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Introduction. In this paper, we shall prove that the group of automor-
phisms of a contact or a symplectic structure denned on a compact manifold
Mn acts transitively on it. For this purpose, we first notice that we can find a
linear mapping h from the linear space of differentiable functions $ defined on
Mn to that of infinitesimal automorphisms L of these structures; these mappings
were introduced by J.W.Gray and P.Libermann in the case of a contact structure
and a symplectic structure respectively, and maαy properties of h were studied
by them, (cf. [3]2) and [4]), but in this paper, we only need the fact that for any
differentiable function p over Mn, h(ρ) gives an infinitesimal automorphism of
these structures. Next, we consider n functions denned over Mn which give a
canonical coordinate system around a point P € Mn associated with such struct-
ures, and making use of these functions and the mapping h, we shall prove
our theorems.

1. The transitivity of the group of automorphisms of a contact
structure. Let Mn(n=2m + 1) be a differentiable manifold with a contact structure
defined by a 1-form η, i.e., let Mn admit a 1-form η satisfying the relation

m

where dη and Λ mean the exterior derivative of η and exterior product respe-
ctively. Then, we can find a uniquely determined vector field ξ defined over Mn

which satisfies the relations

(1.2) *'(£>?= 1 and i(g)dη=0,

1) The material of this work is a section of thesis for the degree of Doctor of Science in
Tόhoku University, 1965.

2) Numbers in brackets refer to the bibliography at the end of the paper.
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where t(X)ω means an interior product of a form ω by a vector X.
Now, a diffeomorphism / : Mn —» Mn is said to be a contact transformation

if it satisfies

where f* is the endomorphism of the ring of differential forms over Mn

induced by f and p is a function over Mn which does not vanish at any point
of Mn. Especially, if p=l, i.e., if / satisfies

f*V=V>

then / is said to be a strict contact transformation. It is clear that the set of
all (strict) contact transformations over Mn constitutes a group under the natural
rule of composition. In order to study such a group of (strict) contact transfor-
mations, we start with infinitesimal (strict) contact transformations.

A vector field X over Mn is said to be an infinitesimal contact transfor-
mation if it satisfies

£(X)η=ση,

where £, (X) denotes the Lie differentiation with respect to X and σ is a
function defined over Mn. Especially, if σ vanishes identically, i.e., if X satisfies

X is said to be an infinitesimal strict contact transformation.
Now, we shall give the definition of the mapping h: τ$—*L.
Let D be a 2m-dimensional distribution D :P —•> Dp defined by

and let D* be a 2m-dimensional codistribution D*:P—*Dp defined by

where TP(Mn) and Tp(Mn) denote the tangent and cotangent vector space of
Mn at P 6 Mn respectively. Next, if we consider a linear mapping a from the
linear space of vector fields over Mn to that of 1-forms over Mn defined by
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then, making use of (1.1) and (1.2), we can easily see that cί gives a one-to-one
isomorphism from the linear space of vector fields which belong to the distri-
bution D to that of 1-forms which belong to the codistribution D*. Let β be
the inverse mapping of a \D and let p be a differentiable function over Mn.
Then, we have

which shows that the 1-form dp — (ξp)η belongs to the codistribution £)*. Hence,
we can define a vector field 7(p) by the relation

From this definition, we get the fact that the relations

i(V(p))η=0 and i

hold good. So we obtain

Making use of this and the relation

we see that if we define a mapping h from the linear space of differentiable
functions over Mn to that of vector fields over Mn by

(1. 3) h(p)=pξ-V(P),

we have

Therefore, we get the following

THEOREM 1.1. Let p be a differentiable function over Mn. Then the vector
field h(p) defined by (1.3) gives an infinitesimal contact transformation
over Mn. Moreover, if p satisfies the relation

(1. 4) ξP=0,
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h(ρ) gives an infinitesimal strict contact transformation.

