# ON CERTAIN RIEMANNIAN MANIFOLDS OF POSITIVE CURVATURE 

Yôtarô Tsukamoto

(Received September 24, 1965)

1. Introduction. Several authors (cf. H. E. Rauch [12], W. Klingenberg [6], [7], [9], M. Berger [1], V. A. Toponogov [14], Y. Tsukamoto [16]) proved the so-called sphere theorem: "Compact simply connected $\delta$ pinched $\left(\delta>\frac{1}{4}\right)$ Riemannian manifolds are homeomorphic to spheres". In this paper we deal with another version of the pinching theorem.

We assume that $M$ is a compact simply connected Riemannian manifold of positive curvature $K, 0<K \leqq 1$. Let $d(p, q)$ be the distance between two points $p, q$ of $M$. K. Hatsuse introduced the following number $L(M)$;

$$
L(M)=\operatorname{Max}_{p, q, r \in M}\{d(p, q)+d(q, r)+d(r, p)\} .
$$

And he proved the following theorem.
Theorem A. Let $L(M)<3 \pi$. Then $M$ is hemeomorphic to a sphere. In particular, if $L(M)=2 \pi$. then $M$ is isometric to the sphere with constant curvature 1.

REMARK 1 . We can easily verify the inequality $L(M) \geqq 2 \pi$.
In this paper we prove the following theorems.
Theorem B. Let $L(M)=3 \pi$. Then $M$ has the same integral cohomology ring as the symmetric space of compact type of rank 1 .

Theorem C. If $M$ is a compact Kaehlerian manifold of positive holomorphic sectional curvature hol $K, 0<$ hol $K \leqq 1$ and let $L(M)=3 \pi$, then $M$ is isometric to the complex projective space with canonical metric, where $\operatorname{dim}_{\mathrm{c}} M \geqq 2$.

THEOREM D. Let the inequalities $0<k \leqq K \leqq 1$ be satisfied everywhere
and the inequality $L(M)>3 \pi / 2 \sqrt{k}$ be satisfied, where $k$ is a constant. Then $M$ is a homological sphere. In particular $M$ is homeomorphic to a sphere if $\operatorname{dim} M \neq 3,4$.

REmARK 2. The estimation of Theorem $D$ is the best possible. In fact, let $M$ be a symmetric space of compact type of rank 1 with canonical metric which is different from sphere, and the inequalities $1 / 4 \leqq K \leqq 1$ be satisfied everywhere. Then $L(M)=3 \pi$ and $M$ is not a homological sphere.

Remark 3. By using Theorem A and D we can immediately obtain the sphere theorem.

REMARK 4. Under the assumption of Theorem D we have the inequality $L(M) \leqq 2 \pi / \sqrt{k}$. (cf. [9], [13])

THEOREM E. Let the inequalities $0<k \leqq K$ be satisfied everywhere and $L(M)=2 \pi / \sqrt{k}$ be satisfied. Then $M$ is isometric to the sphere with constant curvature $k$.

REmARK 5. If $M$ is a compact simply connected Riemannian manifold with sectional curvature $K, 4 / 9 \leqq k \leqq K \leqq 1$, then the closed geodesic of length $=2 \pi / \sqrt{ } \bar{k}$ can be regarded as a geodesic triangle, because of the inequality $2 \pi / \sqrt{ } \bar{k} \leqq 3 \pi$. Hence we have the following proposition from Theorem E.

Proposition. Let $M$ be a compact simply connected Riemannian manifold with sectional curvature $K, 4 / 9 \leqq k \leqq K \leqq 1$. If $M$ admits a closed geodesic of length $2 \pi / \sqrt{k}$, then $M$ is isometric to the sphere with constant curvature $k$.
2. Notations and definitions. Let $M$ be a Riemannian manifold of dimension $n(n \geqq 2)$. We denote by $<,>$ (resp. \| \|) the scalar product (resp. norm) which defines the Riemannian structure of $M$. All the geodesics considered on $M$ are parametrized by the arc-length measured from their origin. If $\Lambda=\{\lambda(s)\}\left(0 \leqq s \leqq s_{0}\right)$ is such a geodesic, then $\lambda^{\prime}(s)$ denotes its tangent vector at $\lambda(s)$ and we have $\left\|\lambda^{\prime}(s)\right\|=1$ for all $s$. We denote by $d(p, q)$ the distance between two points $p$ and $q$ of $M$, with respect to the structure of metric space associated canonically to its Riemannian structure. If the manifold $M$ is compact, we denote by $d(M)$ its diameter, that is the least upper bound of $d(p, q)$ when $p$ and $q$ vary on $M$. We denote by $G(p, q)$ the set of geodesics on $M$ each of which join $p$ to $q$ and whose length is equal to
$d(p, q)$. By a geodesic triangle here we always mean a geodesic triangle composed of three shortest geodesic arcs.
3. Review of the known results. The following results are necessary from now on.

