_{2} \# A_{1}\right), \Sigma\left(A_{2} \# A_{1}\right) \rightarrow \Sigma A_{2} \times \Sigma A_{1}, \Sigma A_{2}$ $\vee \Sigma A_{1}$ be defined as in $\S 4$ corresponding to \widetilde{k}, F respectively. Define $l: \Sigma A_{2}$ $\times \Sigma A_{1} \rightarrow X_{\infty}$ by $l(y, x)=g(y) \cdot f(x)\left(x \in \Sigma A_{1}, y \in \Sigma A_{2}\right)$ and set $\bar{l}=l \mid \Sigma A_{2} \vee \Sigma A_{1}$. Then $T^{*}\{\beta, \alpha\}$ is represented by

$$
\begin{aligned}
& \Sigma\left(A_{1} \# A_{2}\right) \xrightarrow{T} \Sigma\left(A_{2} \# A_{1}\right) \xrightarrow{\bar{l} \circ \widetilde{k}} X \\
& \downarrow \\
& C \Sigma\left(A_{1} \# A_{2}\right) \xrightarrow{T} C \Sigma\left(A_{2} \# A_{1}\right) \xrightarrow{l \circ F^{\prime}}{ }^{\text {l }} X_{\infty} .
\end{aligned}
$$

However we see that $l \circ F^{\prime} \circ T=l \circ T \circ F=k \circ F$ and $\bar{l} \circ \widetilde{k^{\prime}} \circ T=\bar{k} \circ \widetilde{k}$. Hence $T^{*}\{\beta, \alpha\}$ is also represented by

On the other hand $\{\alpha, \beta\}$ is represented by

Obviously $\bar{k} \circ \widetilde{k}=\bar{h} \circ \widetilde{k}$. Hence applying [3; §1.5 Lemma 4] we may conclude the theorem.

Let $i_{j}: \Sigma A_{j} \rightarrow \Sigma A_{1} \times \Sigma A_{2}$ be the injection and let $p_{j}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow \Sigma A_{j}$ be the projection $j=1,2$. Define $h: \Sigma A_{1} \times \Sigma A_{2} \rightarrow\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}$ by $h(x, y)$ $=i_{1}(x) \cdot i_{2}(y)$. Then $\left\{i_{1} i_{2}\right\}$ is represented by

Consider the following exact sequence [7]:

$$
\begin{aligned}
& \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right),\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}\right) \xrightarrow{J} \pi\left(C \Sigma\left(A_{1} \# A_{2}\right), \Sigma\left(A_{1} \# A_{2}\right) ;\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}, \Sigma A_{1} \times \Sigma A_{2}\right) \\
& \xrightarrow{\partial} \pi\left(\Sigma\left(A_{1} \# A_{2}\right), \Sigma A_{1} \times \Sigma A_{2}\right)
\end{aligned}
$$

By [1, Proposition 5.1] we have $\left[i_{1}, i_{2}\right]=0$. Hence there exists $y \in \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right)\right.$, $\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}$ such that $J(y)=\left\{i_{1} i_{2}\right\}$. Define $\rho_{j}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow \Sigma A_{1} \times \Sigma A_{2}$ by $\rho_{j}=i_{j} \circ p_{j} \quad j=1,2$, then

$$
\begin{equation*}
\rho_{i} \circ \rho_{i}=\rho_{i} \quad i=1,2, \quad \rho_{i} \circ \rho_{j}=* \quad \text { for } \quad i \neq j \tag{5.3}
\end{equation*}
$$

Let $\left(\rho_{j}\right)_{\infty}:\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty} \rightarrow\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}$ be the multiplicative map determined by ρ_{j}. Then $\left(\rho_{j}\right)_{\infty}$ induces the endomorphism $\rho_{j *}$ of $\pi\left(C \Sigma\left(A_{1} \# A_{2}\right), \Sigma\left(A_{1} \# A_{2}\right)\right.$; $\left.\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}, \Sigma A_{1} \times \Sigma A_{2}\right)$. Now consider $\rho_{1 *}\left\{i_{1} i_{2}\right\} . \rho_{1 *}\left\{i_{1}, i_{2}\right\}$ is represented by

