DUAL SPACES OF TENSOR PRODUCTS OF C^{*}-ALGERAS

Takateru Okayasu and Masamichi Takesaki

(Received May 70, 1966)

We shall use the notations and the terminologies employed in [9] and suppose that C^{*}-algebras in considerations are all separable. In [5], A. Guichardet studied the quasi-dual space of the tensor product $A_{1} \widehat{\otimes}_{\alpha} A_{2}$ of C^{*}-algebras A_{1} and A_{2} and showed that there is an almost Borel isomorphism $\widetilde{\Pi}$ of $\widetilde{A_{1}} \times \widetilde{A_{2}}$, the cartesian product of quasi-dual spaces \widetilde{A}_{1} of A_{1} and \widetilde{A}_{2} of A_{2}, into the quasi-dual space $\left(A_{1} \widehat{\otimes}_{\alpha} A_{2}\right) \sim$ of $A_{1} \widehat{\otimes}_{\alpha} A_{2}$. Also he showed that there is an example in which $\widetilde{\Pi}$ is not an onto mapping. In this note we shall show that there is a Borel isomorphism $\widehat{\Pi}_{\beta}$ of $\widehat{A_{1}} \times \widehat{A_{2}}$, the cartesian product of dual spaces $\widehat{A_{1}}$ of A_{1} and $\widehat{A_{2}}$ of A_{2}, into the dual space $\left(A_{1} \widehat{\otimes}_{\beta} A_{2}\right)^{\wedge}$ of each tensor product $A_{1} \widehat{\otimes}_{\beta} A_{2}$ of A_{1} and A_{2} with respect to a B^{*}-norm $\left\|\|_{\beta}\right.$ and that $\widehat{\Pi}_{\nu}$ is an onto mapping if and only if one of A_{1} and A_{2} is of type I (or equivalently a GCR). Combining this and [9;Cor. of Theorem 3], we shall conclude that the dual space $\left(G_{1} \times G_{2}\right)$)of $G_{1} \times G_{2}$, the direct product of separable locally compact groups G_{1} and G_{2}, is Borel-isomorphic to the cartesian product $\widehat{G}_{1} \times \widehat{G}_{2}$ of dual spaces \widehat{G}_{1} of G_{1} and \widehat{G}_{2} of G_{2} if and only if one of G_{1} and G_{2} is a group of type I.

For $n=1,2, \cdots, \infty$ (countably infinite), let H_{n} be a fixed n-dimensional Hilbert space. We identify the tensor product $H_{n} \otimes H_{m}$ and $H_{n m}$ under some fixed isomorphism. For a separable C^{*}-algebra $A, \mathrm{Fac}_{n}(A)$ and $\operatorname{Irr}_{n}(A)$ are the set of all factor representations on H_{n} and the set of all irreducible representations
on H_{n} respectively. $\operatorname{Put} \operatorname{Fac}(A)=\bigcup_{n=1,2, \cdots, \infty} \operatorname{Fac}_{n}(A)$ and $\operatorname{Irr}(A)=\bigcup_{n=1,2, \cdots, \infty} \operatorname{Irr}_{n}(A)$. Each $\mathrm{Fac}_{n}(A)$ and $\operatorname{Irr}_{n}(A)$ have the Borel structure induced by the simple convergence topology respectively. The Borel structures in $\operatorname{Fac}(A)$ and $\operatorname{Irr}(A)$ are defined as the unions of Borel spaces $\mathrm{Fac}_{n}(A)$ and $\operatorname{Irr}_{n}(A), n=1,2, \cdots \infty$, respectively. Of course, $\operatorname{Irr}(A)$ is a Borel subset of $\operatorname{Fac}(A)$ by [2]. The quasi-dual space \widetilde{A} of a C^{*}-algebra A is the quotient Borel space $\operatorname{Fac}(A) / " \approx "$ of Fac (A) by the quasi-equivalence relation " \approx " and the dual space \hat{A} of A
is the quotient Borel space $\operatorname{Irr}(A) /$ " \simeq " of $\operatorname{Irr}(A)$ by the unitary equivalence relation " \simeq ".