ThEOREM 1. (Klingenberg [6], Toponogov [15]) If the sectional curvature $K$ of a compact simply connected Riemannian manifold satisfies the inequalities $0<K \leqq 1$, the inequality $d(p, C(p)) \geqq \pi$ is satisfied for all points $p$ of $M$, where $C(p)$ denotes the cutlocus of $p$ on $M$. In particular we have the inequality $d(M) \geqq \pi$.

Theorem 2. (Klingenberg [8], Bishop and Goldberg [4]) If the holomorphic sectional curvature hol $K$ of a compact Kaehlerian manifold satisfies the inequalities $0<\operatorname{hol} K \leqq 1$, the inequality $d(p, C(p)) \geqq \pi$ is satisfied for all points $p$ of $M$.

Theorem 3. (Klingenberg [6]) Assume that there exist two points $p$ and $q$ of $M$ and a positive number $\rho$ with the following properties: (1) $d(p, q) \geqq \rho$, (2) for any point $r \in M$ we have $d(p, r)<\rho$ or $d(q, r)<\rho$, (3) if $r, s$ are any two points of $M$ such that $d(r, s)<\rho$, then the shortest geodesic arc joining $r$ to $s$ is exactly one. Then $M$ is homeomorphic to a sphere.

Theorem 4. (Berger [2]) Suppose that $M$ satisfies the conditions of Theorem 1 and the equality $d(M)=\pi$. Then all geodesics of $M$ are simply closed and of length $2 \pi$.

Theorem 5. (Bott [5], Milnor [10]) Let all geodesics of a complete simply connected Riemannian manifold $M$ be simply closed and of same length. Then the integral cohomology ring of $M$ is a truncated polynomial ring. Hence $M$ has the same integral cohomology ring as the symmetric space of compact type of rank 1.

Theorem 6. (Klingenberg [8]) Let M be a compact Kaehlerian manifold of positive holomorphic sectional curvature hol $K, 0<\mathrm{hol} K \leqq 1$ and let the equality $d(M)=\pi$ be satisfied. Then $M$ is isometric to the complex projective space with usual metric.

Theorem 7. (Myers [11]) Let $M$ be a complete Riemannian manifold and the sectional curvature $K$ of $M$ satisfy the inequalities $0<k \leqq K$
everywhere, where $k$ is a constant. Then $M$ is compact and the diameter $d(M)$ of $M$ satisfies the inequality $d(M) \leqq \pi / \sqrt{k}$.

Theorem 8. (Berger [3]) Let $M$ be a compact simply connected Riemannian manifold and the sectional curvature $K$ of $M$ satisfy the inequalities $0<k \leqq K$ everywhere, where $k$ is a constant. Furthermore if the inequality $d(M)>\pi / 2 \sqrt{k}$ is satisfied, then $M$ is a homological sphere. In particular $M$ is homeomorphic to a sphere, if $\operatorname{dim} M \neq 3,4$.

ThEOREM 9. (Toponogov's comparison theorem, cf. [9], [13]) Let $M$ be a compact Riamannian manifold and the sectional curvature $K$ of $M$ satisfy the inequalities $0<k \leqq K$ everywhere, where $k$ is a constant. Let $p, q, r$ be three points on $M$ and $\Gamma=\{\gamma(s)\}, \Lambda=\{\lambda(s)\}$ be two geodesics on $M$ such that $\Gamma \in G(p, q), \Lambda \in G(p, r), \lambda_{1}^{\prime}(0)=\gamma(0)=p$. We denote by $S_{2}(k)$ the 2 dimensional sphere with constant curvature $k$ and denote by $\Delta(\hat{p} \hat{q} \hat{r})$ the triangle on $S_{2}(k)$ such that $d(\hat{p}, \hat{q})=d(p, q), d(\hat{p}, \hat{r})=d(p, r)$ and that the angle $\alpha$ at $\hat{p}$ verifies $\cos \alpha=<\gamma^{\prime}(0), \lambda^{\prime}(0)>$. If $d(\hat{q}, \hat{r})$ denote the length of the third side of the triangle $\Delta(\hat{p} \hat{q} \hat{r})$ of $S_{2}(k)$, then we have the inequality $d(q, r) \leqq d(\hat{q}, \hat{r})$.