However we easily see that $\bar{h}=j: \Sigma A_{1} \vee \Sigma A_{2} \rightarrow \Sigma A_{1} \times \Sigma A_{2}$ and $j \widetilde{k}=F \iota$. Also it is easy to check that $i \rho_{1}=\rho_{1 \infty} h$. Therefore the above diagram is reduced to the diagram

Here we shall remark that the following lemma is easily proved.
Lemma 5.4. Consider the commutative diagram:

Then $[(f \iota, \beta f)]=0 \quad$ in $\quad \pi_{1}(A, \beta)$.
Therefore we have $\rho_{1 *}\left\{i_{1}, i_{2}\right\}=0$. Similarly $\rho_{2 *}\left\{i_{1}, i_{2}\right\}=0$. Hence $J \rho_{1} *(y)$ $=\rho_{1 *} J(y)=0$ and $J \rho_{2 *}(y)=0$. Set $x=y-\rho_{1 *}(y)-\rho_{2 *}(y)$, then the following conditions are satisfied;
(i) $J(x)=\left\{i_{1}, i_{2}\right\}$,

$$
\begin{equation*}
\rho_{1 *}(x)=0 \quad \text { and } \quad \rho_{2 *}(x)=0 . \tag{5.5}
\end{equation*}
$$

Let x^{\prime} be another element satisfying the above conditions (i), (ii). Since

$$
\begin{aligned}
& \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), \Sigma A_{1} \times \Sigma A_{2}\right) \xrightarrow{i_{\#}} \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right),\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}\right) \\
& \xrightarrow{J} \pi\left(C \Sigma\left(A_{1} \# A_{2}\right), \Sigma\left(A_{1} \# A_{2}\right) ;\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}, \Sigma A_{1} \times \Sigma A_{2}\right)
\end{aligned}
$$

is exact, there exists $z \in \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), \Sigma A_{1} \times \Sigma A_{2}\right)$ such that $i_{\#}(z)=x-x^{\prime}$. By
the properties of the direct product (cf. [2]), we have

$$
\left.\pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), \Sigma A_{1} \times \Sigma A_{2}\right) \approx \operatorname{Im} \rho_{1 *}+\operatorname{Im} \rho_{2 *} \quad \text { (direct sum }\right)
$$

Hence we may write $z=\rho_{1 \%}(u)+\rho_{2 \%}(v)$ for some $u, v \in \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), \Sigma A_{1} \times \Sigma A_{2}\right)$. Then

By (5.3) and (5.5) (ii), $\rho_{1 ※} i_{*}(u)=\rho_{1 \%}(x)-\rho_{1 \ddot{*}}\left(x^{\prime}\right)=0$. Similarly $\rho_{2 ※} i_{\#}(v)=0$. Hence we can conclude that $x=x^{\prime}$. Thus we have the next theorem;

THEOREM 5.6. There exists only one $x \in \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right) ;\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}\right)$ such that

$$
J(x)=\left\{i_{1}, i_{2}\right\} \quad \text { and } \quad \rho_{1 *}(x)=\rho_{2 \%}(x)=0 .
$$

