GIBBS' PHENOMENON FOR A FAMILY OF SUMMABILITY METHODS

Kyuhei Ikeno

(Received December 14, 1965)

1. Introduction. The Gibbs' phenomenon of Fourier series $\sum_{n=1}^{\infty} \frac{\sin n x}{n}$ was found by W. Gibbs and O. Szasz [7], L. Lorch [4], C. L. Miracle [6], K. Ishiguro [1], [2] and many other authors have investigated this phenomenon for various summability methods.

In a recent paper A. Meir has introduced in [5] a family of summability methods $F(a, q(p))$ which is defined by two parameters a and $q(p)$ and has shown that this family contains Borel, Valiron, Euler, Taylor, and $S_{\alpha^{-}}$ transformation.

In this paper we shall study the Gibbs' phenomenon of the Fourier series $\sum_{n=1}^{\infty} \frac{\sin n x}{n}$ for this family of summability methods. If we define $s_{n}(x)$ by the partial sum of the Fourier series $\sum_{n=1}^{\infty} \frac{\sin n x}{n}$ which is equal to $\frac{1}{2}(\pi-x)$ for $0<x<2 \pi$, and define $\sigma_{p}(x)$ by the linear transformation of $s_{n}(x)$ by means of a family of summability methods whose matrix belongs to $F(a, q(p))$, then we obtain the following result:

If $\left\{x_{p}\right\}$ satisfies the condition that for given τ, in the case $0 \leqq \tau<\infty$, $x_{p} \rightarrow+0, q(p) x_{p} \rightarrow \tau$ and in the case $\tau=\infty, q(p) x_{p} \rightarrow \infty, q(p) x_{p}{ }^{2} \rightarrow+0$ as p tends to infinity, where $q=q(p)$ is the parameter of $F(a, q(p))$, then we get

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \sigma_{p}\left(x_{p}\right)=\int_{0}^{\tau} \frac{\sin u}{u} d u . \tag{1.1}
\end{equation*}
$$

We can prove the above formula (1.1) by the same calculation as the one which we use in order to obtain Lebesgue constant for a family of summability methods (see [3]). Gibbs' phenomenon for this family is independent of the parameter a of $F(a, q(p))$. Since $s_{n}(x)$ is odd function of x, a similar phenomenon occurs in the left-hand neighourhood of $x=0$.

From this result we shall show that we can obtain the Gibbs' phenomenon for Borel, Valiron, Euler, Taylor and S_{α}-transformation which are contained in this family of summability methods.
2. The Family $\mathbf{F}(\boldsymbol{a}, \boldsymbol{q}(\boldsymbol{p}))$ of summability methods. Following A. Meir [5], let us say that the summability matrix $\left[c_{p k}\right]$ belongs to $F(a, q(p))$ if it satisfies the following conditions: p is a discrete or continuous parameter; a is a positive constant; $q=q(p)$ is a positive increasing function which tends to infinity as $p \rightarrow \infty$; for every $\delta: \frac{1}{2}<\delta<\frac{2}{3}$,

$$
\begin{equation*}
c_{p k}=\sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}}\left\{1+O\left(\frac{|k-q|+1}{q}\right)+O\left(\frac{|k-q|^{3}}{q^{2}}\right)\right\} \tag{2.1}
\end{equation*}
$$

as $p \rightarrow \infty$ uniformly in k for $|k-q| \leqq q^{\delta}$,

$$
\begin{equation*}
c_{p o}+\sum_{|k-q|>q^{\delta}} k c_{p k}=O\left(\exp \left(-q^{\eta}\right)\right) \tag{2.2}
\end{equation*}
$$

where η is some positive number independent of p, and

$$
\begin{equation*}
c_{p k} \geqq 0 . \tag{2.3}
\end{equation*}
$$

It is known that the family $F(a, q(p))$ with appropriate a and $q(p)$ contains such summability methods as Borel, Valiron, Euler, Taylor and S_{α}-transformation (see A. Meir [5]).

From the definition of $\sigma_{p}(x)$, we have

$$
\begin{equation*}
\sigma_{p}(x)=\sum_{k=1}^{\infty} c_{p k} s_{k}(x)=\sum_{k=0}^{\infty} c_{p k}\left(-\frac{x}{2}+\int_{0}^{x} \frac{\sin \left(n+\frac{1}{2}\right) u}{2 \sin \frac{u}{2}} d u\right) \tag{2.4}
\end{equation*}
$$

We shall now investigate the behaviour of $\sigma_{p}(x)$ in the neighbourhood of $x=0$.
3. Two lemmas. In order to prove the formula (1.1), we require the following two lemmas.

