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sin nx

n=1 n
was found by W. Gibbs and O. Szasz[7], L.Lorch[4], C.L.Miracle [6], K.
Ishiguro [1],[2] and many other authors have investigated this phenomenon
for various summability methods.

In a recent paper A.Meir has introduced in [5] a family of summability
methods F(a, q(p)) which is defined by two parameters a and g(p) and has
shown that this family contains Borel, Valiron, Euler, Taylor, and .S,-
transformation.

In this paper we shall study the Gibbs’ phenomenon of the Fourier series

1. Introduction. The Gibbs’ phenomenon of Fourier series >

> sin nz for this family of summability methods. If we define s,(x) by the

n=1

sin nx

partial sum of the Fourier series ) which is equal to %(w —x) for

n=1
0 < z < 2w, and define o,(x) by the linear transformation of s,(x) by means
of a family of summability methods whose matrix belongs to F(a, g(p)), then
we obtain the following result:
If {x,} satisfies the condition that for given 7, in the case 0 =7 << oo,
x,— +0, g(p)x, — 7 and in the case =00, g(p)x, = oo, g(p)x,? > +0 as p
tends to infinity, where ¢=q(p) is the parameter of F(a, q(p)), then we get

(1.1) lim,(x,) = f Ly
Do 0 u
We can prove the above formula (1. 1) by the same calculation as the one
which we use in order to obtain Lebesgue constant for a family of summability
methods (see [3]). Gibbs’ phenomenon for this family is independent of the
parameter a of F(a,q(p)). Since s,(x) is odd function of x, a similar pheno-
menon occurs in the left-hand neighourhood of x=0.
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From this result we shall show that we can obtain the Gibbs’ phenomenon
for Borel, Valiron, Euler, Taylor and S,-transformation which are contained
in this family of summability methods.

2. The Family F(a, q(p)) of summability methods. Following A.Meir
[5], let us say that the summability matrix [c,.] belongs to F(a,q(p)) if it
satisfies the following conditions: p is a discrete or continuous parameter ;
a is a positive constant; g=¢(p) is a positive increasing function which tends

to infinity as p— oo ; for every 3: %<8<-§~,

21 = \/%e—%(k_Q)’{l‘FO(']_k:g—l‘ﬂ) + O(—‘%i)}

as p— oo uniformly in %k for |k—¢|=¢°,

(2.2) Cpo + Z ke, = O (exp(—gq")

lk—q|>
where 7 is some positive number independent of p, and

(23) Cpk__—>—_0.

It is known that the family F(a, ¢(p)) with appropriate @ and g(p) contains
such summability methods as Borel, Valiron, Euler, Taylor and S,-transformation
(see A.Meir [5)).

From the definition of o,(x), we have

2sin-%-

in(ns L
= sm<n+ D) )u du) .

2.4) o) = é CpreSi(x) = gcpk <— —;— + j;

We shall now investigate the behaviour of o,(x) in the neighbourhood
of x=0. o

3. Two lemmas. In order to prove the formula (1.1), we require the
following two lemmas.

LEMMA 3.1. If the summability matrixz [c,.] belongs to F(a,q(p)), we
have
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, > -1
3.1) Sex=14dg *) as p—ooo.
k=0

The proof follows from (2.1) and (2.2) by a simple calculation.

LEMMA 32. If {x,} satisfies the condition which is mentioned in
section 1 and p tends to infinity, then we have

(3.2) fo N
and

1 a ~Zk-or k—ql+1 . _
Snu x/;(—}-e a Ty [sin(2&+1)u| du = o(1)

Jk-g|=q®

(3.3 j:p 1 > \/Ze—%(k_q)z —lk——;zqi Isin(2k+1) u| du = o(1) .

Sinu lk-al=q® q

PROOF. From the condition on {x,}, for sufficiently large p, we get

[ % Jie‘%(k'“)’M\sin(zkﬂ)uldu
0 q

Simu lk-ai=d® Tq

[ = et Bt a0y

- o( .
' o SIMU L o=p Y Tq
- o(ﬁ Vs du> = «1).

Similary, we get for sufficiently large p,

P . - a (3 va —_ 3
f 1 > «V/¥"—e_7ac o lk—g|® qu |sin(2k+1) u| du
0 q

sSinu g Y T

_ ” 1 “a 2w ((k—g)' | |k—q]®

AT

_ O(f:”\/T du) = d(1).

4. Gibbs’ phenomenon. In this section we consider the Gibbs’ phenomenon
for a family of summability methods whose matrix [c,,] belongs to F(a, q(p)).

