ON THE ABSOLUTE SUMMABILITY FACTORS OF POWER SERIES

Michitaka Kozima

(Received October 5, 1965)

1. Let

$$
f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}=\sum_{n=0}^{\infty} c_{n} r^{n} e^{i n \theta}
$$

be a function regular for $r=|z|<1$. If for some $p>0$, the integral

$$
\int_{0}^{2 \pi}\left|f\left(r e^{i \theta}\right)\right|^{p} d \theta
$$

remains bounded when $r \rightarrow 1-0$, the function $f(z)$ is said to belong to the class H^{p}. It is well known that, if $f(z)$ belongs to the class H^{p}, then $f(z)$ has a boundary value $f\left(e^{i \theta}\right)=\lim _{r \rightarrow 1} f\left(r e^{i \theta}\right)$ for almost all $\theta(0 \leqq \theta \leqq 2 \pi)$ and $f\left(e^{i \theta}\right)$ is integrable L^{p}. Moreover if $p \geqq 1$, a necessary and sufficient condition for the function $f(z)$ to belong to the class H^{p} is that

$$
\sum_{n=0}^{\infty} c_{n} e^{i n \theta}
$$

is the Fourier series of its boundary function $f\left(e^{i \theta}\right)$.
Let us denote

$$
\begin{aligned}
s_{n}(\theta) & =s_{n}(\theta ; f)=\sum_{u=0}^{n} c_{\nu} e^{i v \theta}, \\
t_{n}(\theta) & =t_{n}(\theta ; f)=n c_{n} e^{i n \theta}, \\
\sigma_{n}^{\alpha}(\theta) & =\sigma_{n}^{\alpha}(\theta ; f)=(C, \alpha) \text { mean of the sequence }\left\{s_{n}(\theta)\right\} \\
& =\frac{1}{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} s_{v}(\theta) \quad \text { for } \alpha>-1,
\end{aligned}
$$

and

$$
\begin{aligned}
\tau_{n}^{\alpha}(\theta) & =\boldsymbol{\tau}_{n}^{\alpha}(\theta ; f)=(C, \alpha) \text { mean of the sequence }\left\{t_{n}(\theta)\right\} \\
& =\frac{1}{A_{n}^{\alpha}} \sum_{\nu=0}^{n} A_{n-\nu}^{\alpha-1} t_{\nu}(\theta) \text { for } \alpha>0,
\end{aligned}
$$

where

$$
A_{n}^{\alpha}=\binom{n+\alpha}{n} \simeq \frac{n^{\alpha}}{\Gamma(\alpha+1)} \quad \text { as } \quad n \rightarrow \infty
$$

Then we have

$$
\tau_{n}^{\alpha}(\theta)=n\left\{\sigma_{n}^{\alpha}(\theta)-\sigma_{n-1}^{\alpha}(\theta)\right\}=\alpha\left\{\sigma_{n}^{\alpha-1}(\theta)-\sigma_{n}^{\alpha}(\theta)\right\} .
$$

Further we put and

$$
h_{\alpha}(\theta)=h_{\alpha}(\theta ; f)=\left[\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{\alpha}(\theta)\right|^{2}}{n}\right]^{\frac{1}{2}}
$$

and

$$
g_{\alpha}^{*}(\theta)=g_{\alpha}^{*}(\theta ; f)=\left[\int_{0}^{1}(1-r)^{2 \alpha} d r \int_{0}^{2 \pi} \frac{\left|f^{\prime}\left(r e^{i(\theta+\phi)}\right)\right|^{2}}{\left|1-r e^{i \phi}\right|^{2 \alpha}} d \varphi\right]^{\frac{1}{2}} .
$$

Then for $f(z) \in H^{p}(0<p<\infty)$, we have the following relation;

$$
A_{\alpha} \leqq \frac{g_{\alpha}^{*}(\theta)}{h_{\alpha}(\theta)} \leqq B_{\alpha}
$$

where A_{α} and B_{α} are positive constants depending only on α.
If $\alpha=1, y_{\alpha}^{*}(\theta)$ reduces to the function $y^{*}(\theta)$ of Littlewood and Paley excepting constant factor. It is known that $g^{*}(\theta)$ is a majorant of many important functions in the theory of Fourier series.
T. M. Flett [3], G. Sunouchi [5], [6] and A. Zygmund [8] have proved the following theorems.