Next, we shall prove that if Mn is a compact manifold with a (regular)
contact structure, then for any two points P and Q of Mn, we can always find
a (strict) contact transformation of Mn which sends P to Q. By virtue of E.
Cartan's result (Cf. [2]), for any point P of Mn, we can always find a local
coordinate system (xλ>yλ, z)(λ=l, , m) around P with respect to which the
contact form η can be expressed as follows:

On the other hand, for any differentiable function u defined oα an open set
containing P, we can always find a differentiable function defined over Mn which
coincides with u in a certain neighborhood of P. Therefore, we have the
following

LEMMA 1. Let Mn be a manifold with a contact structure defined by η.
Then, for any point P of Mn, we can always find an open neighborhood U
of P and (n=2m + ϊ) functions x1,* , xm, yι, >ym, z which satisfy the
following conditions

(1) In U, the contact form η is expressed as

λ(2) The set of functions (xλ, yλ, z) defines a dijfeomorphism from U onto
an open set V in (2m+ 1)-dimensional Euclidean space E2m+1 defined by

V= {{u\ -, u2m+1) € E2m+1; \uι\ <8 for all i],

where S is a positive real number smaller than 7 and
r m

x\P)=0, y\P)=0, z(P)=0

hold good.

We call such a coordinate neighborhood U a canonical coordinate neigh-
borhood and such a local coordinate system a canonical coordinate system
around P. Now, we shall prove the following

THEOREM 1.2. Let Mn be a compact manifold with a contact structure
defined by η, and U be a canonical coordinate neighborhood around a point
P of Mn. Then, for any two points Q and Q of U, we can always find a
contact transformation of Mn which sends Q to Q.
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PROOF. It is evident that we only need to show the existence of a contact

transformation of Mn which sends P to Q. First, we notice the fact that since

Mn is compact, any infinitesimal (strict) contact transformation generates a

global 1-parameter group of (strict) contact transformations. We denote the

1-parameter group of strict contact transformations generated by ξ=h(ΐ) by ft.

Next,we consider the 1-parameter group of contact transformations generated

by an infinitesimal contact transformation h{p) for the function p defined by

(1.3) p—Σa.λXλ + Σβλyλ + rV,

where aλ> βλ and Ί are constant. Then, since the relations

9
ξ= -Tς— and dη= }dx/\dy

hold with respect to this coordinate system in U, we have

,9y
and

So, we get

and

7(1) = 0.

Therefore, in the canonical coordinate neighborhood U, the vector field h(p) is

given as follows:

= ( Σ « ^ t Σ.β*ϊ+y) £- (- Σ « 4 +Σβ
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So, the trajectory of h(p) in U starting from a point of U of coordinates (a$,
yoi z0) is given by

(1. 4) yλ

(% ^—1\

Now, suppose the coordinates of Q with respect to the canonical coordinate
system to be (aλ, bλ, c). If we put

then we have

\bλ\< -\-m£*< §Σ

Next, we take points R and S in U whose coordinates are (0,0, a) and (a\bx,Q)
respectively, and we take bλ,—aλ and 0 as tfλ,/3λand 7 in (1.3) respectively.
Then, by virtue of (1.4), the trajectory of h(p) starting from R is given by

A. 5) y\t)=b%

z{t) = a(l-n

for any t such that

e, \y\t')\<ε, \z(t')\<ε

hold for every t' not larger than t. So, for 0 ̂  t 5ΞΞ 1, the trajectory of h(p) is
expressed by (1.5). Therefore, if we denote the 1-parameter group of contact
transformations generated by h(p) by gt9 gx sends R to S. Hence, the contact
transformation fc-gi-fa sends P to Q which proves our assertion. Q.E.D.

Next, let P and Q be arbitrary two points of Mn. And let C be a curve
in Mn from P to Q. Then C can be covered by a finite number of canonical
coordinate neighborhoods Ul9 U29 , Uk. If we take a sequence of points PQ,
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Pl9 , Pk such that P0 = P, Pk = Q and Pa z UaΓ\Ua+1 ( a = l , , k-1), then
by virtue of Theorem 1.2, we can find a contact transformation / α which sends
Pα_i to P α for each a. So, if we set

then / is a contact transformation which sends P to Q.
Therefore, we get the following

THEOREM 1.3. Let Mn be a compact manifold with a contact structure
defined by η. Then, for any two points P and Q of Mn, we can always
find a contact transformation of Mn which sends P to Q.

Next, we consider a compact manifold with a regular contact structure. To
begin with, we shall prove the following

LEMMA 2. Let Mn be a compact manifold, and let ξ be a regular vector
field over Mn. If p is a differentiable function defined in a certain neigh-
borhood U of a point P of Mn, and p satisfies the condition

ξp=o.

