Tôhoku Math. Journ. Vol. 18, No. 3, 1966

DUAL SPACES OF TENSOR PRODUCTS OF C*-ALGERAS

TAKATERU OKAYASU AND MASAMICHI TAKESAKI

(Received May 70, 1966)

We shall use the notations and the terminologies employed in [9] and suppose that C*-algebras in considerations are all separable. In [5], A. Guichardet studied the quasi-dual space of the tensor product $A_1 \bigotimes_{\alpha} A_2$ of C*-algebras A_1 and A_2 and showed that there is an almost Borel isomorphism Π of $\widetilde{A}_1 \times \widetilde{A}_2$, the cartesian product of quasi-dual spaces \widetilde{A}_1 of A_1 and \widetilde{A}_2 of A_2 , into the quasi-dual space $(A_1 \bigotimes_{\alpha} A_2)^{\sim}$ of $A_1 \bigotimes_{\alpha} A_2$. Also he showed that there is an example in which $\widetilde{\Pi}$ is not an onto mapping. In this note we shall show that there is a Borel isomorphism $\widehat{\Pi}_{\beta}$ of $\widehat{A}_1 \times \widehat{A}_2$, the cartesian product of dual spaces \widehat{A}_1 of A_1 and \widehat{A}_2 of A_2 , into the dual space $(A_1 \bigotimes_{\beta} A_2)^{\wedge}$ of each tensor product $A_1 \bigotimes_{\beta} A_2$ of A_1 and A_2 with respect to a B*-norm $\| \|_{\beta}$ and that $\widehat{\Pi}_{\nu}$ is an *onto* mapping if and only if one of A_1 and A_2 is of type I (or equivalently a GCR). Combining this and [9; Cor. of Theorem 3], we shall conclude that the dual space $(G_1 \times G_2)^{\wedge}$ of $G_1 \times G_2$, the direct product of separable locally compact groups \widehat{G}_1 and \widehat{G}_2 of G_2 if and only if one of G_1 and G_2 is a group of type I.

For $n=1, 2, \dots, \infty$ (countably infinite), let H_n be a fixed *n*-dimensional Hilbert space. We identify the tensor product $H_n \otimes H_m$ and H_{nm} under some fixed isomorphism. For a separable C^* -algebra A, $\operatorname{Fac}_n(A)$ and $\operatorname{Irr}_n(A)$ are the set of all factor representations on H_n and the set of all irreducible representations

on H_n respectively. Put $\operatorname{Fac}(A) = \bigcup_{n=1,2,\dots,\infty} \operatorname{Fac}_n(A)$ and $\operatorname{Irr}(A) = \bigcup_{n=1,2,\dots,\infty} \operatorname{Irr}_n(A)$. Each $\operatorname{Fac}_n(A)$ and $\operatorname{Irr}_n(A)$ have the Borel structure induced by the simple convergence topology respectively. The Borel structures in $\operatorname{Fac}(A)$ and $\operatorname{Irr}(A)$ are defined as the unions of Borel spaces $\operatorname{Fac}_n(A)$ and $\operatorname{Irr}_n(A)$, $n=1,2,\dots,\infty$, respectively. Of course, $\operatorname{Irr}(A)$ is a Borel subset of $\operatorname{Fac}(A)$ by [2]. The quasi-dual space \widetilde{A} of a C*-algebra A is the quotient Borel space $\operatorname{Fac}(A)/(\approx)$ of Fac (A) by the quasi-equivalence relation " \approx " and the dual space \widehat{A} of A is the quotient Borel space $Irr(A)/"\simeq"$ of Irr(A) by the unitary equivalence relation " \simeq ".