DEFINITION 5.7. Let $\alpha \in \pi\left(\Sigma A_{1}, X\right)$ and $\beta \in \pi\left(\Sigma A_{2}, X\right)$. We say that $h: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ is of type (α, β) if $\left[h \mid \Sigma A_{1}\right]=\alpha$ and $\left[h \mid \Sigma A_{2}\right]=\beta$. Suppose that there exists a map $h: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ of type (α, β). Let $f: \Sigma A_{1} \rightarrow X$, $g: \Sigma A_{2} \rightarrow X$ represent α, β respectively and let $i: X \rightarrow X_{\infty}$ be the injection. We define $h^{\prime}, h^{\prime \prime}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X_{\infty}$ by $h^{\prime}=i \circ h$ and $h^{\prime \prime}(x, y)=f(x) \cdot g(y)$ respectively. By definition $\phi^{*} \delta\left(h^{\prime}\right)=\phi^{*} d\left(h^{\prime \prime}, h\right)$ is represented by

$$
w<x, t>=\left\{\begin{array}{ll}
h^{\prime \prime} F(x, 2 t) & 0 \leqslant t \leqslant 1 / 2 \\
h^{\prime} F(x, 2-2 t) & 1 / 2 \leqslant t \leqslant 1
\end{array} \quad<x, t>\in \Sigma^{2}\left(A_{1} \# A_{2}\right)\right.
$$

Recall that $h^{\prime \prime} F(x, 1)=\overline{h^{\prime \prime}} \widetilde{k}(x)$. By [1; Proposition 5.1] $\overline{h^{\prime \prime}} \widetilde{k} \cong *$. We denote this nullhomotopy by u_{t}. We now define $w^{\prime}: \Sigma^{2}\left(A_{1} \# A_{2}\right) \rightarrow X_{\infty}$ by

$$
w^{\prime}<x, t>= \begin{cases}h^{\prime \prime} F(x, 2 t) & 0 \leqslant t \leqslant 1 / 2 \\ i u_{2 t-1}(x) & 1 / 2 \leqslant t \leqslant 1\end{cases}
$$

On the other hand $\{\alpha, \beta\}$ is represented by
where $\overline{h^{\prime \prime}}=h^{\prime \prime} \mid \Sigma A_{1} \vee \Sigma A_{2}$. Since $\iota: \Sigma\left(A_{1} \# A_{2}\right) \rightarrow C \Sigma\left(A_{1} \# A_{2}\right)$ is a cofibration, the deformation u_{s} of $\overline{h^{\prime \prime}} \circ \widetilde{k}$ may be extended to the deformation v_{s} of $h^{\prime \prime} \circ F$ given by

$$
v_{s}(x, t)= \begin{cases}h^{\prime \prime} F(x,(1+s) t) & 0 \leqslant t \leqslant 1 /(1+s) \\ i u_{t+s t-1}(x) & 1 /(1+s) \leqslant t \leqslant 1\end{cases}
$$

Then

$$
v_{1}(x, t)= \begin{cases}h^{\prime \prime} F(x, 2 t) & 0 \leqslant t \leqslant 1 / 2 \\ i u_{2 t-1}(x) & 1 / 2 \leqslant t \leqslant 1\end{cases}
$$

Hence we see that $\{\alpha, \beta\}=J\left[w^{\prime}\right]$. Next we define $U: C \Sigma\left(A_{1} \# A_{2}\right) \rightarrow X_{\infty}$ by $U(<a, s>, t)=i u_{1-t}<a, s>\quad a \in A_{1} \# A_{2}$. Then $U(<a, s>, 1)=i \overline{h^{\prime \prime}} \widetilde{k}<a, s>$ and $U(<a, s>, 0)=*$. Now we shalll show $h^{\prime} F \cong U$ rel. $\Sigma\left(A_{1} \# A_{2}\right)$. For the simplicity we set $A=A_{1} \# A_{2}$. We define a map $G: A \times I \times I \times \dot{I} \cup A \times I \times 1 \times I$ $\cup A \times \dot{I} \times I \times I \rightarrow X_{\infty}$ by

$$
\begin{aligned}
& G(a, s, t, 0)=h^{\prime} F(<a, s>, t) \\
& G(a, s, t, 1)=U(<a, s>, t) \\
& G(a, s, 1, u)=i \bar{h}^{\prime \prime} \widetilde{k}<a, s> \\
& G(a, \epsilon, t, u)=* \quad \epsilon=0,1
\end{aligned}
$$