Then, we can find a differ entiable function p defined all over Mn which
satisfies the following conditions:

(1) ξP'=0.
(2) On a certain neighborhood V of P, p coincides with p.

PROOF. Since Mn is compact and ξ is regular, the quotient space Mn/{ξ]
= B is a differentiable manifold, and Mn is a bundle space of a differentiable
fiber bundle over B whose fibers are the trajectories of ξ (Cf. [5]). We denote
the projection from Mn to B by TΓ. Since ξρ=O, the function p is constant along
the fibres in a certain neighborhood U' of P. So, we can find a function σ
defined on an open set V containing π(P) such that

in U\ Now, we can find a function σ globally defined over B which coincides
with σ on a certain neighborhood V of τr(JP). Then, if we set

p = σ O7r,

the function p satisfies the conditions (1) and (2). Q.E.D.

By virtue of Lemma 2, on a compact manifold with a regular contact
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structure, we may suppose the functions xλ and yλ in Lemma 1 satisfy the

condition

ξxλ = 0, ξyλ = O over Mn.

So, the function p defined by (1.3) satisfies the condition

which shows that h(ρ) is an infinitesimal strict contact transformation. There-

fore, the contact transformations f and gt which we used in the proof of

Theorem 1.3 are strict contact transformations. Hence, we get the following

THEOREM 1.4. Let Mn be a compact manifold with a 7~egular contact

structure. Then, for any two points P and Q of Mn, we can always find a

strict contact transformation of Mn which sends P to Q.

2. The transitivity of the group of automorphisms of a sympletic
structure. Let Mn(n=2m) be a differentiable manifold with a symplectic structure

defined by a 2-form ί2, i.e., Mn admits a 2-form Ω satisfying the relations

m
( 2 !) ΩXT"ίl^0 a n d dίl=°-

And, as in the previous section, a diffeomorphism f of Mn is said to be a

symplectic transformation if it satisfies

and a vector field X is said to be an infinitesimal symplectic transformation if

it satisfies

If we define a mapping a from the linear space of vector fields over Mn to

that of 1-forms over Mn by the relation

then, by virtue of (2.1), a gives a one-to-one isomorphism of these two linear

spaces. Now, let β be the inverse mapping of a and let p be a differentiate

function over Mn. If we define a mapping h by

(2. 2)
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then we have

Therefore, we get

£ (Λ(f>))Ω=i(h(j>))da+d(i(h(p))Ώ) = 0.

Hence, we get the following

THEOREM 2.1. Let p be a differentiable function over Mn. Then the

vector field h(ρ) defined by (2.2) gives an infinitesimal symplectic transfor-

mation over Mn.

Now, in the same way as Lemma 1, we can verify the following

LEMMA 3. Let Mn be a manifold with a symplectic structure defined

by Ω. Then, for any point P of Mn, we can always find an open neighbor-

hood U of P and 2m functions x1, , xm, y1, , ym which satisfy the foll-

owing conditions:

(1) In U, the symplectic form Ω is expressed as

(2) The set of functions (xλ, yλ) defines a diffeomorphism from U onto

an open set V in 2m-dimensional Euclidean space E2m defined by

V= {(u\ ., tc2m) € E2m; \uι\<e for all i],

and

xλ(P) = 0, y\P)=0

hold good.

We call such a coordinate neighborhood U a canonical coordinate neighbor-

hood, and such a local coόrinate system a canonical coordinate system of the

symplectic structure.

Next, suppose Mn to be compact and let Q be a point in U whose

canonical coordinate is (aλ, bλ). If we consider a differentiable function p

defined by
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then the 1-parameter group of symplectic transformations generated by the
infinitesimal symplectic transformation h(ρ) sends P to Q for t — \.

Therefore we get the following

THEOREM 2.2. Let Mn be a compact manifold with a symplectic structure
defined by Ω, and let U be a canonical coordinate neighborhood around a
point P of Mn. Then, for any two points Q and Q of U, we can always
find a symplectic transformation of Mn which sends Q to Q.

Making use of this theorem in the same way as in §1, we get the following

THEOREM 2.3. Let Mn be a compact manifold with a symplectic structure.
Then, for any two points P and Q of Mn, we can always find a symplectic
transformation of Mn which sends P to Q.
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