Theorem 10. (Toponogov, cf. [9], [13]) Let M be a complete Riemannian manifold and the sectional curvature $K$ of $M$ satisfy the inequalities $0<k \leqq K$ everywhere, where $k$ is a constant. And let $d(M)=\pi / \sqrt{k}$ be satisfied. Then $M$ is isometric to the sphere with constant curvature $k$.

## 4. Proof of theorems.

Proof of Theorem B. We assume that $M$ is not hemeomorphic to sphere. Let $p, q$ be two points of $M$ such that $d(p, q)=d(M)$. If we have $d(r, s)<\pi,(r, s \in M)$, then the two points $r$ and $s$ can be joined by exactly one shortest geodesic. By using Theorem 3 we can find a point $r$ of $M$ such that $d(p, r) \geqq \pi$ and $d(q, r) \geqq \pi$. By our assumption we have $d(p, q)=d(M)$ $\geqq \pi$ and $L(M)=3 \pi$. Hence we have $d(M)=\pi$. By using Theorems 4 and 5 , we obtain Theorem B.
Q.E.D.

Proof of Theorem C. Since $M$ is kaehlerian manifold of $\operatorname{dim}_{\mathrm{c}} M \geqq 2$, $M$ is not homeomorphric to a sphere. By the same argument as the Theorem B, we have $d(M)=\pi$. And by using Theorem 6, we obtain Theorem C. Q.E.D.

Proof of Theorem D. We have $3 d(M) \geqq L(M)$ by the definitions of $L(M)$ and $d(M)$. Hence we have $d(M)>\pi / 2 \sqrt{k}$. So Theorem D is reduced to Theorem 8.
Q.E.D.

Proof of Theorem E. We prove $d(M)=\pi / \sqrt{k}$. Then, by using Theorem 10, $M$ is isometric to the sphere with constant curvature $k$.

Since we have $L(M)=2 \pi / \sqrt{k}$, we have a geodesic triangle $\Delta(p q r)$ on $M$ with circumference $2 \pi / \sqrt{k}$. Then, by using Theorem 9 we can easily see that the following two cases can only occur:
(i) One of the three numbers $d(p, q), d(q, r), d(r, p)$ is equal to $\pi / \sqrt{k}$.
(ii) Three geodesic arcs $p q, q r, r p$ compose the closed geodesic of length $2 \pi / \sqrt{k}$.

Under the assumption of Theorem E we have $d(M) \leqq \pi / \sqrt{k}$.
In the case (i) we have $d(M)=\pi / \sqrt{k}$.
In the case (ii) we assume $d(M)<\pi / \sqrt{k}$ and are led to a contradiction. By this assumption we have at least two geodesic arcs of length $\geqq \pi / 2 \sqrt{k}$ among three geodesic arcs $p q, q r, r p$ which compose the closed geodesic $\Gamma$. Let them be $p q$ and $r p$. And let $\Gamma$ be divided into two parts of the same length by the two points $p$ and $p^{\prime}$ on $\Gamma$. Then we can find that the point $p^{\prime}$ lies on $\Gamma$ between $q$ and $r$. Since we have $d(M)<\pi / \sqrt{k}$, we have a shortest geodesic $\Theta=\left\{\epsilon^{\prime}(v)\right\} \in G\left(p, p^{\prime}\right)\left(0 \leqq v \leqq m, m=d\left(p, p^{\prime}\right), \theta(0)=p^{\prime}, \theta(m)=p, \Theta \neq \Gamma\right)$. Let the geodesic subarc $p^{\prime} q p$ of $\Gamma$ be $\Gamma_{1}=\left\{\gamma_{1}(v)\right\} \quad\left(0 \leqq v \leqq l, l=\pi / \sqrt{k}, \gamma_{1}(0)\right.$ $\left.=p^{\prime}, \gamma_{1}(l)=p\right)$. And let the geodesic subarc $p^{\prime} r p$ of $\Gamma$ be $\Gamma_{2}=\left\{\gamma_{2}(v)\right\}(0 \leqq v \leqq l$, $\left.l=\pi / \sqrt{k}, \gamma_{2}(0)=p^{\prime}, \gamma_{2}(l)=p\right)$. Then we have either

$$
<\gamma_{1}^{\prime}(0), \theta^{\prime}(0)>\geqq 0 \quad \text { or } \quad<\gamma_{2}^{\prime}(0), \theta^{\prime}(0)>\geqq 0 .
$$