Let A_1 and A_2 be two C*-algebras. For a B*-norm $|| ||_{\beta}$ in the *-algebraic tensor product $A_1 \odot A_2$ of A_1 and A_2 , A_{β} denote the completion $A_1 \bigotimes_{\beta} A_2$ of $A_1 \odot A_2$ under $|| ||_{\beta}$. For a representation π of A_{β} there exist representations π^1 of A_1 and π^2 of A_2 on the representation space of π such that

$$\pi^{1}(x_{1})\pi^{2}(x_{2}) = \pi^{2}(x_{2})\pi^{1}(x_{1}) = \pi(x_{1} \otimes x_{2}) \text{ for } x_{1} \in A_{1} \text{ and } x_{2} \in A_{2}$$

by [5; Prop.1]. We shall call π^1 and π^2 the restrictions of π to A_1 and to A_2 respectively. For each representations π_1 of A_1 and π_2 of A_2 the product representation $\pi_1 \otimes \pi_2$ of $A_1 \odot A_2$ can be extended to a representation of A_β , which is also denoted by $\pi_1 \otimes \pi_2$. Putting $\Pi(\pi_1, \pi_2) = \pi_1 \otimes \pi_2$, Π is a continuous mapping of $\operatorname{Fac}_n(A) \times \operatorname{Fac}_m(A)$ into $\operatorname{Fac}_{nm}(A)$ by [5; Lemme 2]. Moreover the relations $\pi_1 \approx \pi_1$ and $\pi_2 \approx \pi_2$ imply $\Pi(\pi_1, \pi_2) \approx \Pi(\pi_1', \pi_2')$ and the relations $\pi_1 \simeq \pi_2'$ and $\pi_2 \simeq \pi_2$ imply $\Pi(\pi_1, \pi_2) \simeq \Pi(\pi_1', \pi_2')$ and the relations $\pi_1 \simeq \pi_2'$ and $\pi_2 \simeq \pi_2$ imply $\Pi(\pi_1, \pi_2) \simeq \Pi(\pi_1', \pi_2')$, so that Π induces naturally a Borel mapping Π of $\widetilde{A}_1 \times \widetilde{A}_2$ into \widetilde{A}_β and a Borel mapping Π of $\widehat{A}_1 \times \widehat{A}_2$ into \widehat{A}_β , respectively. If π^1 and π^2 are the restrictions of $\pi_1 \otimes \pi_2$ to A_1 and A_2 respectively then π^1 and π^2 are quasi-equivalent to π_1 and to π_2 respectively, so that Π and $\widehat{\Pi}$ are one-to-one mappings.

LEMMA 1. A π of $\operatorname{Irr}(A_{\beta})$ is unitarily equivalent to $\pi_1 \otimes \pi_2$ for some $\pi_1 \in \operatorname{Irr}(A_1)$ and $\pi_2 \in \operatorname{Irr}(A_2)$ if and only if one of the restrictions π^1 and π^2 of π is of type I.

PROOF. Suppose $\pi \approx \pi_1 \otimes \pi_2$, $\pi_1 \in \operatorname{Irr}(A_1)$ and $\pi_2 \in \operatorname{Irr}(A_2)$. The unitary operator, which implements the equivalence between π and $\pi_1 \otimes \pi_2$, induces the equivalence between the corresponding restrictions of π and of $\pi_1 \otimes \pi_2$ to A_1 and A_2 . Hence π^1 is quasi-equivalent to π_1 , so that the irreducibility of π_1 implies our assertion. Similarly π^2 is of type I.

Conversely suppose π^1 is of type I. Let M_i be the von Neumann algebra generated by $\pi^i(A_i)$ for i=1, 2. Then M_1 and M_2 commute each other and generate $B(H_{\pi})$, which is the full operator algebra on the representation space H_{π} of π . M_1' contains M_2 and M_2' contains M_1 , both M_1 and M_2 are factors. By the assumption for π^1 , M_1 is a factor of type I, so that $B(H_{\pi})$ is isomorphic to $M_1 \otimes M_1'$ under the natural correspondence $\sum_{i=1}^n x_i x_i' \longleftrightarrow \sum_{i=1}^n x_i \otimes x_i', x_i \in M_1$,

 $x_i \in M_1$ and $i=1, 2, \dots, n$, where $M_1 \otimes M_1$ means the tensor product of M_1 and M_1 as von Neumann algebras. The von Neumann algebra $R(M_1, M_2)$ generated by M_1 and M_2 is isomorphic to $M_1 \otimes M_2$, because M_2 is containd in M_1 . Hence we get $M_2=M_1$, so that M_2 is also a factor of type I and $\pi \approx \pi^1 \otimes \pi^2$. Both π^1 and π^2 are factor representations of type I, so that there

333

T. OKAYASU AND M. TAKESAKI

exist $\pi_1 \in \operatorname{Irr}(A_1)$ and $\pi_2 \in \operatorname{Irr}(A_2)$ such that π_1 and π_2 are quasi-equivalent to π^1 and π^2 respectively. Hence π is quasi-equivalent to $\pi_1 \otimes \pi_2$ by the remark preceeding our lemma. The irreducibilities of both π and $\pi_1 \otimes \pi_2$ and their quasi-equivalence imply their unitary equivalence. This completes the proof.

