Tôhoku Math. Journ. Vol. 18, No. 3, 1966

SOME NOTES ON THE GROUP OF AUTOMORPHISMS OF CONTACT AND SYMPLECTIC STRUCTURES

ΥΟJI ΗΑΤΑΚΕΥΑΜΑ¹⁾

(Received May 17, 1966)

Introduction. In this paper, we shall prove that the group of automorphisms of a contact or a symplectic structure defined on a compact manifold M^n acts transitively on it. For this purpose, we first notice that we can find a linear mapping h from the linear space of differentiable functions \mathfrak{F} defined on M^n to that of infinitesimal automorphisms L of these structures; these mappings were introduced by J.W.Gray and P.Libermann in the case of a contact structure and a symplectic structure respectively, and many properties of h were studied by them, (cf. [3]²⁾ and [4]), but in this paper, we only need the fact that for any differentiable function ρ over M^n , $h(\rho)$ gives an infinitesimal automorphism of these structures. Next, we consider n functions defined over M^n which give a canonical coordinate system around a point $P \in M^n$ associated with such structures, and making use of these functions and the mapping h, we shall prove our theorems.

1. The transitivity of the group of automorphisms of a contact structure. Let $M^n(n=2m+1)$ be a differentiable manifold with a contact structure defined by a 1-form η , i.e., let M^n admit a 1-form η satisfying the relation

(1.1)
$$\underbrace{m}_{\eta \wedge d\eta \wedge \cdots \wedge d\eta} = 0,$$

where $d\eta$ and \wedge mean the exterior derivative of η and exterior product respectively. Then, we can find a uniquely determined vector field ξ defined over M^n which satisfies the relations

(1.2)
$$i(\xi)\eta=1 \text{ and } i(\xi)d\eta=0,$$

The material of this work is a section of thesis for the degree of Doctor of Science in Tôhoku University, 1965.

²⁾ Numbers in brackets refer to the bibliography at the end of the paper.

where $i(X)\omega$ means an interior product of a form ω by a vector X.

Now, a diffeomorphism $f: M^n \to M^n$ is said to be a contact transformation if it satisfies

$$f^*\eta = \rho\eta$$
,

where f^* is the endomorphism of the ring of differential forms over M^n induced by f and ρ is a function over M^n which does not vanish at any point of M^n . Especially, if $\rho \equiv 1$, i.e., if f satisfies

$$f^*\eta = \eta,$$

then f is said to be a strict contact transformation. It is clear that the set of all (strict) contact transformations over M^n constitutes a group under the natural rule of composition. In order to study such a group of (strict) contact transformations, we start with infinitesimal (strict) contact transformations.

A vector field X over M^n is said to be an infinitesimal contact transformation if it satisfies

$$\pounds(X)\eta = \sigma\eta,$$

where $f_{\pm}(X)$ denotes the Lie differentiation with respect to X and σ is a function defined over M^n . Especially, if σ vanishes identically, i.e., if X satisfies

$$\pounds(X)\eta \equiv 0,$$

X is said to be an infinitesimal strict contact transformation.

Now, we shall give the definition of the mapping $h: \mathfrak{F} \rightarrow L$.

Let D be a 2*m*-dimensional distribution $D: P \to D_P$ defined by

$$D_P = \{X \in T_P(M^n); i(X)\eta = 0\},\$$

and let D^* be a 2*m*-dimensional codistribution $D^*: P \rightarrow D^*_P$ defined by

$$D_P^* = \{ \theta \in T_P^*(M^n); i(\xi)\theta = 0 \},\$$

where $T_P(M^n)$ and $T_P^*(M^n)$ denote the tangent and cotangent vector space of M^n at $P \in M^n$ respectively. Next, if we consider a linear mapping α from the linear space of vector fields over M^n to that of 1-forms over M^n defined by

$$\alpha(X) = i(X)d\eta,$$

then, making use of (1.1) and (1.2), we can easily see that α gives a one-to-one isomorphism from the linear space of vector fields which belong to the distribution D to that of 1-forms which belong to the codistribution D^* . Let β be the inverse mapping of $\alpha \mid D$ and let ρ be a differentiable function over M^n . Then, we have