Let A_{1} and A_{2} be two C^{*}-algebras. For a B^{*}-norm $\left\|\|_{\beta}\right.$ in the ${ }^{*}$-algebraic tensor product $A_{1} \odot A_{2}$ of A_{1} and A_{2}, A_{β} denote the completion $A_{1} \widehat{\otimes}_{\beta} A_{2}$ of $A_{1} \odot A_{2}$ under $\left\|\|_{\beta}\right.$. For a representation π of A_{β} there exist representations π^{1} of A_{1} and π^{2} of A_{2} on the representation space of π such that

$$
\pi^{1}\left(x_{1}\right) \pi^{2}\left(x_{2}\right)=\pi^{2}\left(x_{2}\right) \pi^{1}\left(x_{1}\right)=\pi\left(x_{1} \otimes x_{2}\right) \text { for } x_{1} \in A_{1} \text { and } x_{2} \in A_{2}
$$

by [5; Prop.1]. We shall call π^{1} and π^{2} the restrictions of π to A_{1} and to A_{2} respectively. For each representations π_{1} of A_{1} and π_{2} of A_{2} the product representation $\pi_{1} \otimes \pi_{2}$ of $A_{1} \odot A_{2}$ can be extended to a representation of A_{β}, which is also denoted by $\pi_{1} \otimes \pi_{2}$. Putting $\Pi\left(\pi_{1}, \pi_{2}\right)=\pi_{1} \otimes \pi_{2}, \Pi$ is a continuous mapping of $\mathrm{Fac}_{n}(A) \times \mathrm{Fac}_{m}(A)$ into $\mathrm{Fac}_{n m}(A)$ by [5; Lemme 2]. Moreover the relations $\pi_{1} \approx \pi_{1}$ and $\pi_{2} \approx \pi_{2}$ imply $\Pi\left(\pi_{1}, \pi_{2}\right) \approx \Pi\left(\pi_{1}{ }^{\prime}, \pi_{2}^{\prime}\right)$ and the relations $\pi_{1} \simeq \pi_{2}{ }^{\prime}$ and $\pi_{2} \simeq \pi_{2}$ imply $\Pi\left(\pi_{1}, \pi_{2}\right) \simeq \Pi\left(\pi_{1}{ }^{\prime}, \pi_{2}{ }^{\prime}\right)$, so that Π induces naturally a Borel mapping $\widetilde{\Pi}$ of $\widetilde{A}_{1} \times \widetilde{A}_{2}$ into \widetilde{A}_{β} and a Borel mapping $\widehat{\Pi}$ of $\widehat{A_{1}} \times \widehat{A_{2}}$ into \widehat{A}_{β}, respectively. If π^{1} and π^{2} are the restrictions of $\pi_{1} \otimes \pi_{2}$ to A_{1} and A_{2} respectively then π^{1} and π^{2} are quasi-equivalent to π_{1} and to π_{2} respectively, so that $\widetilde{\Pi}$ and $\widehat{\Pi}$ are one-to-one mappings.

Lemma 1. $A \pi$ of $\operatorname{Irr}\left(A_{\beta}\right)$ is unitarily equivalent to $\pi_{1} \otimes \pi_{2}$ for some $\pi_{1} \in \operatorname{Irr}\left(A_{1}\right)$ and $\pi_{2} \in \operatorname{Irr}\left(A_{2}\right)$ if and only if one of the restrictions π^{1} and π^{2} of π is of type I .

PROOF. Suppose $\pi \approx \pi_{1} \otimes \pi_{2}, \pi_{1} \in \operatorname{Irr}\left(A_{1}\right)$ and $\pi_{2} \in \operatorname{Irr}\left(A_{2}\right)$. The unitary operator, which implements the equivalence between π and $\pi_{1} \otimes \pi_{2}$, induces the equivalence between the corresponding restrictions of π and of $\pi_{1} \otimes \pi_{2}$ to A_{1} and A_{2}. Hence π^{1} is quasi-equivalent to π_{1}, so that the irreducibility of π_{1} implies our assertion. Similarly π^{2} is of type I.