THEOREM 1. $\widehat{\Pi}$ is a Borel isomorphism of $\widehat{A}_1 \times \widehat{A}_2$ into \widehat{A}_β for each B*norm $\| \|_{\beta}$ in $A_1 \odot A_2$.

PROOF. We shall prove that $\widehat{\Pi}(\widehat{E}_1 \times \widehat{E}_2) = \widehat{E}$ is a Borel subset of A_β for every Borel subsets \widehat{E}_1 of \widehat{A}_1 and \widehat{E}_2 of \widehat{A}_2 . Let Θ_1, Θ_2 and Θ be the canonical mapping of $\operatorname{Irr}(A_1)$, $\operatorname{Irr}(A_2)$, and $\operatorname{Irr}(A_\beta)$ onto $\widehat{A}_1, \widehat{A}_2$ and \widehat{A}_β respectively, then it suffices to prove that $\Theta^{-1}(\widehat{E})$ is a Borel subset of $\operatorname{Irr}(A_\beta)$. Putting $E_1 = \Theta_1^{-1}(\widehat{E}_1)$, $E_2 = \Theta_2^{-1}(\widehat{E}_2)$ and $E = \Theta^{-1}(\widehat{E})$, we shall prove at first

(*)
$$E = \{ \pi \in \operatorname{Irr}(A_{\beta}); \pi^1 \approx \pi_1, \pi^2 \approx \pi_2 \text{ for some } (\pi_1, \pi_2) \in E_1 \times E_2 \},$$

where π^1 and π^2 mean the restrictions of π to A_1 and A_2 respectively. Let F be the set of the right side of the above equation. If π belongs to E, then we have $\Theta(\pi) = \widehat{\Pi}(\pi_1, \pi_2)$ for some $(\widehat{\pi_1}, \widehat{\pi_2}) \in \widehat{E_1} \otimes \widehat{E_2}$. By the definitions of E_1 and E_2 there exists $(\pi_1, \pi_2) \in E_1 \times E_2$ such that $\Theta_1(\pi_1) = \widehat{\pi_1}$ and $\Theta_2(\pi_2) = \widehat{\pi_2}$. From the commutativity of the diagram of mappings

$$\operatorname{Irr}(A_{1}) \times \operatorname{Irr}(A_{2}) \xrightarrow{\Pi} \operatorname{Irr}(A_{\beta}) \\
\downarrow \Theta_{1} \times \Theta_{2} \qquad \qquad \downarrow \Theta \\
\widehat{A}_{1} \times \widehat{A}_{2} \xrightarrow{\Pi} \qquad \widehat{A}_{\beta}$$

 π is unitary equivalent to $\pi_1 \otimes \pi_2$, where $\Theta_1 \times \Theta_2$ is the mapping defined by $\Theta_1 \times \Theta_2(\pi_1, \pi_2) = (\Theta_1(\pi_1), \Theta_2(\pi_2))$. Hence we get $\pi_1 \approx \pi^1$ and $\pi_2 \approx \pi^2$, that is, π belongs to F. Conversely, suppose π belongs to F. That is, π^1 and π^2 are quasi-equivalent to π_1 of E_1 and π_2 of E_2 respectively. The irreducibilities of π_1 and π_2 imply that π^1 and π^2 are factor representations of type I. From Lemma 1 and its proof π is unitarily equivalent to $\pi_1 \otimes \pi_2$, so that we have $\Theta(\pi) \in \widehat{E}$. The definition of E implies $\pi \in E$. Thus we established the equation (*).

