Tôhoku Math. Journ. Vol. 18, No. 3, 1966

ISOMETRY BETWEEN $H^{p}(dm)$ AND THE HARDY CLASS H^{p}

NOZOMU MOCHIZUKI

(Received April 17, 1966)

1. Let X be a compact Hausdorff space and A a logmodular algebra on X with the maximal ideal space M. Every $\theta \in M$ is represented by a uniquely determined multiplicative probablity measure m_{θ} on X, so that $\theta(f) = \int_{x} f dm_{\theta}$ for $f \in A$. We identify θ and m_{θ} . For $\theta_1, \theta_2 \in M$, the relation $\theta_1 \sim \theta_2$ defined by $\|\theta_1 - \theta_2\| < 2$ is an equivalence relation and each equivalence class is called a part. We call a part P non-trivial if P does not reduce to a single point. P has the analytic structure in the sense that there exists a continuous one-to-one mapping τ of the open unit disk D onto P such that $\hat{f} \circ \tau$ is an analytic function on D. The purpose of this paper is to prove that if m is a representing measure belonging to a non-trivial part then $H^p(dm), 1 \leq p \leq \infty$, is isometrically isomorphic to the classical Hardy class H^p on the unit circle.

2. Let P be a non-trivial part of M. We fix $m \in P$. A is embedded in $L^{\infty}(dm)$ in a homomorphic and norm-decreasing manner. $H^{p}(dm)$, $1 \leq p < \infty$, is defined as the $L^{p}(dm)$ -completion of A; $H^{\infty}(dm)$ is defined by $H^{\infty}(dm) = L^{\infty}(dm)$ $\cap H^{2}(dm)$, or equivalently, $H^{\infty}(dm) = \{f | f \in L^{\infty}(dm), \int_{x} f_{y}dm = 0 \text{ for } g \in A_{m}\}$, where A_{m} means the maximal ideal corresponding to m, so $H^{\infty}(dm)$ is w^{*} -closed in $L^{\infty}(dm)$. $L^{\infty}(dm)$ is represented as C(Y); $H^{\infty}(dm)$ is a logmodular algebra on Y as a subalgebra of C(Y) and Y is the Silov boundary. We denote by \mathfrak{M} the maximal ideal space of $H^{\infty}(dm)$. Let $\theta \in P$. Then $d\theta = k \ dm$ for a bounded derivative k. Hence, θ is a bounded linear functional on A with respect to the $L^{2}(dm)$ -norm, so θ is uniquely extended to a bounded linear functional on H^{2} (dm). Especially, the latter is multiplicative on $H^{\infty}(dm)$. We denote by $j(\theta)$ the extended homomorphism. As a measure, $j(\theta)$ is supported in Y. Clearly,

 $j(\theta)(f) = \int_{x} f \ d\theta$ for $f \in H^{\infty}(dm)$ and j defines a mapping of P into \mathfrak{M} . Let $\mathfrak{P}=j(P)$. The following is the basic relation between θ and $j(\theta)$.

LEMMA. Let
$$\theta \in P$$
, then $\int_{x} g d\theta = \int \hat{g} dj(\theta)$ for $g \in L^{\infty}(dm)$, in which \hat{g}

means the represented function of q on Y.

PROOF. By the Riesz representation theorem, there is a positive measure $\tilde{\theta}$ on Y such that $\int_{Y} gd\theta = \int_{Y} \hat{g}d\tilde{\theta}$.

Especially for $f \in H^{\infty}(dm)$, we have

$$\int_{Y} \hat{f} d\widetilde{\theta} = \int_{X} f d\theta = j(\theta)(f) = \int_{Y} \hat{f} dj(\theta).$$

Since $H^{\infty}(dm)$ is logmodular on Y, we have $j(\theta) = \tilde{\theta}$.