Conversely suppose π^{1} is of type I. Let M_{i} be the von Neumann algebra generated by $\pi^{i}\left(A_{i}\right)$ for $i=1,2$. Then M_{1} and M_{2} commute each other and generate $B\left(H_{\pi}\right)$, which is the full operator algebra on the representation space H_{π} of $\pi . M_{1}^{\prime}$ contains M_{2} and M_{2}^{\prime} contains M_{1}, both M_{1} and M_{2} are factors. By the assumption for π^{1}, M_{1} is a factor of type I , so that $B\left(H_{\pi}\right)$ is isomorphic to $M_{1} \otimes M_{1}^{\prime}$ under the natural correspondence $\sum_{i=1}^{n} x_{i} x_{i}{ }^{\prime} \longleftrightarrow \sum_{i=1}^{n} x_{i} \otimes x_{i}{ }^{\prime}, \quad x_{i} \in M_{1}$, $x_{i}^{\prime} \in M_{1}^{\prime}$ and $i=1,2, \cdots, n$, where $M_{1} \otimes M_{1}^{\prime}$ means the tensor product of M_{1} and M_{1}^{\prime} as von Neumann algebras. The von Neumann algebra $R\left(M_{1}, M_{2}\right)$ generated by M_{1} and M_{2} is isomorphic to $M_{1} \otimes M_{2}$, because M_{2} is containd in M_{1}^{\prime}. Hence we get $M_{2}=M_{1}$, so that M_{2} is also a factor of type I and $\pi \approx \pi^{1} \otimes \pi^{2}$. Both π^{1} and π^{2} are factor representations of type I, so that there
exist $\pi_{1} \in \operatorname{Irr}\left(A_{1}\right)$ and $\pi_{2} \in \operatorname{Irr}\left(A_{2}\right)$ such that π_{1} and π_{2} are quasi-equivalent to π^{1} and π^{2} respectively. Hence π is quasi-equivalent to $\pi_{1} \otimes \pi_{2}$ by the remark preceeding our lemma. The irreducibilities of both π and $\pi_{1} \otimes \pi_{2}$ and their quasi-equivalence imply their unitary equivalence. This completes the proof.

THEOREM 1. $\widehat{\Pi}$ is a Borel isomorphism of $\widehat{A}_{1} \times \hat{A}_{2}$ into \hat{A}_{β} for each B^{*} norm $\left\|\|_{\beta}\right.$ in $A_{1} \odot A_{2}$.

Proof. We shall prove that $\widehat{\Pi}\left(\widehat{E}_{1} \times \widehat{E}_{2}\right)=\widehat{E}$ is a Borel subset of A_{β} for every Borel subsets \widehat{E}_{1} of \hat{A}_{1} and \widehat{E}_{2} of \hat{A}_{2}. Let Θ_{1}, Θ_{2} and Θ be the canonical mapping of $\operatorname{Irr}\left(A_{1}\right), \operatorname{Irr}\left(A_{2}\right)$, and $\operatorname{Irr}\left(A_{\beta}\right)$ onto $\hat{A}_{1}, \widehat{A}_{2}$ and \hat{A}_{β} respectively, then it suffices to prove that $\Theta^{-1}(\widehat{E})$ is a Borel subset of $\operatorname{Irr}\left(A_{\beta}\right)$. Putting $E_{1}=\Theta_{1}^{-1}\left(\widehat{E}_{1}\right)$, $E_{2}=\Theta_{2}^{-1}\left(\widehat{E}_{2}\right)$ and $E=\Theta^{-1}(\widehat{E})$, we shall prove at first

$$
\begin{equation*}
E=\left\{\pi \in \operatorname{Irr}\left(A_{\beta}\right) ; \pi^{1} \approx \pi_{1}, \pi^{2} \approx \pi_{2} \text { for some }\left(\pi_{1}, \pi_{2}\right) \in E_{1} \times E_{2}\right\}, \tag{*}
\end{equation*}
$$