First we assume $<\gamma^{\prime}(0), \theta^{\prime}(0)>\geqq 0$. We divide it into two cases: (a) $<\gamma_{1}^{\prime}(0), \theta^{\prime}(0) \gg 0$, $(b)<\gamma^{\prime}(0), \theta^{\prime}(0)>=0$. In the case (a), we use the cosine rule of spherical trigonometry and Theorem 9 . We construct a geodesic triangle $\Delta\left(\hat{p}^{\prime} \hat{p} \hat{q}\right)$ on $S_{2}(k)$ sach that $d\left(\hat{p}^{\prime}, \hat{p}\right)=d\left(p^{\prime}, p\right), d\left(\hat{p}^{\prime}, \hat{q}\right)=d\left(p^{\prime}, q\right)$ and the angles $\Varangle\left(\hat{p} \hat{p}^{\prime} \hat{q}\right)=\Varangle\left(p p^{\prime} q\right)$. Then we have by using Theorem 9

$$
\begin{equation*}
d(\hat{p}, \hat{q}) \geqq d(p, \hat{q})=\pi / \sqrt{k}-d\left(p^{\prime}, q\right) \tag{1}
\end{equation*}
$$

On the other hand we have by using the the cosine rule of spherical trigonometry

$$
\begin{equation*}
d(\hat{p}, \hat{q})<\pi / \sqrt{k}-d\left(\hat{p}^{\prime}, \hat{q}\right)=\pi / \sqrt{k}-d\left(p^{\prime}, q\right) \tag{2}
\end{equation*}
$$

From (1) and (2) we are led to a contradiction.
In the case ( $b$ ) we also have $\left\langle\gamma_{1}^{\prime}(0), \theta^{\prime}(0)\right\rangle=0$. By the assumption we have either $d(p, q)>\pi / 2 \sqrt{k}$ or $d(p, r)>\pi / 2 \sqrt{k}$. If we have $d(p, q)>\pi / 2 \sqrt{k}$, we can use for the geodesic triangle $\Delta\left(q p^{\prime} p\right)$ the same argument as (a) and we are led to a contradicticn. If we have $d(p, r)>\pi / 2 \sqrt{k}$, we are also
led to a contradiction by using the same argumet as (a) for the geodesic triangle $\Delta\left(r p^{\prime} p\right)$.

In the case $<\gamma_{2}^{\prime}(0), \theta^{\prime}(0)>\geqq 0$, we are led to a contradiction by using the same argument. Hence, in the case (ii) we also have $d(M)=\pi / \sqrt{k}$. Q.E.D.

## References

[1] M. Berger, Les variétés riemannienne $1 / 4$ pincées, Ann. del Scuola Nor. Sup. di Pisa, Ser. 111, 14(1960), 161-170.
[2] M. Berger, Sur les variétés a courbure positive de diamètre minimum, Comm. Math. Helv., 35(1961), 28-34.
[3] M. Berger, On the diameter of some Riemannian manifolds, Technical report. University of California, (1962).
[4] R. Bishop and S. Goldberg, Some implications of the generalized Gauss-Bonnet Theorem, Trans. Amer. Math. Soc., 112 (1964), 508-535.
[5] R. Bott, On manifolds all of whose geodesics are closed, Ann. of Math., 60(1954), 375-382.
[6] W. Klingenberg, Contributions to Riemannian geometry in the large, Ann. of Math., 69(1959), 654-666
[7] W. Klingenberg, Über Riemannsche Mannigfaltigkeiten mit positiver Krümmung, Comm. Math. Helv., 35(1961), 47-54.
[8] W. Klingenberg, On compact Kaehlerian manifolds with positive holomorphic curvature, Proc. of Amer. Math. Soc., 12(1961), 350-356.
[9] W. Klingenberg, Riemannsche Geometrie im Grossen, Lecture note, Bonn Univ., (1962).
[10] J. Milnor, Some consequences of a theorem of Bott, Ann. of Math., 68(1958), 444-449
[11] S. B. Myers, Riemannian manifolds in the large, Duke Math. Journ., 1(1935), 39-49.
[12] H. E. RaUCH, A contribution to differential geometry in the large, Ann. of Math., 54 (1951), 38-55.
[13] V. A. Toponogov, Riemannian spaces which have their curvature bounded from below by a positive number, Uspehi Nauk, 14 (85), (1959), 87-130.
[14] V. A. Toponogov, Dependence between curvature and topological strcuture of Riemannian spaces of even dimensions, Dok. Acad. Nauk, 133(1960), 1031-1033.
[15] V. A. Toponogov, Estimation of length of closed geodesics on compact Riemannian spaces of positive curvature, Dok. Acad. Nauk., 154(1964), 1047-1049
[16] Y. Tsukamoto, On Riemannian manifolds with positive curvature, Mem. of Fac. Sci. Kyushu Univ. Ser A. Math., 15(1962), 90-96.

## Kyushu University.

