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1. Let X be a compact Hausdorff space and A a logmodular algebra on X
with the maximal ideal space M. Every 6 < M is represented by a uniquely

determined multiplicative probablity measure m; on X, so that 68(f)= f Jdmgfor
x

feA. We identify 6 and m, For 6, 6, M, the relation 6,~6, defined by
|6,—80,] < 2 is an equivalence relation and each equivalence class is called a
part. We call a part P non-trivial if P does not reduce to a single point. P has
the analytic structure in the sense that there exists a continuous one-to-one
mapping 7 of the open unit disk D onto P such that For is an analytic function
on D. The purpose of this paper is to prove that if m is a representing

measure belonging to a non-trivial part then H?(dm), 1 = p =oo, is isometrically

isomorphic to the classical Hardy class H?on the unit circle.

2. Let P be a non-trivial part of M. We fix m € P. A is embedded in L=(dm)

in a homomorphic and norm-decreasing manner. H?(dm), 1= p<<oo, is

defined as the L?(dm)-completion of A; H*(dm) is defined by H>*(dm)= L=(dm)
NH*dm), or equivalently, H>(dm)= { f|fe L=(dm), f fygdm=0 for geAn},
X

where A, means the maximal ideal corresponding to m, so H*(dm) is w¥*-closed
in L>(dm). L=(dm) is represented as C(Y); H(dm) is a logmodular algebra on
Y as a subalgebra of C(Y) and Y is the Silov boundary. We denote by M the
maximal ideal space of H>(dm). Let 6 < P. Then df=Fk dm for a bounded
derivative k. Hence, 6 is a bounded linear functional on A with respect to the
L*dm)-norm, so 6 is uniquely extended to a bounded linear functional on H?
(dm). Especially, the latter is multiplicative on H>(dm). We denote by j(6) the
extended homomorphism. As a measure, j(f) is supported in Y. Clearly,

i@ (f) = f f db for fe H*(dm) and j defines a mapping of P into M. Let
X
PB=j(P). The following is the basic relation between 6 and j(6).

LEMMA. Let 6 ¢ P, thenf gd&zf 9dj(0) for ge L>(dm), in which §
X
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means the represented function of g on Y.
PROOF. By the Riesz representation theorem, there is a positive measure
§on Y such that [ gdo= [ 4as:
X b

Especially for f< H*(dm), we have
[ 5= [ fao=joxn= [ fajeoy.

Since H"(dm) is logmodular on Y, we have j(6)=5.

The situation described above applies directly to the case where A is the
algebra of all continuous functions on the unit circle C which are analytically
extended on D. Let H*(D) denote the algebra of all bounded analytic functions
# on D. H*(D) is isometrically isomorphic to the algebra of boundary functions
f Let ® be the maximal ideal space of H>(D). The structure of & is extensively
studied in [3]. Let @, be the evaluation at A, A€ D. Then A={@)|ne D} is an
open subset of & The affirmative answer to the corona problem assures that A

is dense in ®. There is a natural projection = of & onto D, that is, =z by
definition and m(@y)=\ for A€ D. A and D are homeomorphic. Let p denote
normalized Lebesgue measure on C. L=(du) is represented as C(I'), where I'
becomes the Silov boundary of the logmodular algebra H*(D). T' is contained
in 8—A. It is easily seen that D and A correspond to P and %, respectively,
that is, A=j(D). p also corresponds to m. By Lemma and the Poisson integral
formula, we have

0= [ Fau= [ jaie  ferH-m)

THEOREM 1. H?(dm), 1= p=oo, is isometrically isomorphic to the
Hardy class H*(D).

PROOF. First, we discuss the case in which p=oo. For this, we intend to
reconstruct the analytic mapping of D onto P instead of P as follows. We fix
Z € H¥(dm) as in Theorem 7.4 in [1]. Since |Z(x)|=1 a.edm, Z<c H*(dm). In
the proof of that theorem, we can replace fe A by fe H*(dm), having the

pay
analogous result; that is, Z is one-to-one from P onto D and, since Z ¢ H*(dm),
continuous. For every fe H*(dm) and 6 € P, we have

o

O )= 3 a ZH@)r, where a,= fx Z fdm.

n=0



ISOMETRY BETWEEN Hr(dm)AND THE HARDY CLASS Hr 313

Put 'rzé", then we have
(fw)(?\,): > aAn, are D,
n=0

so for is an analytic function on D. Since f Zdm=0, we have 7(0)=j(m). Now,

for fe H*(dm), we define the mapping 7* by 7%(f)= for. 7% is an algebraic
homomorphism into H*(D) and norm-decreasing. Moreover, it is actually onto
H~*(D), which we prove by the method of Theorem 8 of [4]. Let A< H>(D).
We can select a sequence {p,} of polynomials in z such that