Since E_1 is a Borel subset of $\operatorname{Irr}(A_1)$, E_2 a Borel subset of $\operatorname{Irr}(A_2)$ and these are saturated under the unitary equivalence, the saturations E_1 of E_1 and E_2 of E_2 under the quasi-equivalence are Borel subsets of Fac (A_1) and Fac (A_2) respectively by [2; Lemma 5]. Moreover the mapping Π' ; Fac $(A_\beta) \ni \pi \to (\pi^1, \pi^2)$ $\in \operatorname{Fac}(A_1) \times \operatorname{Fac}(A_2)$ is a Borel mapping by [5; Lemme 3]. Hence $E = \Pi'^{-1}(E_1 \times E_2) \cap \operatorname{Irr}(A_\beta)$ is a Borel subset of $\operatorname{Irr}(A_\beta)$.

334

Let \mathfrak{B} be the family consisting of all subsets \widehat{E} of $\widehat{A}_1 \times \widehat{A}_2$ such that $\widehat{\Pi}(\widehat{E})$ is a Borel subsets in \widehat{A}_{β} . Since $\widehat{\Pi}$ is an one-to-one mapping, $\widehat{\Pi}$ preserves all set-theoretic operations, union, intersection and difference. \mathfrak{B} is a σ -ring of subsets of $\widehat{A}_1 \times \widehat{A}_2$. Since \mathfrak{B} contains all product sets of Borel subsets of \widehat{A}_1 and \widehat{A}_2 as proved above and the Borel structure of $\widehat{A}_1 \times \widehat{A}_2$ is the smallest σ -ring containing all product sets of Borel subsets of \widehat{A}_1 and \widehat{A}_2 , \mathfrak{B} contanis the Borel structure of $\widehat{A}_1 \times \widehat{A}_2$. Thus $\widehat{\Pi}(\widehat{E})$ is a Borel set in \widehat{A}_β for every Borel set \widehat{E} in $\widehat{A}_1 \times \widehat{A}_2$, that is, $\widehat{\Pi}$ is an into Borel isomorphism. This completes the proof.

LEMMA 2. If M_1 and M_2 are von Neumann algebras whose commutators M'_1 and M'_2 are continuous hyperfinite factors, then there exist normal representations π_1 of M_1 and π_2 of M_2 on the same Hilbert space such that $\pi_1(M_1) = \pi_2(M_2)$ and equivalently $\pi_1(M_1) = \pi_2(M_2)'$.

PROOF. If M_1 is finite, then it is a continuous hyperfinite factor by [8; Theorem XV]. By the unicity of continuous hyperfinite factors M_1 is isomorphic to M_1' and also to M_2' . Hence there exists an isomorphism π_1 of M_1 onto M_2' , so that the couple of π_1 and the identity representation π_2 of M_2 is the desired one. If M_1 is an infinite factor, there exist a factor of type II₁ and an infinite factor N of type I such that $M_1 = M \otimes N$. Hence we may assume $M_1' = M'$ $\otimes \{\lambda 1\}$, representing N as the full operator algebra on a Hilbert space. Hence M_1 is isomorphic to M', so that M is a continuous hyperfinite factor by the finiteness of M. Thus M is isomorphic to M_2 . On the other hand, the ampliation $M_2 \ni x_2 \rightarrow x_2 \otimes 1 \in M_2 \otimes \{\lambda 1\}$ is an isomorphism and $(M_2 \otimes \{\lambda 1\})'$ $= M_2 \otimes N \cong M \otimes N = M_1$. Taking π_1 as an isomorphism of M_1 onto $M_2 \otimes N$, the couple of of the representation π_1 of M_1 and the representation π_2 of M_2 which is obtained by $\pi_2(x_2) = x_2 \otimes 1$ for $x_2 \in M_2$ is the desired one.

THEOREM 2. $\widehat{\Pi}$ is a Borel isomorphism of $\widehat{A_1} \times \widehat{A_2}$ onto $\widehat{A_{\nu}}$ if and only if one of A_1 and A_2 is of type I (or equivalently a GCR). In this case the ν -norm in $A_1 \odot A_2$ coincides with the α -norm.