ThEOREM (1.1). If $f(z) \in H^{p}(0<p \leqq 2)$, then for $\alpha>\frac{1}{p}$,

$$
\begin{equation*}
\int_{0}^{2 \pi}\left[g_{\alpha}^{*}(\theta)\right]^{p} d \theta \leqq A_{p, \alpha} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\int_{0}^{2 \pi}\left[h_{\alpha}(\theta)\right]^{p} d \theta \leqq A_{p, \alpha} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta \tag{ii}
\end{equation*}
$$

THEOREM (1.2). If $f(z) \in H^{p}(0<p \leqq 2)$, then for $\alpha=\frac{1}{p}$,
(i) $\int_{0}^{2 \pi}\left[\int_{0}^{1} \frac{r^{2 \alpha}(1-r)^{2 \alpha}}{|\log (1-r)|^{2 \alpha}} d r \int_{0}^{2 \pi} \frac{\left|f^{\prime}\left(r e^{i(\theta+\varphi)}\right)\right|^{2}}{\left|1-r e^{i \phi}\right|^{2 \alpha}} d \phi\right]^{\frac{p}{2}} d \theta \leqq A_{p} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta$.
(ii) $\int_{0}^{2 \pi}\left[\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{\alpha}(\theta)\right|^{2}}{n\{\log (n+1)\}^{2 \alpha}}\right]^{\frac{p}{2}} d \theta \leqq A_{p} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta$,
where

$$
A_{\alpha} \leqq \frac{\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{\alpha}(\theta)\right|^{2}}{n\{\log (n+1)\}^{2 \alpha}}}{\int_{0}^{1} \frac{r^{2 \alpha}(1-r)^{2 \alpha}}{|\log (1-r)|^{2 \alpha}} d r \int_{0}^{2 \pi} \frac{\left|f^{\prime}\left(r e^{i(\theta+\varphi)}\right)\right|^{2}}{\left|1-r e^{i \phi}\right|^{2 \alpha}} d \varphi} \leqq B_{\alpha}
$$

for $\alpha>0$ (see, G. Sunouchi [5]).
Theorem (1. 3). If $f(z) \in H^{p}(0<p \leqq 1)$, then for $\alpha=\frac{1}{p}$,

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left[g_{\alpha}^{*}(\theta)\right]^{p \mu} d \theta\right\}^{\frac{1}{p \mu}} \leqq A_{x, \mu}\left\{\int_{0}^{2 \pi}\left|f\left(e^{i}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}}, \quad 0<\mu<1, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left[h_{\alpha}(\theta)\right]^{p \mu} d \theta\right\}^{\frac{1}{p \mu}} \leqq A_{p, \mu}\left\{\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}}, \quad 0<\mu<1 . \tag{ii}
\end{equation*}
$$

A. Zygmund [8] proposes the problem whether Theorem (1.3) holds for $1<p<2$. For $p=2$, it fails.

Concerning this conjecture, we shall prove the following theorem.
Theorem I. If $f(z) \in H^{p}(1<p<2)$, then for $\alpha=\frac{1}{p}$,

$$
\left\{\int_{0}^{2 \pi}\left[\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{\alpha}(\theta)\right|^{2}}{n\{\log (n+1)\}^{2(1-1 / p)}}\right]^{\frac{p \mu}{2}} d \theta\right\}^{\frac{1}{p \mu}} \leqq A^{p, \mu}\left\{\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{p} d \theta\right\}^{\frac{1}{p}}, 0<\mu<1 .
$$