Lemma 3.1. If the summability matrix $\left[c_{p k}\right]$ belongs to $F(a, q(p))$, we have

$$
\begin{equation*}
\sum_{k=0}^{\infty} c_{p k}=1+c\left(q^{-\frac{1}{2}}\right) \quad \text { as } \quad p \rightarrow \infty . \tag{3.1}
\end{equation*}
$$

The proof follows from (2.1) and (2.2) by a simple calculation.
Lemma 3.2. If $\left\{x_{p}\right\}$ satisfies the condition which is mentioned in section 1 and p tends to infinity, then we have

$$
\begin{equation*}
\int_{0}^{x_{\nu}} \frac{1}{\sin u} \sum_{|k-q| \leq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \frac{|k-q|+1}{q}|\sin (2 k+1) u| d u=o(1) \tag{3.2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{x_{p}} \frac{1}{\sin u} \sum_{|k-q| \leq q^{\phi}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \frac{|k-q|^{3}}{q^{2}}|\sin (2 k+1) u| d u=o(1) . \tag{3.3}
\end{equation*}
$$

Proof. From the condition on $\left\{x_{p}\right\}$, for sufficiently large p, we get

$$
\begin{aligned}
& \int_{0}^{x_{p}} \frac{1}{\sin u} \sum_{|k-q| \leq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \frac{|k-q|+1}{q}|\sin (2 k+1) u| d u \\
& \quad=O\left(\int_{0}^{x_{p}} \frac{1}{\sin u} \sum_{|k-q| \leq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \frac{|k-q|+1}{q}(2|k-q|+2 q+1) u d u\right) \\
& \quad=O\left(\int_{0}^{x_{p}} \sqrt{q} d u\right)=o(1) .
\end{aligned}
$$

Similary, we get for sufficiently large p,

$$
\begin{aligned}
& \int_{0}^{x_{p}} \frac{1}{\sin u} \sum_{|k-q| \leq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \frac{|k-q|^{3}}{q^{2}}|\sin (2 k+1) u| d u \\
& \quad=O\left(\int_{0}^{x_{p}} \frac{1}{\sin u} \sum_{|k-q| \leq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}}\left(\frac{(k-q)^{4}}{q^{2}}+\frac{|k-q|^{3}}{q}\right) u d u\right) \\
& \quad=O\left(\int_{0}^{x_{p}} \sqrt{q} d u\right)=o(1) .
\end{aligned}
$$

4. Gibbs' phenomenon. In this section we consider the Gibbs' phenomenon for a family of summability methods whose matrix [$c_{p k}$] belongs to $F(a, q(p))$.

ThEOREM. Let $\sigma_{p}(x)$ denote the linear transformation of $s_{n}(x)$ by
means of a family of summability methods whose matrix belongs to $F(a, q(p))$.

If $\left\{x_{p}\right\}$ satisfies the following condition that for given τ, in the case $0 \leqq \tau<\infty, x_{p} \rightarrow+0, q(p) x_{p} \rightarrow \boldsymbol{\tau}$ and in the case $\tau=\infty, q(p) x_{p} \rightarrow \infty, q(p) x_{p}{ }^{2}$ $\rightarrow+0$ as $p \rightarrow \infty$, where $q=q(p)$ is mentioned in section 2, then we have

$$
\begin{equation*}
\lim _{p \rightarrow \infty} \sigma_{p}\left(x_{p}\right)=\int_{0}^{\tau} \frac{\sin u}{u} d u \tag{1.1}
\end{equation*}
$$

Proof. From lemma 3.1, (2.2) and (2.4), we have

$$
\sigma_{p}\left(x_{p}\right)=\int_{0}^{x_{p} / 2} \frac{1}{\sin u} \sum_{k=0}^{\infty} c_{p k} \sin (2 k+1) u d u+o(1) .
$$