PROOF. Suppose that neither A_1 nor A_2 is of type I. By the proof of [3; Theorem 1] there exist representations π_1 of A_1 and π_2 of A_2 such that the commutators of $\pi_1(A_1)$ and $\pi_2(A_2)$ are continuous hyperfinite factors respectively. Then there exist normal representations ρ_1 of the von Neumann algebra M_1 generated by $\pi_1(A_1)$ and ρ_2 of the von Neumann algebra M_2 generated by $\pi_2(A_2)$ such that $\rho_1(M_1)$ and $\rho_2(M_2)$ are commutators in each other from Lemma 2. We define a representation π of A_{ν} as the extension of the representation of $A_1 \odot A_2$ defined by

$$\pi \left(\sum_{k=1}^{n} x_{1,\,k} \otimes x_{2,\,k} \right) = \sum_{k=1}^{n} (\rho_1 \circ \pi_1)(x_{1,\,k})(\rho_2 \circ \pi_2)(x_{2,\,k}) \quad \text{for } \sum_{k=1}^{n} x_{1,\,k} \otimes x_{2,\,k} \in A_1 \bigodot A_2.$$

Since the von Neumann algebra generated by $\pi(A_{\nu})$ contains $\rho_1(M_1)$ and $\rho_2(M_2)$, π becomes an irreducible representation of A_{ν} . But π can not be represented as a tensor product of representations of A_1 and A_2 . Because if π is represented as $\sigma_1 \otimes \sigma_2$, σ_1 and σ_2 representations of A_1 and A_2 respectively, then σ_1 is quasiequivalent to $\rho_1 \circ \pi_1$, σ_2 to $\rho_2 \circ \pi_2$, and then π must be of type II, which is a contradiction to the irreducibility of π . Hence π does not belong to $\Pi(\operatorname{Irr}(A_1)$ $\times \operatorname{Irr}(A_2))$. Hence $\widehat{\Pi}$ is not an onto mapping. The converse implication is an immediate consequence of Lemma 1. The final assertion is nothing but [10; Theorem 3]. This completes the proof.

Combining our theorem and [9; Cor. of Theorem3], we get the following application to the dual space of direct product of locally compact groups.

COROLLARY. Let G_1 and G_2 be separable locally compact groups. The natural $m^pping \widehat{\Pi}$ of the cartesian product $\widehat{G}_1 \times \widehat{G}_2$ of the dual spaces \widehat{G}_1 of \widehat{G}_1 and \widehat{G}_2 of G_2 into the dual space $(G_1 \times G_2)^\circ$ of the direct product group $G_1 \times G_2$ is a Borel isomorphism. $\widehat{\Pi}$ maps $\widehat{G}_1 \times \widehat{G}_2$ onto $(G_1 \times G_2)^\circ$ if and only if one of G_1 and G_2 is of type I.

In general, for a locally compact group G, there is a natural mapping of \widehat{G} onto $C^*(\widehat{G})$ which is also a Borel isomorphism, the proof is directly followed from Theorem 2 and [9; Cor. of Theorem 3].

BIBLIOGRAPHY

- [1] J. DIXMIER, Les C*-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
- [2] J. DIXMIER, Dual et quasi-dual d'une algèbre de Banach involutive, Trans. Amer. Mth. Soc., 104(1962), 278-183.
- [3] J.GLIMM, Type I C*-algebras, Ann. Math., 73(1961), 572-613.
- [4] A. GROTHENDIECK, Produits tensoriels topologiques et espaces nucléaires, Memoirs Amer. Math. Soc., 16(1955).
- [5] A. GUICHARDET, Caractères et représentation de produits de C*-algèbres, Ann. Éc. Norm Sup., 81(1964), 189–206.
- [6] A. GUICHARDET, Tensor products of C*-algebras, Doklady Acad. Sci. USSR, 160(1965); Soviet Math., 6(1965), 210-213.
- [7] G.W.MACKEY, Borel structure of groups and their duals, Trans. Amer. Math. Soc., 85(1957), 134-165.
- [8] F.J. MURRAY AND J. VON NEUMANN, Rings of operators IV, Ann. Math., 44(1943), 716-808.
- [9] T. OKAYASU, On the tensor products of C*-algebras, Tôhoku Math. Journ. 18(1966),

336

325-331.

- [10] M. TAKESAKI, On the cross-norm of the direct product of C*-algebras, Tôhoku Math. Journ, 16(1964), 111-122.
 [11] T. TURUMARU, On the direct product of operator algebras I, Tôhoku Math. Journ..
- 4(1952), 242-251.

TÔHOKU UNIVERSITY.