Next, we pass to application to the absolute Cesàro summability factors of power series of the class H^{p}. If the series

$$
\sum_{n=1}^{\infty}\left|\sigma_{n}^{\alpha}(\theta)-\sigma_{n-1}^{\alpha}(\theta)\right|=\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{\alpha}(\theta)\right|}{n}
$$

converges, we say the series

$$
\sum_{n=0}^{\infty} c_{n} e^{i n \theta}
$$

absolutely Cesàro summable with order α and write

$$
\sum_{n=0}^{\infty} c_{n} e^{i n \theta} \in|C, \alpha| .
$$

H. C. Chow [1] [2] has proved the following theorem.

THEOREM (1.4). (i) If $f(z) \in H^{p}(0<p \leqq 1)$, then

$$
\sum_{n=1}^{\infty} \frac{1}{\{\log (n+1)\}^{1 / 2+\delta}} c_{n} e^{i n \theta} \in\left|C, \frac{1}{p}\right| \text { a.e., } \delta>0
$$

(ii) If $f(z) \in H^{p}(1<p \leqq 2)$, then for $\alpha>\frac{1}{p}$,

$$
\sum_{n=1}^{\infty} \frac{1}{\{\log (n+1)\}^{1 / 2+\delta}} c_{n} e^{i n \theta} \in|C, \alpha| \quad \text { a.e., } \delta>0 .
$$

(iii) If $f(z) \in H^{p} \quad(1<p \leqq 2)$, then

$$
\sum_{n=1}^{\infty} \frac{1}{\{\log (n+1)\}^{1+\delta}} c_{n} e^{i n \theta} \in\left|C, \frac{1}{p}\right| \text { a.e., } \delta>0 .
$$

REMARK. In (i) and (ii), the $\delta>0$ cannot be cancelled, and moreover in (ii) when $p=2$ the inequality $\alpha>\frac{1}{p}$ cannot be replaced by $\alpha=\frac{1}{p}$. However for (iii), the only case when $p=2$ is best possible by T. Tsuchikura [7]. It is remarkable that if Theorem (1.3) holds for $1<p<2$, then

$$
\sum_{n=1}^{\infty} \frac{1}{\{\log (n+1)\}^{1 / 2+\delta}} c_{n} e^{i n \theta} \in\left|C, \frac{1}{p}\right| \text { a.e. }
$$

H. C. Chow [1] proposes the following problem; if $f(z) \in H^{p}(1<p \leqq 2)$, then

$$
\sum_{n=1}^{\infty} \frac{1}{\{\log (n+1)\}^{1 / p+\delta}} c_{n} e^{i n \theta} \in\left|C, \frac{1}{p}\right| \text { a.e. ? }
$$

In the case $p=1$, this problem is not well-proposed because of Theorem (1.4) (i), and when $p=2$, it does not hold by Theorem (1.4) (ii).

Taking use of Theorem I, we can prove the following theorem.

THEOREM II. If $f(z) \in H^{p}(1 \leqq p \leqq 2)$, then

$$
\sum_{n=1}^{\infty} \frac{1}{\{\log (n+1)\}^{(1-1 / p)+1 / 2+\delta}} c_{n} e^{i n \theta} \in\left|C, \frac{1}{p}\right| \text { a.e. }
$$

This result is better than Theorem (1.4) (iii). Moreover, when $p=1$, it is best possible, and for $p=2$, it is so, too. However we could not decide whether for $1<p<2$ it is best possible or not.
2. To prove Theorem I, we need the following well-known interpolation theorem.

Lemma (2.1). Let \mathfrak{F} be the class of all polynomials and (M, μ) a measure space, where M is the point set and μ the measure. Supfose that the family of linear operators T_{z} depending on the complex parameter z satisfies the following properties;
(a) for each $z(0 \leqq \Re(z) \leqq 1), T_{z}$ is a linear transformation mapping \mathfrak{B} into $L^{1}(M, \mu)$,
(b) for each $P \in \mathfrak{B}$ and $g \in L^{\infty}(M, \mu)$,

$$
G(z)=\int_{u} T_{z}(P) g d \mu
$$

is analytic in $0<\Re(z)<1$ and continuous on the closed strip $0 \leqq \Re(z) \leqq 1$, and
(c) $\sup _{0 \leq x \leq 1} \log |G(x+i y)| \leqq A e^{a|y|}$ for $-\infty<y<\infty$, where $a<\pi$.