$$i(\xi)(d\rho - (\xi\rho)\eta) = \xi\rho - \xi\rho = 0,$$

which shows that the 1-form $d\rho - (\xi\rho)\eta$ belongs to the codistribution D^* . Hence, we can define a vector field $\gamma(\rho)$ by the relation

$$\gamma(\rho) = \beta(d\rho - (\xi\rho)\eta).$$

From this definition, we get the fact that the relations

$$i(\gamma(\rho))\eta = 0$$
 and $i(\gamma(\rho))d\eta = d\rho - (\xi\rho)\eta$

hold good. So we obtain

$$\begin{aligned} \pounds(\Upsilon(\rho))\eta &= i(\Upsilon(\rho))d\eta + d(i(\Upsilon(\rho))\eta) \\ &= d\rho - (\xi\rho)\eta. \end{aligned}$$

Making use of this and the relation

$$\pounds(\rho\xi)\eta = i(\rho\xi)d\eta + d(i(\rho\xi)\eta) = d\rho,$$

we see that if we define a mapping h from the linear space of differentiable functions over M^n to that of vector fields over M^n by

(1. 3)
$$h(\rho) = \rho \xi - \gamma(\rho),$$

we have

 $\pounds(h(\rho))\eta = (\xi\rho)\eta.$

Therefore, we get the following

THEOREM 1.1. Let ρ be a differentiable function over M^n . Then the vector field $h(\rho)$ defined by (1.3) gives an infinitesimal contact transformation over M^n . Moreover, if ρ satisfies the relation

(1. 4)
$$\xi \rho = 0,$$

340

$h(\rho)$ gives an infinitesimal strict contact transformation.

Next, we shall prove that if M^n is a compact manifold with a (regular) contact structure, then for any two points P and O of M^n , we can always find a (strict) contact transformation of M^n which sends P to Q. By virtue of E. Cartan's result (Cf. [2]), for any point P of M^n , we can always find a local coordinate system $(x^{\lambda}, y^{\lambda}, z)(\lambda = 1, \dots, m)$ around P with respect to which the contact form η can be expressed as follows:

$$\eta = dz - \sum_{\lambda} y^{\lambda} dx^{\lambda}.$$

On the other hand, for any differentiable function u defined on an open set containing P, we can always find a differentiable function defined over M^n which coincides with u in a certain neighborhood of P. Therefore, we have the following

LEMMA 1. Let M^n be a manifold with a contact structure defined by η . Then, for any point P of M^n , we can always find an open neighborhood U of P and (n=2m+1) functions $x^1, \dots, x^m, y^1, \dots, y^m, z$ which satisfy the following conditions

(1) In U, the contact form η is expressed as

$$\eta = dz - \sum_{\lambda} y^{\lambda} dx^{\lambda}.$$

(2) The set of functions $(x^{\lambda}, y^{\lambda}, z)$ defines a diffeomorphism from U onto an open set V in (2m+1)-dimensional Euclidean space E^{2m+1} defined by

$$V = \{ (u^1, \cdots, u^{2m+1}) \in E^{2m+1}; |u^i| < \varepsilon \text{ for all } i \},$$

where ε is a positive real number smaller than $\frac{1}{m}$, and

$$x^{\lambda}(P) = 0, y^{\lambda}(P) = 0, z(P) = 0$$

hold good.

We call such a coordinate neighborhood U a canonical coordinate neighborhood and such a local coordinate system a canonical coordinate system around P. Now, we shall prove the following

THEOREM 1.2. Let M^n be a compact manifold with a contact structure defined by n, and U be a canonical coordinate neighborhood around a point P of M^n . Then, for any two points Q and Q' of U, we can always find a contact transformation of M^n which sends Q to Q'.

PROOF. It is evident that we only need to show the existence of a contact transformation of M^n which sends P to Q. First, we notice the fact that since M^n is compact, any infinitesimal (strict) contact transformation generates a global 1-parameter group of (strict) contact transformations. We denote the 1-parameter group of strict contact transformations generated by $\xi = h(1)$ by f_i .