where π^{1} and π^{2} mean the restrictions of π to A_{1} and A_{2} respectively. Let F be the set of the right side of the above equation. If π belongs to E, then we have $\Theta(\pi)=\widehat{\Pi}\left(\pi_{1}, \pi_{2}\right)$ for some $\left(\widehat{\pi_{1}}, \widehat{\pi}_{2}\right) \in \widehat{E_{1}} \otimes \widehat{E_{2}}$. By the definitions of E_{1} and E_{2} there exists $\left(\pi_{1}, \pi_{2}\right) \in E_{1} \times E_{2}$ such that $\Theta_{1}\left(\pi_{1}\right)=\widehat{\pi}_{1}$ and $\Theta_{2}\left(\pi_{2}\right)=\widehat{\pi}_{2}$. From the commutativity of the diagram of mappings

π is unitary equivalent to $\pi_{1} \otimes \pi_{2}$, where $\Theta_{1} \times \Theta_{2}$ is the mapping defined by $\Theta_{1} \times \Theta_{2}\left(\pi_{1}, \pi_{2}\right)=\left(\Theta_{1}\left(\pi_{1}\right), \Theta_{2}\left(\pi_{2}\right)\right)$. Hence we get $\pi_{1} \approx \pi^{1}$ and $\pi_{2} \approx \pi^{2}$, that is, π belongs to F. Conversely, suppose π belongs to F. That is, π^{1} and π^{2} are quasi-equivalent to π_{1} of E_{1} and π_{2} of E_{2} respectively. The irreducibilities of π_{1} and π_{2} imply that π^{1} and π^{2} are factor representations of type I. From Lemma 1 and its proof π is unitarily equivalent to $\pi_{1} \otimes \pi_{2}$, so that we have $\Theta(\pi)=\widehat{\Pi}$ $\left(\Theta_{1}\left(\pi_{1}\right), \Theta_{2}\left(\pi_{2}\right)\right)$. Hence we have $\Theta(\pi) \in \widehat{E}$. The definition of E implies $\pi \in E$. Thus we established the equation (*).

Since E_{1} is a Borel subset of $\operatorname{Irr}\left(A_{1}\right), E_{2}$ a Borel subset of $\operatorname{Irr}\left(A_{2}\right)$ and these are saturated under the unitary equivalence, the saturations E_{1}^{\prime} of E_{1} and E_{2}^{\prime} of E_{2} under the quasi-equivalence are Borel subsets of $\mathrm{Fac}\left(A_{1}\right)$ and $\operatorname{Fac}\left(A_{2}\right)$ respectively by [2; Lemma 5]. Moreover the mapping $\Pi^{\prime} ; \operatorname{Fac}\left(A_{\beta}\right) \ni \pi \rightarrow\left(\pi^{1}, \pi^{2}\right)$ $\in \operatorname{Fac}\left(A_{1}\right) \times \operatorname{Fac}\left(A_{2}\right)$ is a Borel mapping by [5; Lemme 3]. Hence $E=\Pi^{\rho^{-1}}\left(E_{1}\right.$ $\left.\times E_{2}^{\prime}\right) \cap \operatorname{Irr}\left(A_{\beta}\right)$ is a Borel subset of $\operatorname{Irr}\left(A_{\beta}\right)$.

Let \mathfrak{B} be the family consisting of all subsets \widehat{E} of $\widehat{A}_{1} \times \widehat{A}_{2}$ such that $\widehat{\Pi}(\widehat{E})$ is a Borel subsets in \widehat{A}_{β}. Since $\widehat{\Pi}$ is an one-to-one mapping, $\widehat{\Pi}$ preserves all set-theoretic operations, union, intersection and difference. B^{B} is a σ-ring of subsets of $\hat{A}_{1} \times \hat{A}_{2}$. Since \mathfrak{B} contains all product sets of Borel subsets of $\widehat{A_{1}}$ and $\widehat{A_{2}}$ as proved above and the Borel structure of $\widehat{A}_{1} \times \widehat{A}_{2}$ is the smallest σ-ring containing all product sets of Borel subsets of \widehat{A}_{1} and $\widehat{A}_{2}, \mathfrak{B}$ contanis the Borel structure of $\widehat{A}_{1} \times \widehat{A}_{2}$. Thus $\widehat{\Pi}(\widehat{E})$ is a Borel set in \widehat{A}_{3} for every Borel set \widehat{E} in $\widehat{A_{1}} \times \widehat{A}_{2}$, that is, $\widehat{\Pi}$ is an into Borel isomorphism. This completes the proof.