Now let p_{0}, p_{1}, q_{0} and q_{1} be positive numbers and assume that for all $y(-\infty<y<\infty)$,

$$
\begin{aligned}
& \left\|T_{i y}(P)\right\|_{q_{0}} \leqq A_{0}(y)\|P\|_{p_{0}} \\
& \left\|T_{1+i y}(P)\right\|_{q_{1}} \leqq A_{1}(y)\|P\|_{p_{1}}
\end{aligned}
$$

for all $P \in \mathfrak{P}$, where $\log A_{j}(y) \leqq B_{j} e^{c_{j}|y|}, B_{j}>0$ and $0<C_{j}<\pi$ for $j=0,1$. Then, for each t satisfying $0 \leqq t \leqq 1$, we have

$$
\left\|T_{t}(P)\right\|_{q_{t}} \leqq A_{t}\|P\|_{p_{t}}
$$

for all $P \in \mathfrak{B}$, where p_{t} and q_{t} are given by the relations

$$
\frac{1}{p_{t}}=\frac{1-t}{p_{0}}+\frac{t}{p_{1}}, \quad \frac{1}{q_{t}}=\frac{1-t}{q_{0}}+\frac{t}{q_{1}}
$$

and A_{t} depends only on $t, p_{j}, q_{j}, B_{j}, C_{j},(j=0,1)$, but not on P.
For the proof of this lemma, we shall refer to E. M. Stein and G. Weiss [4].
We next define the Cesàro mean $\sigma_{n}^{\lambda}(\theta)$ of complex order $\lambda=\alpha+i \beta$ of the series

$$
\sum_{n=0}^{\infty} c_{n} e^{i n \theta}
$$

Let us denote

$$
\begin{aligned}
& s_{n}(\theta)=\sum_{\nu=0}^{n} c_{\nu} e^{i v \theta}, \\
& \sigma_{n}^{\lambda}(\theta)=\frac{1}{A_{n}^{\lambda}} \sum_{\nu=0}^{n} A_{n-\nu}^{\lambda-1} s_{v}(\theta)=\frac{1}{A_{n}^{\lambda}} \sum_{v=0}^{n} A_{n-\nu}^{\lambda} c_{\nu} e^{i v \theta},
\end{aligned}
$$

and

$$
\tau_{n}^{\lambda}(\theta)=\lambda\left\{\sigma_{n}^{\lambda-1}(\theta)-\sigma_{n}^{\lambda}(\theta)\right\},
$$

where

$$
A_{n}^{\lambda}=\frac{(\lambda+1) \cdots(\lambda+n)}{n!}
$$

Lemma (2.2). (i) If $\alpha>-1$, then there exists a constant B_{α} such that

$$
\frac{1}{B_{\alpha}}(n+1)^{\alpha} \leqq A_{n}^{\alpha} \leqq B_{\alpha}(n+1)^{\alpha} \quad \text { for } \quad n \geqq 0
$$

(ii) If $\alpha>-1$ and $-\infty<\beta<\infty$, then

$$
1 \leqq\left|\frac{A_{n}^{\alpha+i \beta}}{A_{n}^{\alpha}}\right| \leqq C_{\alpha} e^{2 \beta^{2}} \quad \text { for } \quad n \geqq 0
$$

where C_{α} depends only on α.
For the proof, we refer to E. M. Stein and G. Weiss [4].
Now we shall prove the following inequalities;

$$
\begin{equation*}
\left\{\int_{0}^{2 \pi}\left[\sum_{n=1}^{\infty} \frac{\left|\boldsymbol{\tau}_{n}^{1 / 2+i \beta}(\theta)\right|^{2}}{n \log (n+1)}\right] d \theta\right\}^{\frac{1}{2}} \leqq A e^{25^{2}}\left\{\int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{2} d \theta\right\}^{\frac{1}{2}} \quad \text { for } \quad f(z) \in H^{2}, \tag{2.3}
\end{equation*}
$$

$$
\begin{align*}
\left\{\int_{0}^{2 \pi}\left[\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{1+i \beta}(\theta)\right|^{2}}{n}\right]^{\frac{\mu}{2}} d \theta\right\}^{\frac{1}{\mu}} \leqq A_{\mu} e^{2 \pi \beta} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right| d \theta \tag{2.4}\\
\text { for } \quad f(z) \in H^{1} \quad \text { and } 0<\mu<1
\end{align*}
$$