The situation described above applies directly to the case where A is the algebra of all continuous functions on the unit circle C which are analytically extended on D. Let $H^{\infty}(D)$ denote the algebra of all bounded analytic functions \hat{f} on D. $H^{\infty}(D)$ is isometrically isomorphic to the algebra of boundary functions \tilde{f} . Let \Re be the maximal ideal space of $H^{\infty}(D)$. The structure of \Re is extensively studied in [3]. Let φ_{λ} be the evaluation at $\lambda, \lambda \in D$. Then $\Delta = \{\varphi_{\lambda} | \lambda \in D\}$ is an open subset of \Re . The affirmative answer to the corona problem assures that Δ

is dense in \Re . There is a natural projection π of \Re onto \overline{D} , that is, $\pi = \hat{z}$ by definition and $\pi(\varphi_{\lambda}) = \lambda$ for $\lambda \in D$. Δ and D are homeomorphic. Let μ denote normalized Lebesgue measure on C. $L^{\infty}(d\mu)$ is represented as $C(\Gamma)$, where Γ becomes the Silov boundary of the logmodular algebra $H^{\infty}(D)$. Γ is contained in $\Re - \Delta$. It is easily seen that D and Δ correspond to P and \mathfrak{B} , respectively, that is, $\Delta = j(D)$. μ also corresponds to m. By Lemma and the Poisson integral formula, we have

$$f(0) = \int_{c} \widetilde{f} d\mu = \int_{\Gamma} \widehat{f} dj(\mu), \quad f \in H^{\infty}(D).$$

THEOREM 1. $H^{p}(dm)$, $1 \leq p \leq \infty$, is isometrically isomorphic to the Hardy class $H^{p}(D)$.

PROOF. First, we discuss the case in which $p=\infty$. For this, we intend to reconstruct the analytic mapping of D onto \mathfrak{P} instead of P as follows. We fix $Z \in H^2(dm)$ as in Theorem 7.4 in [1]. Since |Z(x)|=1 a.e.dm, $Z \in H^{\infty}(dm)$. In the proof of that theorem, we can replace $f \in A$ by $f \in H^{\infty}(dm)$, having the analogous result; that is, \widehat{Z} is one-to-one from \mathfrak{P} onto D and, since $Z \in H^{\infty}(dm)$, continuous. For every $f \in H^{\infty}(dm)$ and $\theta \in P$, we have

$$j(\theta)(f) = \sum_{n=0}^{\infty} a_n(\widehat{Z}(j(\theta)))^n$$
, where $a_n = \int_X \overline{Z}^n f dm$.

312

Put $\tau = \hat{Z}^{-1}$, then we have

$$(\hat{f}\circ au)(\lambda) = \sum_{n=0}^{\infty} a_n \lambda^n, \qquad \lambda \in D,$$

so $\hat{f} \circ \tau$ is an analytic function on D. Since $\int_{x} Zdm = 0$, we have $\tau(0) = j(m)$. Now, for $f \in H^{\infty}(dm)$, we define the mapping τ^{*} by $\tau^{*}(f) = \hat{f} \circ \tau$. τ^{*} is an algebraic homomorphism into $H^{\infty}(D)$ and norm-decreasing. Moreover, it is actually onto $H^{\infty}(D)$, which we prove by the method of Theorem 8 of [4]. Let $h \in H^{\infty}(D)$. We can select a sequence $\{p_n\}$ of polynomials in z such that

 $|p_n(\lambda)| \leq K, \ |\lambda| \leq 1, \ n=1, 2, 3, \cdots; \ p_n(\lambda) \to h(\lambda), \ \lambda \in D.$ Since $p_n \circ Z \in H^{\infty}(dm)$ and $||p_n \circ Z|| \leq K$, a subnet $\{p_{n_{\alpha}} \circ Z\}$ and $f \in H^{\infty}(dm)$ exist such that $p_{n_{\alpha}} \circ Z \to f$ in the *w**-topology. Let $\theta \in P$. Then $d\theta = kdm$ with k bounded, so we have

$$(p_{n_{\alpha}} \circ Z)^{\wedge}(j(\theta)) = \int_{X} (p_{n_{\alpha}} \circ Z) k dm \to \int_{X} f k dm = \hat{f}(j(\theta)).$$