Lemma 2. If M_{1} and M_{2} are von Neumxnn algebras whose commutators M_{1}^{\prime} and M_{2}^{\prime} are continuous hyperfinite factors, then there exist normal representations π_{1} of M_{1} and π_{2} of M_{2} on the same Hilbert space such that $\pi_{1}\left(M_{1}\right)=\pi_{2}\left(M_{2}\right)$ and equivalently $\pi_{1}\left(M_{1}\right)=\pi_{2}\left(M_{2}\right)^{\prime}$.

Proof. If M_{1} is finite, then it is a continuous hyperfinite factor by [8; Theorem XV]. By the unicity of continuous hyperfinite factors M_{1} is isomorphic to M_{1}^{\prime} and also to M_{2}^{\prime}. Hence there exists an isomorphism π_{1} of M_{1} onto M_{2}^{\prime}, so that the couple of π_{1} and the identity representation π_{2} of M_{2} is the desired one. If M_{1} is an irfinite factor, there exist a factor of type Π_{1} and an infinite factor N of type I such that $M_{1}=M \otimes N$. Hence we may assume $M_{1}^{\prime}=M^{\prime}$ $\otimes\{\lambda 1\}$, representing N as the full operator algebra on a Hilbert space. Hence M_{1} is isomorphic to M, so that M is a continuous hyperfinite factor by the finiteness of M. Thus M is isomorphic to M_{2}. On the other hand, the ampliation $M_{2} \ni x_{2} \rightarrow x_{2} \otimes 1 \in M_{2} \otimes\{\lambda 1\}$ is an isomorphism and $\left(M_{2} \otimes\{\lambda 1\}\right)^{\prime}$ $=M_{2} \otimes N \cong M \otimes N=M_{1}$. Taking π_{1} as an isomorphism of M_{1} onto $M_{2} \otimes N$, the couple of of the representation π_{1} of M_{1} and the representation π_{2} of M_{2} which is obtained by $\pi_{2}\left(x_{2}\right)=x_{2} \otimes 1$ for $x_{2} \in M_{2}$ is the desired one.

THEOREM 2. $\widehat{\Pi}$ is a Borel isomorphism of $\widehat{A_{1}} \times \widehat{A_{2}}$ onto $\widehat{A_{v}}$ if and only if one of A_{1} and A_{2} is of type I (or equivalentely a GCR). In this case the ν-norm in $A_{1} \odot A_{2}$ coincides with the α-norm.

Proof. Suppose that neither A_{1} nor A_{2} is of type I. By the proof of [3; Theorem 1] there exist representations π_{1} of A_{1} and π_{2} of A_{2} such that the commutators of $\pi_{1}\left(A_{1}\right)$ and $\pi_{2}\left(A_{2}\right)$ are continuous hyperfinite factors respectively. Then there exist normal representations ρ_{1} of the von Neumann algebra M_{1} generated by $\pi_{1}\left(A_{1}\right)$ and ρ_{2} of the von Neumann algebra M_{2} generated by $\pi_{2}\left(A_{2}\right)$ such that $\rho_{1}\left(M_{1}\right)$ and $\rho_{2}\left(M_{2}\right)$ are commutators in each other from Lemma 2. We define a representation π of A_{ν} as the extension of the representation
of $A_{1} \odot A_{2}$ defined by

$$
\pi\left(\sum_{k=1}^{n} x_{1, k} \otimes x_{2, k}\right)=\sum_{k=1}^{n}\left(\rho_{1} \circ \pi_{1}\right)\left(x_{1, k}\right)\left(\rho_{2} \circ \pi_{2}\right)\left(x_{2, k}\right) \text { for } \sum_{k=1}^{n} x_{1, k} \otimes x_{2, k} \in A_{1} \odot A_{2} .
$$