We shall begin with (2.3). Since

$$
\sigma_{n}^{-1 / 2+i \beta}(\theta)-\sigma_{n}^{1 / 2+i \beta}(\theta)=\frac{1}{\left(\frac{1}{2}+i \beta\right) A_{n}^{1 / 2+i \beta}} \sum_{v=0}^{n} A_{n-\nu}^{-1 / 2+i \beta} \nu c_{\nu} e^{i v \theta},
$$

that is

$$
\tau_{n}^{1 / 2+i \beta}(\theta)=\frac{1}{A^{1 / 2+i \beta}} \sum_{\nu=0}^{n} A_{n-\nu}^{-1 / 2+i \beta} \nu c_{\nu} e^{i v \theta},
$$

using Parseval's identity and Lemma (2.2) we obtain

$$
\begin{aligned}
\int_{0}^{2 \pi}\left|\tau_{n}^{1 / 2+i \beta}(\theta)\right|^{2} d \theta & =\frac{1}{\left|A_{n}^{1 / 2+i \beta}\right|^{2}} \sum_{\nu=0}^{n}\left|A_{n-\nu}^{-1 / 2+i \beta}\right|^{2} \nu^{2}\left|c_{\nu}\right|^{2} \\
& \leqq A \frac{1}{n+1} e^{4 \beta 2} \sum_{\nu=0}^{n} \frac{1}{n+1-\nu} \nu^{2}\left|c_{\nu}\right|^{2} .
\end{aligned}
$$

Hence,
(2.5) $\sum_{n=0}^{\infty} \int_{0}^{2 \pi} \frac{\left|\boldsymbol{\tau}_{n}^{1 / 2+i \beta}(\theta)\right|^{2}}{n \log (n+1)} d \theta \leqq A e^{4 \beta 2} \sum_{n=1}^{\infty} \frac{1}{n(n+1) \log (n+1)} \sum_{\nu=1}^{n} \frac{1}{n+1-\nu} \nu^{2}\left|c_{\nu}\right|^{2}$

$$
\begin{aligned}
& \leqq A e^{4 \beta 2} \sum_{n=1}^{\infty} \frac{1}{n^{2} \log (n+1)} \sum_{\nu=1}^{n} \frac{1}{n+1-\nu} \nu^{2}\left|c_{\nu}\right|^{2} \\
& =A e^{4 \beta 2} \sum_{\nu=1}^{\infty} \nu^{2}\left|c_{\nu}\right|^{2} \sum_{n=\nu}^{\infty} \frac{1}{n^{2} \log (n+1)} \cdot \frac{1}{n+1-\nu} \\
& =A e^{4 \beta 2} \sum_{\nu=1}^{\infty} \nu^{2}\left|c_{\nu}\right|^{2}\left[\sum_{n=v}^{2 \nu}+\sum_{n=2 \nu+1}^{\infty}\right]=A e^{4 \beta 2} \sum_{\nu=1}^{\infty} \nu^{2}\left|c_{\nu}\right|^{2}\left(S_{1}+S_{2}\right)
\end{aligned}
$$

Since

$$
\begin{aligned}
S_{1} & =\sum_{n=\nu}^{2 \nu} \frac{1}{n^{2} \log (n+1)} \cdot \frac{1}{n+1-\nu} \leqq \frac{1}{\nu^{2} \log (\nu+1)} \sum_{n=\nu}^{\sum_{\nu}} \frac{1}{n+1-\nu} \\
& \leqq B_{1} \frac{1}{\nu^{2} \log (\nu+1)} \log (\nu+1)=\frac{B_{1}}{\nu^{2}},
\end{aligned}
$$