Using a retraction $I \times I \times I \rightarrow I \times 1 \times I \cup I \times I \times \dot{I} \cup \dot{I} \times I \times I$, we may extend G to a whole map $G: A \times I \times I \times I \rightarrow X_{\infty}$. We now define a homotopy $\psi_{u}: C \Sigma A \rightarrow$ X_{∞} by $\psi_{u}(<a, s>, t)=G(a, s, t, u(1+2 t) /(t+u(1+t)))$. Then ψ_{u} is well defined and it provides $h^{\prime} F \cong U$ rel. $\Sigma\left(A_{1} \# A_{2}\right)$. Therefore we obtain the following theorem :

THEOREM 5.8. Let $\alpha \in \pi\left(\Sigma A_{1}, X\right)$ and $\beta \in \pi\left(\Sigma A_{2}, X\right)$. If there is a map $h: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ of type (α, β), then

$$
J \phi^{*} \delta\left(h^{\prime}\right)=\{\alpha, \beta\}
$$

where h^{\prime} denotes the composition of h and the inclusion $i: X \rightarrow X_{\infty}$.
DEFINITION 5.9. Let $f: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ be a map and let $x \in \pi\left(\Sigma^{2}\left(A_{1}\right.\right.$ $\left.\left.\# A_{2}\right),\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}\right)$ be an element which is obtained by Theorem. 5.6. Moreover let f_{*} denote the homomorphism induced by multiplicative map $f_{\infty}:\left(\Sigma A_{1}\right.$ $\left.\times \Sigma A_{2}\right)_{\infty} \rightarrow X_{\omega}$. Then we say that $c(f)=f_{\#}(X)$ is obtained from f by the

Hopf construction.
THEOREM 5.10. $c(f)$ is characterized uniquely by the following three properties:
i) if $f: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ is of type $\left(\alpha_{1}, \alpha_{2}\right)$, where $\alpha_{i} \in \pi\left(\Sigma A_{i}, X\right) i=1,2$, then

$$
J(c(f))=\left\{\alpha_{1}, \alpha_{2}\right\} .
$$

ii) Let $g: X \rightarrow Y$ be a map, then

$$
c(g \circ f)=g_{*} c(f) .
$$

iii) Let $f: \Sigma A_{1} \times \Sigma A_{2} \rightarrow \Sigma A_{1} \times \Sigma A_{2}$ be either of the projections (x, y) $\rightarrow(x, *)$ or $(x, y) \rightarrow(*, y)$ where $x \in \Sigma A_{1}, y \in \Sigma A_{2}$, then

$$
c(f)=0
$$

Proof. It follows from Theorem 5.6 and Definition 5.9 that $c(f)$ satisfies the conditions i) and iii). ii) is easily checked. The uniqueness of this characterization follows from the above theorem and definition.

THEOREM 5.11. Let $h: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ be a map and let h^{\prime} denote its inclusion into X_{∞}. Let $c(h)$ denote the element of $\pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), X_{\infty}\right)$ which is obtained from h by the Hopf construction (see Definition 5.9). Then

$$
c(h)=\phi^{*} \delta\left(h^{\prime}\right)
$$

Proof. We check that $\phi^{*} \delta\left(h^{\prime}\right)$ satisfies conditions i), ii) and iii) in (5.10). i) follows from Theorem 5.8. Let $f: X \rightarrow Y$ be a map. Then we have $f_{*} \phi^{*} \delta\left(h^{\prime}\right)$ $=\phi_{*} \delta\left(f_{\infty} h^{\prime}\right)=\phi^{*} \delta($ if $h)$. This proves ii). Finally let $h: \Sigma A_{1} \times \Sigma A_{2} \rightarrow \Sigma A_{1} \times \Sigma A_{2}$ be defined by $h(x, y)=(x, \cdots)$. Denote the sections of h by f, g. Then $h^{\prime \prime}(x, y)$ $=f(x) \cdot g(y)=h^{\prime}(x, y)$, and hence $\delta\left(h^{\prime}\right)=0$. Thus iii) is proved.