Next, we consider the 1-parameter group of contact transformations generated by an infinitesimal contact transformation $h(\rho)$ for the function ρ defined by

(1. 3)
$$\rho = \sum \alpha_{\lambda} x^{\lambda} + \sum \beta_{\lambda} y^{\lambda} + \gamma,$$

where α_{λ} , β_{λ} and γ are constant. Then, since the relations

$$\xi = rac{\partial}{\partial z}$$
 and $d\eta = \sum_{\lambda} dx^{\lambda} \wedge dy^{\lambda}$

hold with respect to this coordinate system in U, we have

$$i\left(\frac{\partial}{\partial x^{\lambda}}\right)d\eta = dy^{\lambda}, \ i\left(\frac{\partial}{\partial y^{\lambda}}\right)d\eta = -dx^{\lambda}, \ i\left(\frac{\partial}{\partial z}\right)d\eta = 0$$

and

$$i\left(rac{\partial}{\partial x^{\lambda}}
ight)\eta\!=\!-y^{\lambda},\;i\left(rac{\partial}{\partial y^{\lambda}}
ight)\!\eta\!=\!0,\;i\left(rac{\partial}{\partial z}
ight)\!\eta\!=\!1.$$

So, we get

$$\Upsilon(x^{\lambda}) = oldsymbol{eta}(dx^{\lambda} - rac{\partial x^{\lambda}}{\partial z}\eta) = oldsymbol{eta}(dx^{\lambda}) = -rac{\partial}{\partial y^{\lambda}},$$

$$\gamma(y^{\lambda}) = \beta(dy^{\lambda} - \frac{\partial y^{\lambda}}{\partial z} \eta) = \beta(dy^{\lambda}) = \frac{\partial}{\partial x^{\lambda}} + y^{\lambda} \frac{\partial}{\partial z}$$

and

$$\gamma(1)=0.$$

Therefore, in the canonical coordinate neighborhood U, the vector field $h(\rho)$ is given as follows:

$$h(\rho) = \rho \xi - \gamma(\rho)$$

$$= \left(\sum \alpha_{\lambda} x^{\lambda} + \sum \beta_{\lambda} y^{\lambda} + \gamma \right) \frac{\partial}{\partial z} - \left(-\sum \alpha_{\lambda} \frac{\partial}{\partial y^{\lambda}} + \sum \beta_{\lambda} \frac{\partial}{\partial x^{\lambda}} + (\sum \beta_{\lambda} y^{\lambda}) \frac{\partial}{\partial z} \right)$$

$$= -\sum \beta_{\lambda} \frac{\partial}{\partial x^{\lambda}} + \sum \alpha_{\lambda} \frac{\partial}{\partial y^{\lambda}} + (\sum \alpha_{\lambda} x^{\lambda} + \gamma) \frac{\partial}{\partial z}.$$

 $\hat{3}\hat{4}\hat{2}$

So, the trajectory of $h(\rho)$ in U starting from a point of U of coordinates $(x_0^{\lambda}, y_0^{\lambda}, z_0)$ is given by

(1. 4)
$$x^{\lambda} = x_{0}^{\lambda} - \beta_{\lambda} t,$$
$$y^{\lambda} = y_{0}^{\lambda} + \alpha_{\lambda} t,$$
$$z = z_{0} + (\alpha_{\lambda} x_{0}^{\lambda} + \gamma) t - \frac{\sum_{\lambda} \alpha_{\lambda} \beta_{\lambda}}{2} t^{2}.$$

Now, suppose the coordinates of Q with respect to the canonical coordinate system to be $(a^{\lambda}, b^{\lambda}, c)$. If we put

$$a=-\frac{1}{2}\sum_{\lambda}a^{\lambda}b^{\lambda},$$

then we have

$$|a| = \frac{1}{2} \sum_{\lambda} |a^{\lambda}| |b^{\lambda}| < \frac{1}{2} m \varepsilon^2 < \frac{\varepsilon}{2}$$