$$
\begin{aligned}
S_{2} & =\sum_{n=2 \nu+1}^{\infty} \frac{1}{n^{2} \log (n+1)} \frac{1}{n+1-\nu} \leqq \frac{1}{(\nu+1) \log (2 v+2)} \sum_{n=2 \nu+1}^{\infty} \frac{1}{n^{2}} \\
& \leqq \frac{1}{\log 4} \frac{1}{\nu} \sum_{n=2 \nu+1}^{\infty} \frac{1}{n^{2}} \leqq B_{2} \frac{1}{\nu} \frac{1}{2 \nu+1} \leqq \frac{B_{2}}{2} \frac{1}{\nu^{2}},
\end{aligned}
$$

the last term (2.5) is majorized by

$$
B e^{4 \beta 2} \sum_{\nu=1}^{\infty}\left|c_{v}\right|^{2}=B e^{4 \beta 2} \int_{0}^{2 \pi}\left|f\left(e^{i \theta}\right)\right|^{2} d \theta .
$$

Therefore by exchanging the order of summation and integration in the first term of (2.5), we get the estimate (2.3).

Next we pass to (2.4). If we can prove

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{\alpha+i s}(\theta)\right|^{2}}{n} \leqq A e^{4 \pi \beta}\left\{g_{\alpha}^{*}(\theta)\right\}^{2} \quad \text { for } \quad \alpha>0, \tag{2.6}
\end{equation*}
$$

where A does not depend on α and β, then the estimate (2.4) follows immediately from Theorem (1.3) (i) for $p=1$. For the sake of the proof of (2.6) we write

$$
\Phi_{\alpha+i \beta}(r, \theta)=\sum_{n=1}^{\infty}\left|A_{n}^{\alpha+i \beta}\right|^{2}\left|\tau_{n}^{\alpha+i \beta}(\theta)\right|^{2} r^{2 n} .
$$

Then

$$
\begin{align*}
\int_{0}^{1}(1-r)^{2 \alpha} \Phi_{\alpha+i \beta}(r, \theta) d r & =\sum_{n=1}^{\infty}\left|A_{n}^{\alpha+i \beta}\right|^{2}\left|\tau_{n}^{\alpha+i \beta}(\theta)\right|^{2} \int_{0}^{1}(1-r)^{2 \alpha} r^{2 n} d r \tag{2.7}\\
& =\sum_{n=1}^{\infty}\left|A_{n}^{\alpha+i \beta}\right|^{2}\left|\tau_{n}^{\alpha+i \beta}(\theta)\right|^{2} \frac{1}{(2 n+2 \alpha+1) A_{2 n}^{2 \alpha}}
\end{align*}
$$

On the other hand, since

$$
\sum_{n=0}^{\infty} A_{n}^{\alpha+i \beta} \tau_{n}^{\alpha+i \beta}(\theta) z^{n}=\frac{z e^{i \theta} f^{\prime}\left(\underset{e^{i \theta}}{ }\right)}{(1-z)^{\alpha+i \beta}},
$$

we have by Parseval's theorem,

$$
\begin{equation*}
\Phi_{\alpha+i \beta}(r, \theta) \leqq \frac{1}{2 \pi} e^{i \pi \beta} \int_{0}^{2 \pi} \frac{\left|r f^{\prime}\left(r e^{i(\theta+\phi)}\right)\right|^{2}}{\left|1-r e^{i \phi}\right|^{2 \alpha}} d \varphi \leqq \frac{1}{2 \pi} e^{i \pi \beta} \int_{0}^{2 \pi} \frac{\left|f^{\prime}\left(r e^{i(\theta+\phi)}\right)\right|^{2}}{\left|1-r e^{i \varphi}\right|^{2 \alpha}} d \varphi . \tag{2.8}
\end{equation*}
$$