2. MI=K, M=1, 2=1,2,3,- -+ p.(\) > hQ), MeD.
Since p,oZ e H*(dm) and ||p,°Z||= K, a subnet {p, oZ} and fe H*(dm) exist
such that p, oZ —f in the w*-topology. Let 6 € P. Then df==Fkdm with %

bounded, so we have

o, o2 O)= [ o, o2kdm — [ frdm= 7).
On the other hand, |
(bn, oZ) (iO) = P (Z((O) —HLZ((6))

Hence, f:hOZA on L, so hszT on D.

Let ‘v* be the adjoint of 7% which is a one-to-one w¥*-continuous mapping
of H*(D)* into H*(dm)*. We restrict ‘v* on &, and again denote by ‘+*. Then
7% is a homeomorphism of & into MM where & and M are endowed with the
Gelfand topologies. Since (!7%(@))(f)=¢( For) for @e®, fe H”(dm), and each
@ <€A is an evaluation at A, we have ‘v*(A)=. Further, it follows that ‘*(®)
‘=% from the fact that A is dense in £ and v%(R) is compact.

Let p'=j(w)'v*". u’ is a positive measure on P. Let fe H*(dm). Then we
have

[ giw = [ Jersiondie= [ (o an
~(FeryO= [ Faiom.

It follows that the support of x' lies in Y and, since H*(dm) is logmodular on
Y, w'=j(m). Thus, j(m)=j(w)!+*" and j(n) is the measure on %. To prove that
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7% is isometric, it is sufficient to show that 7* is one-to-one. For this, let 7*f=0.
Then f vanishes on B, so f=0 a.e.dj(m). Let hc A+A where A denotes the
complex conjugate of A. Then we have by Lemma that

f fhdm= f Fhdj(m)=0.

By Theorem 6.7 in [1], we conclude that f=0 a.e.dm. Thus, H*(dm)=H>(D).
From the arguement above, we have ‘+*(I")=Y, and hence C(Y)=C(I').
From this, an isomorphism U of L=(dm) onto L~(du) is induced. Let ge L~

(dm). The transformation: g —§o‘m* gives the correspondence between L*(dm)

and C(I"), and we have (Ug) =g.'v* where (U g)/\ is the representation of Uy e L~
(dw) on T'. Thus, we have

[ sim= [ gaim= [ Gerre) die

= [ W) diw= [ Ug an
For fe H*(dm), replacing ¢y by |f|?, p=1, we have
[ \f1ram= [ \Ufi>dp.

Since H*(dm) and H~(D) are L*-dense in H?(dm) and H"(D), respectively, we
have H"(dm)=H?"(D). This completes the proof.

REMARK. (1) We see that P is open and dense in M, for ‘v*(8)=IM.
Hence, P is open and dense when embedded in M. This fact may be regarded

as the generalized version of the corona theorem.
(2) If m belongs to a non-trivial part, then H?(dm) theory reduces to the

H?(D) theory. For example, for every f< H'(dm), f4=0, we have f log|fldm >
X
—oo. In fact, let f fdm=0, and let h=7*f. Then h(0)=0, hence h=2*h, where
X
h, € H'(D) and h,(0)4=0. We have f=Ztf,, f, € H'(dm) and f f1dm==0. Theorem

6.4 in [1] assures that f log| f|dm> —oco. In general, however, it happens that
Ry
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f log|fldm= —oo for fe H'(dm) even if f is not identically zero. From the

X
above we see that this phenomenon occurs only if 7 constitutes a one-point
part. A typical example is provided by the algebra of continuous functions of
analytic type on a compact abelian group G where the character group G isa
non-archimedean ordered group. Normalized Haar measure is such a representing
measure (p.208 in [2]).

THEOREM 2. Let 0 ¢ P, then the support of 0 lies in P—P.

PROOF. Let ® € M. We define the restriction mapping o of M into M by
(@®)()=O(f) for fe A. s is continuous, and one-to-one on PB. It is easily seen
that ¢(R)=P and o(M)=P. Let m'=j(m)s™". m’ is a positive measure on P. Let
feA. Since

[ 7oame= [ taion= [ gam,

we have m'=m. This implies that the support of m lies in P. But, the support
of m lies in the Silov boundary X and every point of X constitutes a trivial

part, hence the support of m lies in P— P. On the other hand, the support of
¢ is identical with that of m. This completes the proof.
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