THEOREM. Let o,(x) denote the linear transformation of s,(x) by
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means of a family of summability methods whose matrix belongs to

F(a, q(P)).
If {x,} satisfies the following condition that for given T, in the case

0=17<oo, x,— +0, g(p)x, > 7 and in the case T=c0, q(p)x, — o, q(p)x,’
— +0 as p— oo, where q=q(p) is mentioned in section 2, then we have

(1.1) limay(z,) = [ S2% gy,

u

PROOF. From lemma 3.1, (2.2) and (2. 4), we have

Zp/2

> cpesin(Rk+1)udu + o(1).

k=0

a,(x,) = f

o Ssinu

We put I)(x,) and I,(x,) as follows:

Xp/2
a,(x,) =f0 1 ( > . + > ) Coi SIN(2k+ D du + o(1)
lk—ql=d

sinu kealod
= I(z,) + L(x,) + o(1).

Applying lemma 3.2 and (2.2) to I,(x,) and I,(x,), we get for sufficiently
large p,

Iz, = fx,/z 1 > «/_a_“e_%(k_q).

0 S« ]k—q]§q8 nq

X (1 +0 (L%ﬂil) +0 (Ik;qu)) sin(2k+1)u du

Zp/2 — a
= f 1 x/—a—e_T(k " sin(2k +1)u du + o(1)

o SInu =gV ™
and

1
sinu

> cpesink+1)udu

k—al>d®

Zp/2 1
=o<j; (et T keufudu

lk-al>d®

Zp/2
L) =

= O(z, exp(—¢") = o(1),
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Then we obtain

Zp/2 —_— @,
4.1) oz, = j; L > \/Le_7(k ? sin(2k+ 1)z du + o(1).

S s Y Tq

1°) The case where ¢=q(p) is integer.
When we put n=%k—q(p), we have

J 2 e ™ gin(2k+1) u

1k~ql=d® ™q

— a .

——mn?+2uni

—‘\\‘v{ei‘Q"*l’”J a Z e }
T \pi=d

400

a ~ % 2 yount
— %{ei(ﬁ+1)uJ Z _ Z )e a } .
7Tq n=-—o0 Inl>q8

Using the property of Theta function [8], we get

a el —% n2yquni = —i(u—-mr)’
Ly T e g

'ﬂ'q n=—o0 n=—oo

and consequently for 0= u < z,,

@2 % J_qf? ¢ T Gin(2k+1)u
[e—q]=

= 3{3“"“)“ > P } + O( > A lsin(2n+2q+1)u|)

n=—oc0 ln|>q6 ™q
=" sin(2g+1) u + O(ge™"" u).
From (4.1) and (4. 2), we get

1

sinz

4.3) o)z, = f/ {ﬁm sin(2g+1) u+O(ge™™" u>} du + o(1)

Zp, — e,
=f ? ¢ " sin(2g +Du du + of1) .
0 u

We put flu, p) and D,(x,) as follows:
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fau,p) = —-(1=c ")
(4.4)

Zp/2

Dy(x,) = | flu, p)sin(2q+1)u du.
0
Applying integration by parts to D,(x,), we get

—cos(2g+ 1)~xi 20/

09 D)= 2) g Bt [Foup D

From f(u, $) >0 for 0 <u = z,/2 and f(+0, p) = gaq- >0,

Tp/2

(4.6) 1fw p)ldu = Ogz,).

From (4.5) and (4. 6), we get

Zp/2

@n D) =040 (k[ plau) = 0 = .
Consequently we get from (4. 3), (4.4) and (4.7) for sufficiently large p

4. 8) o (x,) = f " iiﬂ(g‘iil)—“ du + o)

=f‘ SINY T+ o(1)
0

u

Thus the theorem has been proved when ¢ = g(p) is integer. Next we
shall consider the other case.

2°) The case where ¢ = g(p) is not integer.

Let [g] denote the integral part of ¢ = ¢(p) and ¢, =[g]+1. We put
D(zx,), Diz,), Dy(x,) and D,(x,) as follows:

Tp/2 —_— LT
f L > \/—L e sin(2k+1)u du
0

Sinu Jk-ql=q® ™q

Tp/2 — a ..,
— f 1 > «/_a_ e Wt w sin(2k+1)u du
0 " -

SINU L gisd ¥ T

(4.9)
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Tp/2 —_— R
1 a —ZLk-gr a -2 le-q)
. + > 1/——e a —x/—e 0 sin(2k+1u|d
‘/; Sinu <q<l§+q5 a- a8§k<q> ( ™q m™qo ( Ju|

Xp/2 ——
1 o
+.£ x/ e @™ |sin(2k+1) u|du

SINU ) Pksaorad ' T9o

IA

Zp/2 —_—

(k a)?

+f 2 e |sin(2k+1)u|du
sinu a- q5<ksq -a q )

= D\(z,) + Dy(x,) + Dyx,) + Dy(x,).
i) In the case where ¢ < g, =k = ¢+¢°, we have
0=(k—q0)/~ g <(k—q)/v/ q <(k—[g)/~/[q] -

Hence the following estimation results:
’\/ -L k-0 \/ a e-%(k—w
m™qo
1 =1/ v/ Tq1
=0 (—:f lxe“”"ldx)
~ o (k=a)/¥@

o( Le‘a‘i—“c-a»)’((k—go)z k=gl 1 )
~ g, 9o 9o 9o

Then we get

S | 1 -
(4.10) meOU . > =W
0

sinu a<k=q+d® “/ 90

(k qo)2 Ik QO‘
( o | P q )(ZIk ql+2q+1)udu)

o Tp/2
- O(N/ 7 jt; sinu du) = oll).
ii) In the case where & < [¢] <¢ < g,, we have
(E—q)/n/ @ <(k—q)/ g <(k=IgD/s/Tg] =0.