We put $I_{1}\left(x_{p}\right)$ and $I_{2}\left(x_{p}\right)$ as follows:

$$
\begin{aligned}
\sigma_{p}\left(x_{p}\right) & =\int_{0}^{x_{p} / 2} \frac{1}{\sin u}\left(\sum_{|k-q| \leq q^{\phi}}+\sum_{|k-q| \backslash q^{\delta}}\right) c_{p k} \sin (2 k+1) u d u+\iota(1) \\
& =I_{1}\left(x_{p}\right)+I_{2}\left(x_{p}\right)+o(1)
\end{aligned}
$$

Applying lemma 3.2 and (2.2) to $I_{1}\left(x_{p}\right)$ and $I_{2}\left(x_{p}\right)$, we get for sufficiently large p,

$$
\begin{aligned}
I_{1}\left(x_{p}\right)= & \int_{0}^{x_{j} / 2} \frac{1}{\sin u} \sum_{|k-q| \leqq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \\
& \times\left(1+O\left(\frac{|k-q|+1}{q}\right)+O\left(\frac{|k-q|^{3}}{q^{2}}\right)\right) \sin (2 k+1) u d u \\
= & \int_{0}^{x_{\nu} / 2} \frac{1}{\sin u} \sum_{|k-q| \leqq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \sin (2 k+1) u d u+o(1)
\end{aligned}
$$

and

$$
\begin{aligned}
I_{2}\left(x_{p}\right) & =\int_{0}^{x_{p / 2}} \frac{1}{\sin u} \sum_{|k-q|>\phi^{\delta}} c_{p k} \sin (2 k+1) u d u \\
& =O\left(\int_{0}^{x_{p} / 2} \frac{1}{\sin u}\left(\left(c_{p o}+\sum_{|k-q|>\phi^{\delta}} k c_{p k}\right) u d u\right)\right. \\
& =O\left(x_{p} \exp \left(-q^{\eta}\right)\right)=o(1),
\end{aligned}
$$

Then we obtain

$$
\begin{equation*}
\sigma_{p}\left(x_{p}\right)=\int_{0}^{x_{p} / 2} \frac{1}{\sin u} \sum_{|k-q| \leqq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \sin (2 k+1) u d u+o(1) . \tag{4.1}
\end{equation*}
$$

1°) The case where $q=q(p)$ is integer.
When we put $n=k-q(p)$, we have

$$
\begin{aligned}
& \sum_{|k-q| \leq q^{8}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \sin (2 k+1) u \\
&=\Im\left\{e^{i(2 q+1) u} \sqrt{\frac{a}{\pi q}} \sum_{|n| \leq q^{\delta}} e^{-\frac{a}{q} n^{2}+2 u n i}\right\} \\
&\left.=\Im\left\{e^{i(2 q+1) u} \sqrt{\frac{a}{\pi q}} \sum_{n=-\infty}^{+\infty}-\sum_{|n| \backslash q^{\delta}}\right) e^{-\frac{a}{q} n^{2}+2 u n t}\right\} .
\end{aligned}
$$

Using the property of Theta function [8], we get

$$
\sqrt{\frac{a}{\pi q}} \sum_{n=-\infty}^{+\infty} e^{-\frac{a}{q} n^{2}+2 u n i}=\sum_{n=-\infty}^{+\infty} e^{-\frac{q}{a}(u-n \pi)^{2}} .
$$

and consequently for $0 \leqq u \leqq x_{p}$,
(4. 2) $\sum_{|k-q| \leqq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \sin (2 k+1) u$

$$
\begin{aligned}
& =\mathfrak{J}\left\{e^{i(2 q+1) u} \sum_{n=-\infty}^{+\infty} e^{-\frac{a}{q}(u-n \pi)^{2}}\right\}+O\left(\sum_{|n|>\phi^{8}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q} n^{2}}|\sin (2 n+2 q+1) u|\right) \\
& =e^{-\frac{q}{a} u^{2}} \sin (2 q+1) u+O\left(q e^{-a q^{2 \delta-1}} u\right) .
\end{aligned}
$$

From (4.1) and (4.2), we get

$$
\begin{align*}
\sigma_{p}\left(x_{p}\right) & =\int_{0}^{x_{p} / 2} \frac{1}{\sin u}\left\{e^{-\frac{q}{a} u z} \sin (2 q+1) u+O\left(q e^{-a q^{\delta-1}} u\right)\right\} d u+o(1) \tag{4.3}\\
& =\int_{0}^{x_{x / 2} / 2} \frac{e^{-\frac{q}{a} u^{2}} \sin (2 q+1) u}{u} d u+o(1)
\end{align*}
$$