Since the von Neumann algebra generated by $\pi\left(A_{\nu}\right)$ contains $\rho_{1}\left(M_{1}\right)$ and $\rho_{2}\left(M_{2}\right)$, π becomes an irreducible representation of A_{v}. But π can not be represented as a tensor product of representations of A_{1} and A_{2}. Because if π is represented as $\sigma_{1} \otimes \sigma_{2}, \sigma_{1}$ and σ_{2} representations of A_{1} and A_{2} respectively, then σ_{1} is quasiequivalent to $\rho_{1} \circ \pi_{1}, \sigma_{2}$ to $\rho_{2} \circ \pi_{2}$, and then π must be of type II, which is a contradiction to the irreducibility of π. Hence π does not belong to $\Pi\left(\operatorname{Irr}\left(A_{1}\right)\right.$ $\left.\times \operatorname{Irr}\left(A_{2}\right)\right)$. Hence $\hat{\Pi}$ is not an onto mapping. The converse implication is an immediate consequence of Lemma 1. The final assertion is nothing but [10; Theorem 3]. This completes the proof.

Combining our theorem and [9; Cor. of Theorem3], we get the following application to the dual space of direct product of locally compact groups.

Corollary. Let G_{1} and G_{2} be separable locally compact groups. The natural mopping $\widehat{\Pi}$ of the cartesian prodhct $\widehat{G_{1}} \times \widehat{G}_{2}$ of the dual spaces \widehat{G}_{1} of $\widehat{G_{1}}$ and \widehat{G}_{2} of G_{2} into the dual space $\left(G_{1} \times G_{2}\right)$ of the direct product group $G_{1} \times G_{2}$ is a Borel isomorphism. $\widehat{\Pi}$ maps $\widehat{G_{1}} \times \widehat{G}_{2}$ onto $\left(G_{1} \times G_{2}\right)$ if and only if one of G_{1} and G_{2} is of type I.

In general, for a locally compact group G, there is a natural mapping of \widehat{G} onto $C^{*}(G)$ which is also a Borel isomorphism, the proof is directly followed from Theorem 2 and [9; Cor. of Theorem 3].

Bibliography

[1] J. Dixmier, Les C^{*}-algèbres et leurs représentations, Gauthier-Villars, Paris, 1964.
[2] J. Dixmier, Dual et quasi-dual d'une algèbre de Banach involutive, Trans. Amer. Mth. Soc., 104(1962), 278-183.
[3] J. Glimm, Type I C^{*}-algebras, Ann. Math., 73(1961), 572-613.
[4] A. Grothendieck, Produits tensoriels topologiques et espaces nucléaires, Memoirs A.mer. Math. Soc., 16(1955).
[5] A. Guichardet, Caractères et représentation de produits de C^{*}-algèbres, Ann. Éc. Norm Sup., 81(1964), 189-206.
[6] A. Guichardet, Tensor products of C^{*}-algebras, Doklady Acad. Sci. USSR, 160 (1965); Soviet Math., 6(1965), 210-213.
[7] G. W. Mackey, Borel structure of groups and their duals, Trans. Amer. Math. Soc., 85(1957), 134-165.
[8] F. J. Murray and J. Von Neumann, Rings of operators IV, Ann. Math., 44(1943), 716-808.
[9] T. OkAyasu, On the tensor products of C^{*}-algebras, Tôhoku Math. Journ. 18(1966),

325-331.
[10] M. TAKESAKI, On the cross-norm of the direct product of C^{*}-algebras, Tôhoku Math. Journ, 16(1964), 111-122.
[11] T. TURUMARU, On the direct product of operator algebras I, Tôhoku Math. Journ.. 4(1952), 242-251.

TôHoku University.