Therefore by Lemma (2.2), (2.7), and (2.8), we get

$$
\begin{aligned}
& \sum_{n=1}^{\infty}\left|\tau_{n}^{\alpha+i \beta}(\theta)\right|^{2} \frac{1}{n} \leqq A \sum_{n=1}^{\infty} \frac{\left(A_{n}^{\alpha}\right)^{2}}{(2 n+2 x+1) A_{2 n}^{2 \alpha}}\left|\tau_{n}^{\alpha+i \beta}(\theta)\right|^{2} \\
& \quad \leqq A \sum_{n=1}^{\infty}\left|A_{n}^{\alpha+i \beta}\right|^{2}\left|\tau_{n}^{\alpha+i \beta}(\theta)\right|^{2} \frac{1}{(2 n+2 \alpha+1) A_{2 n}^{2 \alpha}}=A \int_{0}^{1}(1-r)^{2 \alpha} \Phi_{\alpha+i \beta}(r, \theta) d r \\
& \quad \leqq B e^{4 \pi \beta} \int_{0}^{1}(1-r)^{2 \alpha} d r \int_{0}^{2 \pi} \frac{\left|f^{\prime}\left(r e^{i(\theta+\phi)}\right)\right|^{2}}{\left|1-r e^{i \phi}\right|^{2 \alpha}} d \varphi=B e^{4 \pi \beta}\left\{g_{\alpha}^{*}(\theta)\right\}^{2} .
\end{aligned}
$$

Thus (2.6) and consequently (2.4) are proved.
Now we consider the family of operators defined by

$$
T_{z}(f)=\sum_{n=1}^{\infty} \frac{\boldsymbol{\tau}_{n}^{\delta(z)}(\theta)}{\sqrt{n}\{\log (n+1)\}^{1-\delta(z)}} \phi_{n}(\theta),
$$

where $\delta(z)=\frac{1}{2} z+\frac{1}{2}$ and $\left\{\phi_{n}(\theta)\right\} \quad n=1,2, \cdots$ is a sequence such that $\left[\sum_{n=1}^{\infty}\left|\phi_{n}(\theta)\right|^{2}\right]^{\frac{1}{2}} \leqq 1$ for all θ, but is arbitary otherwise. Since by Schwarz's inequality,

$$
\left|T_{z}(f)\right| \leqq\left[\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{\delta(2)}(\theta)\right|^{2}}{n\left|\{\log (n+1)\}^{2(1-\delta(z))}\right|}\right]^{\frac{1}{2}},
$$

we have by (2.3) and (2.4), for each $P \in \mathfrak{F}$,

$$
\begin{aligned}
& \left\|T_{i y}(P)\right\|_{2} \leqq A e^{\frac{1}{2} y y^{2}}\|P\|_{2} \\
& \left\|T_{1+i y}(P)\right\|_{\mu} \leqq A e^{\tau|y|}\|P\|_{1}, \quad 0<\mu<1 .
\end{aligned}
$$

For any given $p(1<p<2)$, we first choose t such that

$$
\frac{1}{p}=\frac{1-t}{2}+\frac{t}{1} \quad \text { i.e. } \quad t=\frac{2}{p}-1
$$

and then for any given $\eta(0<\eta<1)$, we define μ such that

$$
\frac{1}{p \eta}=\frac{1-t}{2}+\frac{t}{\mu} \quad \text { i.e. } \quad \mu=\frac{1}{1+\frac{1-\eta}{\eta(2-p)}} .
$$

Therefore by Lemma (2.1), for each $P \in \mathfrak{B}$, we have

$$
\left\|T_{t}(P)\right\|_{p \eta} \leqq A_{p, \eta}\|P\|_{p}
$$

that is,

$$
\left[\int_{0}^{2 \pi} \left\lvert\, \sum_{n=1}^{\infty} \frac{\tau_{n}^{\delta(t)}(\theta)}{\sqrt{n}\{\log (n+1)\}^{1-\delta(t)}} \phi_{n}\left(\left.\theta^{\prime}\right|^{\mid p n} d \theta\right]^{\frac{1}{p \eta}} \leqq A_{p, \eta}\|P\|_{p}\right.\right.
$$

Since now

$$
\delta(t)=\frac{1}{2} t+\frac{1}{2}=\frac{1}{2}\left(\frac{2}{p}-1\right)+\frac{1}{2}=\frac{1}{p},
$$

and

$$
\sup _{\phi}\left|\sum_{n=1}^{\infty} \frac{\boldsymbol{\tau}_{n}^{1 / p}(\theta)}{\sqrt{n}\{\log (n+1)\}^{1-1 / p}} \phi_{n}(\theta)\right|=\left[\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{1 / p}(\theta)\right|^{2}}{n\left\{\log (n+1)^{2(1-1 / p)}\right.}\right]^{\frac{1}{2}},
$$

we get Theorem I in the case when $f(z)$ is a polynomial.
The general case follows by a standard limiting process.
3. To prove Theorem II, we need the following lemma.