On the other hand,

$$(p_{n_{\alpha}} \circ Z)^{\wedge}(j(\theta)) = p_{n_{\alpha}}(\hat{Z}(j(\theta))) \to h[\hat{Z}(j(\theta)))$$

Hence, $\hat{f}=h\circ \hat{Z}$ on \mathfrak{B} , so $h=\hat{f}\circ \tau$ on D.

Let ${}^{t}\tau^{*}$ be the adjoint of τ^{*} which is a one-to-one w^{*} -continuous mapping of $H^{\infty}(D)^{*}$ into $H^{\infty}(dm)^{*}$. We restrict ${}^{t}\tau^{*}$ on \mathbb{R} , and again denote by ${}^{t}\tau^{*}$. Then ${}^{t}\tau^{*}$ is a homeomorphism of \mathbb{R} into \mathbb{M} where \mathbb{R} and \mathbb{M} are endowed with the Gelfand topologies. Since $({}^{t}\tau^{*}(\varphi))(f) = \varphi(\hat{f} \circ \tau)$ for $\varphi \in \mathbb{R}$, $f \in H^{\infty}(dm)$, and each $\varphi \in \Delta$ is an evaluation at λ , we have ${}^{t}\tau^{*}(\Delta) = \mathfrak{P}$. Further, it follows that ${}^{t}\tau^{*}(\mathbb{R})$

 $=\overline{\mathfrak{P}}$ from the fact that Δ is dense in \mathfrak{R} and ${}^{t}\tau^{*}(\mathfrak{R})$ is compact.

Let $\mu' = j(\mu)^t \tau^{*-1}$. μ' is a positive measure on \mathfrak{P} . Let $f \in H^{\infty}(dm)$. Then we have

$$\begin{split} \int_{\mathfrak{m}} \hat{f} d\mu' &= \int_{\mathfrak{R}} \hat{f}({}^{t}\tau^{*}(\varphi)) dj(\mu)(\varphi) = \int_{\sigma} (\hat{f} \circ \tau)^{\widetilde{}} d\mu \\ &= (\hat{f} \circ \tau)(0) = \int_{Y} \hat{f} dj(m). \end{split}$$

It follows that the support of μ' lies in Y and, since $H^{\infty}(dm)$ is logmodular on Y, $\mu' = j(m)$. Thus, $j(m) = j(\mu)^t \tau^{*^{-1}}$ and j(m) is the measure on \mathfrak{P} . To prove that

N. MOCHIZUKI

 τ^* is isometric, it is sufficient to show that τ^* is one-to-one. For this, let $\tau^* f=0$. Then \hat{f} vanishes on $\overline{\mathfrak{B}}$, so $\hat{f}=0$ a.e.dj(m). Let $h \in A + \overline{A}$ where \overline{A} denotes the complex conjugate of A. Then we have by Lemma that

$$\int_{X} fhdm = \int_{Y} \hat{f}\hat{h}dj(m) = 0.$$

By Theorem 6.7 in [1], we conclude that f=0 a.e.dm. Thus, $H^{\infty}(dm)\cong H^{\infty}(D)$.