We put $f(u, p)$ and $D_{p}\left(x_{p}\right)$ as follows:

$$
f(u, p)=\frac{1}{u}\left(1-e^{-\frac{q}{a} u^{2}}\right)
$$

$$
\begin{equation*}
D_{p}\left(x_{p}\right)=\int_{0}^{x_{\gamma} / 2} f(u, p) \sin (2 q+1) u d u . \tag{4.4}
\end{equation*}
$$

Applying integration by parts to $D_{p}\left(x_{p}\right)$, we get

$$
\begin{equation*}
D_{p}\left(x_{p}\right)=f\left(\frac{x_{p}}{2}, p\right) \cdot \frac{-\cos (2 q+1) \frac{x_{p}}{2}}{2 q+1}+\int_{0}^{x_{p / 2} / 2} f^{\prime}(u, p) \frac{\cos (2 q+1) u}{2 q+1} d u \tag{4.5}
\end{equation*}
$$

From $f^{\prime}(u, p)>0$ for $0<u \leqq x_{p} / 2$ and $f^{\prime}(+0, p)=\frac{2 q}{a}>0$,

$$
\begin{equation*}
\int_{0}^{x_{p} / 2}\left|f^{\prime}(u, p)\right| d u=O\left(q x_{p}\right) \tag{4.6}
\end{equation*}
$$

From (4.5) and (4.6), we get

$$
\begin{equation*}
D_{p}\left(x_{p}\right)=O\left(x_{p}\right)+O\left(\frac{1}{q} \int^{x_{r} / 2}|f(u, p)| d u\right)=O\left(x_{p}\right)=c(1) \tag{4.7}
\end{equation*}
$$

Consequently we get from (4.3), (4.4) and (4.7) for sufficiently large p

$$
\begin{align*}
\sigma_{p}\left(x_{p}\right) & =\int_{0}^{x_{\nu} / 2} \frac{\sin (2 q+1) u}{u} d u+o(1) \tag{4.8}\\
& =\int_{0}^{\tau} \frac{\sin u}{u} d u+o(1)
\end{align*}
$$

Thus the theorem has been proved when $q=q(p)$ is integer. Next we shall consider the other case.
2°) The case where $q=q(p)$ is not integer.
Let $[q]$ denote the integral part of $q=q(p)$ and $q_{0}=[q]+1$. We put $D_{1}\left(x_{p}\right), \quad D_{2}\left(x_{p}\right), D_{3}\left(x_{p}\right)$ and $D_{4}\left(x_{p}\right)$ as follows:

$$
\begin{align*}
& \left\lvert\, \int_{0}^{x_{0} / 2} \frac{1}{\sin u} \sum_{|k-q| \leq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \sin (2 k+1) u d u\right. \tag{4.9}\\
& \left.\quad-\int_{0}^{x_{/} / 2} \frac{1}{\sin u} \sum_{\left|k-q_{0}\right| \leq q_{0}^{8}} \sqrt{\frac{a}{\pi q_{0}}} e^{-\frac{a}{q_{0}}\left(k-q_{0}\right)^{2}} \sin (2 k+1) u d u \right\rvert\,
\end{align*}
$$

$$
\begin{aligned}
& \left.\leqq \int_{0}^{x_{r} / 2} \frac{1}{\sin u}\left(\sum_{q<k \leq q+q^{\delta}}+\sum_{q-q^{\delta} \leq k<q}\right)\left(\sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}}-\sqrt{\frac{a}{\pi q_{0}}} e^{-\frac{a}{q_{0}}\left(k-q_{0}\right)^{2}}\right) \sin (2 k+1) u \right\rvert\, d u \\
& \quad+\int_{0}^{x_{p} / 2} \frac{1}{\sin u} \sum_{q+q^{\delta}<k \leq a_{0}+q_{0}^{\delta}} \sqrt{\frac{a}{\pi q_{0}}} e^{-\frac{a}{q_{0}}\left(k-q_{0}\right)^{2}}|\sin (2 k+1) u| d u \\
& \quad+\int_{0}^{x_{p} / 2} \frac{1}{\sin u} \sum_{q-q^{\delta}<k \leqq q_{0}-q_{0}^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}}|\sin (2 k+1) u| d u \\
& =D_{1}\left(x_{p}\right)+D_{2}\left(x_{p}\right)+D_{3}\left(x_{p}\right)+D_{4}\left(x_{p}\right) .
\end{aligned}
$$

i) In the case where $q<q_{0} \leqq k \leqq q+q^{\delta}$, we have

$$
0 \leqq\left(k-q_{0}\right) / \sqrt{q_{0}}<(k-q) / \sqrt{q}<(k-[q]) / \sqrt{ } \overline{[q]} .
$$