LEEMA (3.1). Let $\alpha>0$ and $\left\{\lambda_{n}\right\}$ be a sequence of positive numbers such that
(a) $\frac{\lambda_{n}}{n}$ is non-increasing,
(b) $\Delta \lambda_{n}=\lambda_{n}-\lambda_{n+1}=O\left(\frac{\lambda_{n}}{n}\right)$

$$
\Delta^{2} \Delta_{n}=\Delta \Delta \lambda_{n}=O\left(\frac{\lambda_{n}}{n^{2}}\right)
$$

$$
\Delta^{h+1} \lambda_{n}=\Delta \Delta^{h} \lambda_{n}=O\left(\frac{\lambda_{n}}{n^{h+1}}\right)
$$

where h is the integral part of α when α is fractional and $h=\alpha-1$ when α is an integer, and
(c) $\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{\alpha}(\theta)\right|}{n} \lambda_{n}$ is convergent.

Then

$$
\sum_{n=1}^{\infty} \lambda_{n} c_{n} e^{i n \theta} \in|C, \alpha|
$$

For the proof, we refer to H. C. Chow [2].
We can now prove Theorem II. The cases when $p=1$ and $p=2$ are well-known. If $f(z) \in H^{p}(1<p<2)$, then from Theorem I, it follows that

$$
\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{1 / p}(\theta)\right|^{2}}{n\{\log (n+1)\}^{2(1-1 / p)}}
$$

converes almost everywhere. On the other hand, if we put

$$
\lambda_{n}=\frac{1}{\{\log (n+1)\}^{\lambda}}, \quad \lambda=\left(1-\frac{1}{p}\right)+\frac{1}{2}+\delta, \delta>0,
$$

then by Schwarz's inequality, we have

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{1 / p}(\theta)\right|}{n} \lambda_{n} \leqq\left[\sum_{n=1}^{\infty} \frac{\left|\tau_{n}^{1 / p}(\theta)\right|^{2}}{n\{\log (n+1)\}^{2(1-1 / p)}}\right]^{\frac{1}{2}}\left[\sum_{n=1}^{\infty} \frac{1}{n\{\log (n+1)\}^{2 \lambda-2(1-1 / p)}}\right]^{\frac{1}{2}} \tag{3.2}
\end{equation*}
$$

The second term of the right hand side converges, since

$$
2 \lambda-2\left(1-\frac{1}{p}\right)=1+2 \delta, \delta>0
$$

Hence the left hand side converges almost everywhere. Therefore from Lemma (3.1) we get Theorem II.

References

[1] H. C. Chow, Theorems on power series and Fourier series, Proc. London Math. Soc., 1(1951), 206-216.
[2] H. C. Chow, An extension of a theorem of Zygmund and its application, Journ. London Math. Soc., 29(1954), 189-198.
[3] T. M. Flett, On the summability of a power series on its circle of convergence, Quart. Journ. Math., 10 (1959), 179-201.
[4] F.M. Stein and G. WEiss, On the interpolation of analytic families of operators acting on H^{p} spaces, Tôhoku Math. Journ., 9(1957), 318-339.
[5] G. Sunouchi, On the summability of power series and Fourier series, Tôhoku Math. Journ., 7(1955), 96-109.
[6] G. SunOUCHI, Theorems on power series on the class H^{p}, Tôhoku Math. Journ., 8 (1956), 125-146.
[7] T. Tsuchikura, Absolute Cesàro summability of orthogonal series, Tôhoku Math. Journ., 5(1953), 52-66.
[8] A. Zygmund, On the Littlewood-Paley function $g^{*}(\theta)$, Proc. Nat. Acad. Sci. U. S. A., 42 (1956), 208-212.
Tôнокu University.