THEOREM 5.12. A necessary and sufficient condition that $\alpha \in \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right)\right.$, X_{∞}) can be obtained from some map $\Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ of type $\left(\alpha_{1}, \alpha_{2}\right)$ by the Hopf construction, where $\alpha_{i} \in \pi\left(\Sigma A_{i}, X\right) i=1,2$, is

$$
J(\alpha)=\left\{\alpha_{1}, \alpha_{2}\right\}
$$

Proof. Let $f: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ be a map of type (α_{1}, α_{2}). If α is obtained from f by the Hopf construction, then $\alpha=f_{*}(x)$ by Definition 5.9. Moreover we have $J(\alpha)=J f_{\#}(x)=f_{\#} J(x)=f_{\because}\left\{i_{1}, i_{2}\right\}$ by (5.6). Recall that $\left\{i_{1} i_{2}\right\}$ is represented by

where $h: \Sigma A_{1} \times \Sigma A_{2} \rightarrow\left(\Sigma A_{1} \times \Sigma A_{2}\right)_{\infty}$ is defined by $h(x, y)=i_{1}(x) \cdot i_{2}(y)$ and $\bar{h}=h \mid \Sigma A_{1} \vee \Sigma A_{2}$. Also $f_{*}\left\{i_{1}, i_{2}\right\}$ is represented by

But $f_{\infty} h(x, y)=f i_{1}(y) \cdot f i_{2}(y), f h(x, *)=f i_{1}(x)$ and $f h(*, y)=f i_{2}(y) \quad x \in \Sigma A_{1}$, $y \in \Sigma A_{2}$. Since α_{j} is represented $f i_{j}: \Sigma A_{j} \rightarrow \Sigma A_{1} \times \Sigma A_{2} \rightarrow X \quad j=1,2$, it follows that $f_{*}\left\{i_{1}, i_{2}\right\}=\left\{\alpha_{1}, \alpha_{2}\right\}$.

Conversely let $\alpha \in \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), X\right)$ and $\alpha_{i} \in \pi\left(\Sigma A_{i}, X\right) \quad i=1,2$ be given such that $J(\alpha)=\left\{\alpha_{1}, \alpha_{2}\right\}$. Let α_{i} be represented by a map $f_{i}: \Sigma A_{i} \rightarrow X$. By the properties of the wedge product (cf. [2]), there exists a map $f^{\prime \prime}: \Sigma A_{1} \vee \Sigma A_{2}$ $\rightarrow X$ such that $f^{\prime \prime} i_{1}=f_{1}$ and $f^{\prime \prime} i_{2}=f_{2}$. Now we have

$$
f_{*}^{\prime \prime}\left[i_{1}, i_{2}\right]=\left[\alpha_{1}, \alpha_{2}\right]=\partial\left\{\alpha_{1}, \alpha_{2}\right\}=\partial J(\alpha)=0 .
$$