From the argument above, we have ${}^{t}\tau^{*}(\Gamma) = Y$, and hence $C(Y) \cong C(\Gamma)$. From this, an isomorphism U of $L^{\infty}(dm)$ onto $L^{\infty}(d\mu)$ is induced. Let $g \in L^{\infty}(dm)$. (dm). The transformation: $g \rightarrow \hat{g} \circ {}^{t}\tau^{*}$ gives the correspondence between $L^{\infty}(dm)$ and $C(\Gamma)$, and we have $(Ug) = \hat{g} \cdot {}^{t}\tau^{*}$ where $(Ug)^{\wedge}$ is the representation of $Ug \in L^{\infty}(d\mu)$ on Γ . Thus, we have

$$\int_{\mathbf{x}} g dm = \int_{\mathbf{x}} \widehat{g} dj(m) = \int_{\Gamma} \left(\widehat{g} \circ^{t} \tau^{*} \right) dj(\mu)$$
$$= \int_{\Gamma} \left(U_{g} \right)^{\wedge} dj(\mu) = \int_{C} U_{g} d\mu.$$

For $f \in H^{\infty}(dm)$, replacing g by $|f|^{p}$, $p \ge 1$, we have

$$\int_X |f|^p dm = \int_C |Uf|^p d\mu.$$

Since $H^{\infty}(dm)$ and $H^{\infty}(D)$ are L^{p} -dense in $H^{p}(dm)$ and $H^{p}(D)$, respectively, we have $H^{p}(dm)\cong H^{p}(D)$. This completes the proof.

REMARK. (1) We see that \mathfrak{P} is open and dense in \mathfrak{M} , for ${}^{t}\tau^{*}(\mathfrak{R})=\mathfrak{M}$. Hence, P is open and dense when embedded in \mathfrak{M} . This fact may be regarded as the generalized version of the corona theorem.

(2) If *m* belongs to a non-trivial part, then $H^p(dm)$ theory reduces to the $H^p(D)$ theory. For example, for every $f \in H^1(dm)$, $f \neq 0$, we have $\int_X \log |f| dm > -\infty$. In fact, let $\int_X f dm = 0$, and let $h = \tau^* f$. Then h(0) = 0, hence $h = z^k h_1$ where $h_1 \in H^1(D)$ and $h_1(0) \neq 0$. We have $f = Z^k f_1$, $f_1 \in H^1(dm)$ and $\int_X f_1 dm \neq 0$. Theorem 6.4 in [1] assures that $\int_X \log |f| dm > -\infty$. In general, however, it happens that

 $\int_{x} \log |f| dm = -\infty \text{ for } f \in H^{1}(dm) \text{ even if } f \text{ is not identically zero. From the above we see that this phenomenon occurs only if <math>m$ constitutes a one-point part. A typical example is provided by the algebra of continuous functions of analytic type on a compact abelian group G where the character group \widehat{G} is a non-archimedean ordered group. Normalized Haar measure is such a representing

measure (p.208 in [2]).

THEOREM 2. Let $\theta \in P$, then the support of θ lies in $\overline{P}-P$.

PROOF. Let $\Theta \in \mathfrak{M}$. We define the restriction mapping σ of \mathfrak{M} into M by $(\sigma \Theta)(f) = \Theta(f)$ for $f \in A$. σ is continuous, and one-to-one on \mathfrak{P} . It is easily seen that $\sigma(\mathfrak{P}) = P$ and $\sigma(\mathfrak{M}) = \overline{P}$. Let $m' = j(m)\sigma^{-1}$. m' is a positive measure on \overline{P} . Let $f \in A$. Since

$$\int_{\mathcal{M}} \hat{f}(\theta) dm'(\theta) = \int_{\mathcal{M}} \hat{f} dj(m) = \int_{X} f dm,$$

we have m'=m. This implies that the support of m lies in P. But, the support of m lies in the Silov boundary X and every point of X constitutes a trivial part, hence the support of m lies in $\overline{P}-P$. On the other hand, the support of θ is identical with that of m. This completes the proof.

References

- K. HOFFMAN, Analytic functions and logmodular Banach algebras, Acta Math., 108 (1962).
- [2] W.RUDIN, Fourier analysis on groups, 1962.
- [3] I. J. SCHARK, Maximal ideals in an algebra of bounded analytic functions, Journ. Math. and Mech., 10(1961)
- [4] J. WERMER, Seminar über Funktionen-Algebren, Springer, 1964.

TÔHOKU UNIVERSITY