Hence the following estimation results :

$$
\begin{aligned}
& \left|\sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}}-\sqrt{\frac{a}{\pi q_{0}}} e^{-\frac{a}{q_{0}}\left(k-q_{0}\right)^{2}}\right| \\
& \quad=O\left(\frac{1}{\sqrt{q_{0}}} \int_{\left(k-q_{0}\right) / \sqrt{q_{0}}}^{(k-[q]) / \sqrt{[\sigma]}}\left|x e^{-a x^{2}}\right| d x\right) \\
& \quad=O\left(\frac{1}{\sqrt{q_{0}}} e^{-\frac{a}{q_{0}}\left(k-q_{0}\right)^{2}}\left(\frac{\left(k-q_{0}\right)^{2}}{q_{0}^{2}}+\frac{\left|k-q_{0}\right|}{q_{0}}+\frac{1}{q_{0}}\right)\right) .
\end{aligned}
$$

Then we get

$$
\begin{align*}
D_{1}\left(x_{p}\right)= & O\left(\int_{0}^{x_{0} / 2} \frac{1}{\sin u} \sum_{q<k \leq q+q^{\phi}} \frac{1}{\sqrt{q_{0}}} e^{-\frac{a}{q_{0}}\left(k-q_{0}\right)^{2}}\right. \tag{4.10}\\
& \left.\times\left(\frac{\left(k-q_{0}\right)^{2}}{q_{0}^{2}}+\frac{\left|k-q_{0}\right|}{q_{0}}+\frac{1}{q_{0}}\right)(2|k-q|+2 q+1) u d u\right) \\
= & O\left(\sqrt{q} \int_{0}^{x_{p} / 2} \frac{u}{\sin u} d u\right)=o(1) .
\end{align*}
$$

ii) In the case where $k \leqq[q]<q<q_{0}$, we have

$$
\left(k-q_{0}\right) / \sqrt{q_{0}}<(k-q) / \sqrt{ } \bar{q}<(k-[q]) / \sqrt{[q]} \leqq 0
$$

Hence the following estimation results just as in the case of i):

$$
\begin{aligned}
& \left|\sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}}-\sqrt{\frac{a}{\pi q_{0}}} e^{-\frac{a}{q_{0}}\left(k-q_{0}\right)^{2}}\right| \\
& \quad=O\left(\frac{1}{\sqrt{q}} \int_{\left(k-q_{0}\right) / \sqrt{q_{0}}}^{(k-[q] / \sqrt{[q]}}\left|x e^{-a x^{2}}\right| d x\right) \\
& \quad=O\left(\frac{1}{\sqrt{[q]}} e^{-\frac{a}{[q]}(k-[q])^{2}}\left(\frac{(k-[q])^{2}}{[q]^{2}}+\frac{|k-[q]|}{[q]}+\frac{1}{[q]}\right)\right) .
\end{aligned}
$$

Then we get

$$
\begin{align*}
D_{2}\left(x_{p}\right)= & O\left(\int_{0}^{x_{p} / 2} \frac{1}{\sin u} \sum_{q-q q^{\delta} \leqq k<q} \frac{1}{\sqrt{[q]}} e^{-\frac{a}{[q]}(k-[q])^{2}}\right. \tag{4.11}\\
& \left.\times\left(\frac{(k-[q])^{2}}{[q]^{2}}+\frac{|k-[q]|}{[q]}+\frac{1}{[q]}\right)(2|k-q|+2 q+1) u d u\right) \\
= & O\left(\sqrt{q} \int_{0}^{x_{p} / 2} \frac{u}{\sin u} d u\right)=o(1) .
\end{align*}
$$