Hence by [1; Proposition 5.1] there exists a map $f^{\prime}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ such that $f^{\prime} j \cong f^{\prime \prime}$. Without the loss of generality we may assume that $f^{\prime} j=f^{\prime \prime}$, since $j: \Sigma A_{1} \vee \Sigma A_{2} \rightarrow \Sigma A_{1} \times \Sigma A_{2}$ is a cofibration (Note that $\Sigma A_{1} \times \Sigma A_{2}$ is a $C W$ complex). Obviously f^{\prime} is of type $\left(\alpha_{1}, \alpha_{2}\right)$. Setting $\alpha^{\prime}=c\left(i f^{\prime}\right)$, then $J\left(\alpha^{\prime}\right)$ $=\left\{\alpha_{1}, \alpha_{2}\right\}$. Since $\pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), X\right) \xrightarrow{i_{*}} \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), X_{\infty}\right) \xrightarrow{J} \pi\left(C \Sigma\left(A_{1} \# A_{2}\right)\right.$, $\left.\Sigma\left(A_{1} \# A_{2}\right) ; X_{\infty}, X\right)$ is exact, there exists $\delta \in \pi\left(\Sigma^{2}\left(A_{1} \# A_{2}\right), X\right)$ such that $i_{\#}(\delta)$ $=\alpha-\alpha^{\prime}$. For such a δ, by Theorem 3.3, there exists a map $g^{\prime \prime}: C_{\overparen{k}} \rightarrow X$ such that $g^{\prime \prime} i^{\prime}=f^{\prime \prime}$ and $d\left(f^{\prime} G, g^{\prime \prime}\right)=\delta$, where $i^{\prime}: \Sigma A_{1} \vee \Sigma A_{2} \rightarrow C_{\overparen{k}}$ is the inclusion. Let G^{\prime} be a homotopy inverse of the homotopy equivalence $G: C_{\breve{k}} \rightarrow \Sigma A_{1} \times \Sigma A_{2}$ and we set $g=g^{\prime \prime} \circ G^{\prime}$. Then $g \circ G \cong g^{\prime \prime}$ and so $g \circ G \circ i^{\prime} \cong f^{\prime \prime}$. But $G \circ i^{\prime}=j$: $\Sigma A_{1} \vee \Sigma A_{2} \rightarrow \Sigma A_{1} \times \Sigma A_{2}$ and hence there exists a map $g^{\prime}: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X$ such that $g^{\prime} \cong g$ and $g^{\prime} j=f^{\prime \prime}$. Thus we have $d\left(f^{\prime} G, g^{\prime} G\right)=\delta$. We now define $l: \Sigma A_{1} \times \Sigma A_{2} \rightarrow X_{\infty}$ by $l(x, y)=i f^{\prime} i_{1}(x) \cdot i f^{\prime} i_{2}(y)$. Then

$$
\begin{align*}
i_{*} d\left(f^{\prime} G, g^{\prime} G\right) & =d\left(i f^{\prime} G, i g^{\prime} G\right) \\
& =d\left(i f^{\prime} G, l G\right)+d\left(l G, i g^{\prime} G\right) \tag{3.2}
\end{align*}
$$

$$
\begin{array}{ll}
=-\left[d\left(l G, i f^{\prime} G\right)-d\left(l G, i g^{\prime} G\right)\right] & \\
=-\left[\phi^{*} \delta\left(i f^{\prime}\right)-\phi^{*} \delta\left(i g^{\prime}\right)\right] & \\
=-c\left(i f^{\prime}\right)+c\left(i g^{\prime}\right) & \\
\text { by Def. Do (3inition } \\
=3.2) \\
=15.11) .
\end{array}
$$

On the other hand $i_{\#} d\left(f^{\prime} G, g^{\prime} G\right)=i * \delta=\alpha-\alpha^{\prime}$. Hence $c\left(i g^{\prime}\right)-c\left(i f^{\prime}\right)=\alpha-\alpha^{\prime}$. Thus we have $\alpha=c\left(i g^{\prime}\right)$.

References

[1] M. Arkowitz, The generalized Whitehead product, Pacific Journ. of Math., 12(1962), 7-23.
[2] B. Eckmann and P. J. Hilton, Operators and cooperators in homotopy theory, Math. Ann., 141(1960), 1-21.
[3] C. R. Curjel, Uber die Homotopie und Cohomologiegruppen von Abbildungen, Comm. Math. Helv., 35(1961), 233-262.
[4] I. M. James, Reduced product spaces, Ann. of Math., 62(1955), 170-197.
[5] -, On the suspension triad, Ann. of Math., 63(1956), 191-247.
[6] -, On spaces with a multiplication, Pacific Journ. of Math., 7(1957), 10831100.
[7] P. J. Hilton, Homotopy theory and dualily, Mimeographed notes, Cornell University, 1959.

Hirosaki University.