Hence the following estimation results just as in the case of i):
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l«/ a e_%(k_q)’-—,\/ a e—%(k—m)z
™q K’

1 (k) o/ T
(—_ f | e | dx)
~ g (k=ao)/” T

1 g ((k=[q])* | [k—Iq]|
¢ ([qP g +[q]))'

110

I
)

o

(«/ lq]

Il

Then we get

Tp/2 1 (k—1[aql)
aw b[5G £ g

(k—lgl? | lk—lqll
( g1 + [q] [q])(ZIk ql+2q+1)udu>

Tp/2%
_ S u
=0 (A/ q -/; sinu

Next we shall estimate Dy(x,), D,(x,) and we get

S | a St
419 Di)=) o T ”/;q_e w* | sin(2k+1) 2| du

o+ <ksar+d

du) =a().

Xp/2
=0 <¢7]— et fo e du) = o1),

ZTp/2 _ a .,
(4.13) Dd(xp) = ./; Sl:l.u SZ «/‘;rgq— 6—7“ ? | sin(2k + Duldu
a-®sk<qo—af

Zp/2

_ O(J? ¢-eat f - du) = o1).

From (4.1), (4.9), (4.10), (4.11), (4.12), (4.13) and the result of 1°), we have

ZTp/2 [ a s
AT,) = f L ¢Le‘7‘k " $in(2k +1) u du + o(1)

SInu | Zosd Vo mq

Tp/2 —_— @,
f 1 \/ 2w ™ in(2k+1)uw du+ o(1)

1 5
o SINU L isa ¥ TG0
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=fz”/2 sin(2g,+1)u du + o(1)
0 u

[ sinu
—j; “u du + o(1).

Thus we have obtained Gibbs’ phenomenon for a family of summability
methods whose matrix [c,.] belongs to F(a, q(p)).

5. Gibbs’ phenomenon for Borel, Valiron, Euler, Taylor and S.-trans-
formation. In this section, we suppose that {x,} satisfies the same condition
as in the theorem of section 4.

From the theorem, we get the following results:

i) Borel-transformation (see L. Lorch [4]).
The summability matrix of Borel-transformation is defined by

cpk=e-ﬂ—;§ (£=0,1,2,+++),

where p>0, a = —é— and g(p)= p (see A.Meir [5)).

If we define B,(x) by the linear transformation of s,(x) by means of
Borel-transformation, we have from (1.1)

oo k T .
lim B,(x,) = lime» £+ su(x,) = f Snu g,
proo poe k=0 X 0 u

ii) Valiron-transformation.
The summability matrix of Valiron-transformation is defined by

Cpe = x/%e“%““’” (p=1,2,-++, k=0,1,2,-++)

where a >0, a = a and gq(p) = p.
If we define V,(x) by the linear transformation of s,(x) by means of
Valiron-transformation, we have

©o _i _ T .
>e p &P si(x,) =f m;u du.

k=0 0

e =t
lim V() = lim /2
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iii) Euler-transformation (see O. Szasz [7]).
The summability matrix of Euler-transformation is defined by

I

) ={<7f)a"(1—a)”"‘ for 0=k=p,

(P=1’2;3"")
0 for p+1=k,

where 0 <a <1, a =1/21—a) and g = ap (see A.Meir [5]). If we define

E,(x) by the linear transformation of s,(x) by means of Euler-transformation,
we have

lim E,(x,) = lim 3" ( {) a1 —a)r* s(z,)
Do Y andad k=0

“T sinu
[,
o U

iv) Taylor-transformation (see K. Ishiguro [1]).
The summability matrix of Taylor-transformation is defined by

0 for 0=k=p-1,
C =
7" { P! (i)(l—r)""’ for p=k,

where 0 <r <1, a =7/2(1—7r) and ¢(p) = p/r (see A.Mier [5]). If we define

T,(x) by the linear transformation of s,(x) by means of Taylor-transformation,
we have

lim T'(x,) = lim ) r**! ( k ) A—ry?si(x,)
poeo P p

" sinu
= f du.
0

u

v) S.-transformation (see K. Ishiguro [2]).
The summability matrix of S,-transformation is defined by

Cor = (1_a)p+1(PZk>ak (k=0,1,2,--+, p=1,2,...)

where 0 <a <1, a=(1—a)/2 and g(p) = ap/(1—2) (see A.Meir [5]). If we
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define o,(x) by the linear transformation of s,(x) by means of S,-transformation,
we have

lim o,(z,) = lim = (- (P F) @ sua)

at/(1-a) sinu
= f du.
0

u
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