Next we shall estimate $D_{3}\left(x_{p}\right), D_{4}\left(x_{p}\right)$ and we get

$$
\begin{align*}
D_{3}\left(x_{p}\right) & =\int_{0}^{x_{0} / 2} \frac{1}{\sin u} \sum_{q+q^{\delta}<k \leq q_{0}+q_{0}^{\delta}} \sqrt{\frac{a}{\pi q_{0}}} e^{-\frac{a}{q_{0}}\left(k-q_{0}\right)^{2}}|\sin (2 k+1) u| d u \tag{4.12}\\
& =O\left(\sqrt{q} e^{-a q^{\delta \delta-1}} \int_{0}^{x_{p} / 2} \frac{u}{\sin u} d u\right)=o(1), \\
D_{4}\left(x_{p}\right) & =\int_{0}^{x_{p} / 2} \frac{1}{\sin u} \sum_{q-q^{\delta} \leq k<q_{0}-q_{0}^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}}|\sin (2 k+1) u| d u \tag{4.13}\\
& =O\left(\sqrt{q} e^{-\alpha q^{\delta} \delta-1} \int_{0}^{x_{\rho} / 2} \frac{u}{\sin u} d u\right)=o(1) .
\end{align*}
$$

From (4.1), (4.9), (4.10), (4.11), (4.12), (4.13) and the result of 1°), we have

$$
\begin{aligned}
\sigma_{p}\left(x_{p}\right) & =\int_{0}^{x_{p} / 2} \frac{1}{\sin u} \sum_{|k-q| \leqq q^{\delta}} \sqrt{\frac{a}{\pi q}} e^{-\frac{a}{q}(k-q)^{2}} \sin (2 k+1) u d u+o(1) \\
& =\int_{0}^{x_{0} / 2} \frac{1}{\sin u} \sum_{\left|k-q_{0}\right| \leq q_{0}^{\delta}} \sqrt{\frac{a}{\pi q_{0}}} e^{-\frac{a}{q_{0}}\left(k-q_{0}\right)^{2}} \sin (2 k+1) u d u+o(1)
\end{aligned}
$$

$$
\begin{aligned}
& =\int_{0}^{x_{0} / 2} \frac{\sin \left(2 q_{0}+1\right) u}{u} d u+o(1) \\
& =\int_{0}^{\tau} \frac{\sin u}{u} d u+o(1)
\end{aligned}
$$

Thus we have obtained Gibbs' phenomenon for a family of summability methods whose matrix [$c_{p k}$] belongs to $F(a, q(p))$.

5. Gibbs' phenomenon for Borel, Valiron, Euler, Taylor and \boldsymbol{S}_{α}-trans-

 formation. In this section, we suppose that $\left\{x_{p}\right\}$ satisfies the same condition as in the theorem of section 4.From the theorem, we get the following results:
i) Borel-transformation (see L. Lorch [4]).

The summability matrix of Borel-transformation is defined by

$$
c_{p k}=e^{-p} \frac{p^{k}}{k!} \quad(k=0,1,2, \cdots),
$$

where $p>0, a=\frac{1}{2}$ and $q(p)=p$ (see A. Meir [5]).
If we define $B_{p}(x)$ by the linear transformation of $s_{n}(x)$ by means of Borel-transformation, we have from (1.1)

$$
\lim _{p \rightarrow \infty} B_{p}\left(x_{p}\right)=\lim _{p \rightarrow \infty} e^{-p} \sum_{k=0}^{\infty} \frac{p^{k}}{k!} s_{k}\left(x_{p}\right)=\int_{0}^{\tau} \frac{\sin u}{u} d u
$$

ii) Valiron-transformation.

The summability matrix of Valiron-transformation is defined by

$$
c_{p k}=\sqrt{\frac{\alpha}{\pi p}} e^{-\frac{\alpha}{p}(k-p)^{2}} \quad(p=1,2, \cdots, k=0,1,2, \cdots)^{،}
$$

where $\alpha>0, a=\alpha$ and $q(p)=p$.
If we define $V_{p}(x)$ by the linear transformation of $s_{n}(x)$ by means of Valiron-transformation, we have

$$
\lim _{p \rightarrow \infty} \mathrm{~V}_{p}\left(x_{p}\right)=\lim _{p \rightarrow \infty} \sqrt{\frac{\alpha}{\pi p}} \sum_{k=0}^{\infty} e^{-\frac{\alpha}{p}(k-p)^{2}} s_{k}\left(x_{p}\right)=\int_{0}^{\tau} \frac{\sin u}{u} d u
$$

iii) Euler-transformation (see O. Szasz [7]).