Next, we take points R and S in U whose coordinates are (0,0,a) and $(a^{\lambda},b^{\lambda},0)$ respectively, and we take $b^{\lambda}, -a^{\lambda}$ and 0 as $\alpha_{\lambda}, \beta_{\lambda}$ and γ in (1.3) respectively. Then, by virtue of (1.4), the trajectory of $h(\rho)$ starting from R is given by

(1. 5)
$$x^{\lambda}(t) = a^{\lambda}t,$$
$$y^{\lambda}(t) = b^{\lambda}t,$$
$$z(t) = a(1 - t^{2}).$$

for any t such that

$$|x^{\lambda}(t)| < \varepsilon, |y^{\lambda}(t')| < \varepsilon, |z(t')| < \varepsilon$$

hold for every t' not larger than t. So, for $0 \le t \le 1$, the trajectory of $h(\rho)$ is expressed by (1.5). Therefore, if we denote the 1-parameter group of contact transformations generated by $h(\rho)$ by g_t , g_1 sends R to S. Hence, the contact transformation $f_{c}.g_1.f_a$ sends P to Q which proves our assertion. Q.E.D.

Next, let P and Q be arbitrary two points of M^n . And let C be a curve in M^n from P to Q. Then C can be covered by a finite number of canonical coordinate neighborhoods U_1, U_2, \dots, U_k . If we take a sequence of points P_0 ,

 P_1, \dots, P_k such that $P_0 = P, P_k = Q$ and $P_{\alpha} \in U_{\alpha} \cap U_{\alpha+1}$ ($\alpha = 1, \dots, k-1$), then by virtue of Theorem 1.2, we can find a contact transformation f_{α} which sends $P_{\alpha-1}$ to P_{α} for each α . So, if we set

$$f=f_k\cdot f_{k-1}\cdot\cdot\cdot f_1,$$

then f is a contact transformation which sends P to Q.

Therefore, we get the following

THEOREM 1.3. Let M^n be a compact manifold with a contact structure defined by η . Then, for any two points P and Q of M^n , we can always find a contact transformation of M^n which sends P to Q.

Next, we consider a compact manifold with a regular contact structure. To begin with, we shall prove the following

LEMMA 2. Let M^n be a compact manifold, and let ξ be a regular vector field over M^n . If ρ is a differentiable function defined in a certain neighborhood U of a point P of M^n , and ρ satisfies the condition

 $\xi \rho = 0.$

Then, we can find a differentiable function ρ' defined all over M^n which satisfies the following conditions:

(1) $\xi \rho' = 0$.

(2) On a certain neighborhood V of P, ρ' coincides with ρ .

PROOF. Since M^n is compact and ξ is regular, the quotient space $M^n/\{\xi\}$ =B is a differentiable manifold, and M^n is a bundle space of a differentiable fiber bundle over B whose fibers are the trajectories of ξ (Cf. [5]). We denote the projection from M^n to B by π . Since $\xi\rho=0$, the function ρ is constant along the fibres in a certain neighborhood U' of P. So, we can find a function σ defined on an open set V' containing $\pi(P)$ such that

 $\rho = \sigma \circ \pi$

in U'. Now, we can find a function σ' globally defined over B which coincides with σ on a certain neighborhood V' of $\pi(P)$. Then, if we set

$$\rho' = \sigma' \circ \pi,$$

the function ρ' satisfies the conditions (1) and (2). Q.E.D.

By virtue of Lemma 2, on a compact manifold with a regular contact

344

structure, we may suppose the functions x^{λ} and y^{λ} in Lemma 1 satisfy the condition

$$\xi x^{\lambda} = 0, \ \xi y^{\lambda} = 0$$
 over M^n .

So, the function ρ defined by (1.3) satisfies the condition

 $\xi \rho = 0$,

which shows that $h(\rho)$ is an infinitesimal strict contact transformation. Therefore, the contact transformations f_t and g_t which we used in the proof of Theorem 1.3 are strict contact transformations. Hence, we get the following

THEOREM 1.4. Let M^n be a compact manifold with a regular contact structure. Then, for any two points P and Q of M^n , we can always find a strict contact transformation of M^n which sends P to Q.

2. The transitivity of the group of automorphisms of a sympletic structure. Let $M^n(n=2m)$ be a differentiable manifold with a symplectic structure defined by a 2-form Ω , i.e., M^n admits a 2-form Ω satisfying the relations

(2. 1)
$$\underbrace{m}_{\Omega \wedge \cdots \wedge \Omega \neq 0}$$
 and $d\Omega = 0.$

And, as in the previous section, a diffeomorphism f of M^n is said to be a symplectic transformation if it satisfies

$$f^*\Omega = \Omega$$

and a vector field X is said to be an infinitesimal symplectic transformation if it satisfies

$$\pounds(X)\Omega=0.$$

If we define a mapping α from the linear space of vector fields over M^n to that of 1-forms over M^n by the relation

$$\alpha(X) = i(X)\Omega,$$

then, by virtue of (2.1), α gives a one-to-one isomorphism of these two linear spaces. Now, let β be the inverse mapping of α and let ρ be a differentiable function over M^n . If we define a mapping h by

$$(2. 2) h(\rho) = \beta(d\rho),$$

then we have

$$i(h(\rho))\Omega = d\rho.$$

Therefore, we get

$$\pounds(h(\rho))\Omega = i(h(\rho))d\Omega + d(i(h(\rho))\Omega) = 0.$$

Hence, we get the following

THEOREM 2.1. Let ρ be a differentiable function over M^n . Then the vector field $h(\rho)$ defined by (2.2) gives an infinitesimal symplectic transformation over M^n .

Now, in the same way as Lemma 1, we can verify the following

LEMMA 3. Let M^n be a manifold with a symplectic structure defined by Ω . Then, for any point P of M^n , we can always find an open neighborhood U of P and 2m functions $x^1, \dots, x^m, y^1, \dots, y^m$ which satisfy the following conditions:

(1) In U, the symplectic form Ω is expressed as

$$\Omega = \sum_{\lambda} dx^{\lambda} \wedge dy^{\lambda}.$$

(2) The set of functions $(x^{\lambda}, y^{\lambda})$ defines a diffeomorphism from U onto an open set V in 2m-dimensional Euclidean space E^{2m} defined by

$$V = \{(u^1, \cdots, u^{2m}) \in E^{2m}; |u^i| < \varepsilon \text{ for all } i\},\$$

and

$$x^{\lambda}(P)=0, y^{\lambda}(P)=0$$

hold good.

We call such a coordinate neighborhood U a canonical coordinate neighborhood, and such a local coordinate system a canonical coordinate system of the symplectic structure.

Next, suppose M^n to be compact and let Q be a point in U whose canonical coordinate is $(a^{\lambda}, b^{\lambda})$. If we consider a differentiable function ρ defined by

346

$$\rho = -\sum b^{\lambda} x^{\lambda} + \sum a^{\lambda} y^{\lambda},$$

then the 1-parameter group of symplectic transformations generated by the infinitesimal symplectic transformation $h(\rho)$ sends P to Q for t=1.

Therefore we get the following

THEOREM 2.2. Let M^n be a compact manifold with a symplectic structure defined by Ω , and let U be a canonical coordinate neighborhood around a point P of M^n . Then, for any two points Q and Q' of U, we can always find a symplectic transformation of M^n which sends Q to Q'.

Making use of this theorem in the same way as in §1, we get the following

THEOREM 2.3. Let M^n be a compact manifold with a symplectic structure. Then, for any two points P and Q of M^n , we can always find a symplectic transformation of M^n which sends P to Q.

BIBLIOGRAPHY

- W. M. BOOTHBY AND H. C. WANG, On contact manifolds, Ann. of Math., 68(1958), 721-734.
- [2] E. CARTAN, Les systèmes différentiels extérieurs et leurs applications géometriques, Act. Sci. et Ind. 994, Paris (1945).
- [3] J. W. GRAY, Some global properties of contact structure, Ann. of Math., 69(1959), 421-450.
- [4] P. LIBERMANN, Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact, Coll. de Géom. Diff. Globale, CBRM, 1959, 37-59.
- [5] R.S. PALAIS, A global formulation of the Lie theory of transformation groups, Memoirs of the Amer. Math. Soc., 22(1957).

HIROSAKI UNIVERSITY.