The summability matrix of Euler-transformation is defined by

$$
c_{p k}=\left\{\begin{array}{lll}
\binom{p}{k} \alpha^{k}(1-\alpha)^{p-k} & \text { for } & 0 \leqq k \leqq p, \\
0 & \text { for } & p+1 \leqq k,
\end{array} \quad(p=1,2,3, \cdots)\right.
$$

where $0<\alpha<1, a=1 / 2(1-\alpha)$ and $q=\alpha p$ (see A. Meir [5]). If we define $E_{p}(x)$ by the linear transformation of $s_{n}(x)$ by means of Euler-transformation, we have

$$
\begin{aligned}
\lim _{p \rightarrow \infty} E_{p}\left(x_{p}\right) & =\lim _{p \rightarrow \infty} \sum_{k=0}^{p}\binom{p}{k} \alpha^{k}(1-\alpha)^{p-k} s_{k}\left(x_{p}\right) \\
& =\int_{0}^{\alpha \tau} \frac{\sin u}{u} d u .
\end{aligned}
$$

iv) Taylor-transformation (see K. Ishiguro [1]).

The summability matrix of Taylor-transformation is defined by

$$
c_{p k}=\left\{\begin{array}{cl}
0 & \text { for } \\
0 \leqq k \leqq p-1 \\
r^{p+1}\binom{k}{p}(1-r)^{k-p} & \text { for }
\end{array} \quad p \leqq k, ~ l\right.
$$

where $0<r<1, a=r / 2(1-r)$ and $q(p)=p / r$ (see A. Mier [5]). If we define $T_{p}(x)$ by the linear transformation of $s_{n}(x)$ by means of Taylor-transformation, we have

$$
\begin{aligned}
\lim _{p \rightarrow \infty} T_{p}\left(x_{p}\right) & =\lim _{p \rightarrow \infty} \sum_{k=p}^{\infty} r^{k+1}\binom{k}{p}(1-r)^{k-p} S_{k}\left(x_{p}\right) \\
& =\int_{0}^{\tau / r} \frac{\sin u}{u} d u
\end{aligned}
$$

v) S_{α}-transformation (see K. Ishiguro [2]).

The summability matrix of S_{α}-transformation is defined by

$$
c_{p k}=(1-\alpha)^{p+1}\binom{p+k}{k} \alpha^{k} \quad(k=0,1,2, \cdots, \quad p=1,2, \cdots)
$$

where $0<\alpha<1, a=(1-\alpha) / 2$ and $q(p)=\alpha p /(1-2)$ (see A. Meir [5]). If we
define $\sigma_{p}(x)$ by the linear transformation of $s_{n}(x)$ by means of S_{α}-transformation, we have

$$
\begin{aligned}
\lim _{p \rightarrow \infty} \sigma_{p}\left(x_{p}\right) & =\lim _{p \rightarrow \infty} \sum_{k=0}(1-\alpha)^{p+1}\binom{p+k}{k} \alpha^{k} s_{k}\left(x_{p}\right) \\
& =\int_{0}^{\alpha \tau /(1-\alpha)} \frac{\sin u}{u} d u .
\end{aligned}
$$

References

[1] K. Ishiguro, Zur Gibbsschen Erscheinung für das Kreisverfahren, Math. Zeitschr., 76 (1961), 288-294.
[2] K. Ishiguro, Über das S_{α}-Verfahren bei Fourier-Reihen, Math. Zeitschr., 80 (1962), 4-11.
[3] K. IKENO, Lebesgue constants for a family of summability methods, Tohoku Math. Journ., 17 (1965), 250-265.
[4] L. Lorch, The Gibbs phenomenon for Borel means, Proc. Amer. Math. Soc., 8(1957), 81-84.
[5] A. MEIR, Tanberian constants for a family of transformations, Ann. of Math., 78 (1963), 594-599.
[6] C. L. Miracle, The Gibbs phenomenon for Taylor means and for $\left[F, d_{n}\right]$ means, Canad. Journ. Math., 12 (1960), 367-370.
[7] O. SzASz, On the Gibbs' phenomenon for Euler means, Acta Univ. Szeged, 12(1950), 107-111.
[8] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 1935.

Akita University.

