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1. For any contact manifold M with a contact form η, we can find an
associated Riemannian metric g, a (l.l)-tensor φ and a unit vector field £ such
that φ, ξ, η and g are the tensors of a contact metric structure. They satisfy the
following relations:

(1.1)
(1. 2)
(1. 3) dη(X, Y) = 2g(X, φY) = 2w{X, Y)

for any vector fields X and Y on M. A contact structure is said to be regular
if the distribution defined by £ is regular. A contact metric structure is a
X-contact metric structure if ξ is a Killing vector field, and furthermore it is a
normal contact metric one if the following relation is satisfied

(V*w)(X, Y) = η(X)g(Z, Y) - η{Y)g(Z, X)

for any vector fields Xy Y and Z on M, where V denotes the Riemannian
connection by g. For the details see [4], [6] and [7],

In this note we prove the following

THEOREM. In a compact, connected, regular and normal contact Rie-
mannian m{^> 3)-dimensional manifold M, if M admits a non-isometric
conformal transformation, then M is isometric with a unit sphere.

In this direction, M. Okumura [5] proved the following

(A) Let M be a complete, normal contact Riemannian m(> 3)-dimensional
connected manifold. If it admits a non-isometric infinitesimal conformal tansfor-
mation, then M is isometric with a unit sphere.

Denote by C{M) or I(M) the groups of conformal transformations or
isometries of M, and by C0(M) or I0(M) their identity components. To prove
our Theorem, it is enough to verify the following
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PROPOSITION. In a compact, connected, regular K-contact Riemannίan
manifold M, suppose that C0(M)=I0(M). Then we have C(M)=I(M).

In fact, assume that M is not isometric with a unit sphere, then by (A) M
does not admit any non-isometric infinitesimal conformal transformation, i.e.
C0(M)=I0(M). By this proposition we have C(M)=I(M), this means that M
does not admit any non-isometric conformal transformation.

2. Proof of the Proposition. In a K-contact Riemannian manifold, the
Riemannian curvature tensor R satisfies the identity (see [2]):

(2. 1) g(R(X, ξ)Y, ξ)=g{X, Y)-η(X>η(X)

for any vector fields X and Y on M, where

-R(X, t)Y=v

Let φ be a conformal transformation, then we have φ*g=σg for some scalar
function σ. As £ is a Killing vector field, it generates a 1-parameter group of
isometries φt of M. Then, denoting by φ also the differential of φ, <pξ and φ~ιξ
generate φ φt φ~ι and φ~ι φt φ respectively (see p.7, [3]). By the fact that
φ φt φ~ι and φ~ι φt φ are conformal transformations and by the assumption
that C0(M)=I0(M), φξ and φ"1 ξ are Killing vector fields. If one operates the
Lie derivation L(£) to σg=φ*g, one gets

=lim [^

since (φ φt φ-ιy=φ-ι* φt*-φ*. This shows that L(£)σ=0. As for the Lie
derivation L(φ~1ξ), we have L(φ~1ξ)σ=0.

On the other hand, as <p is a conformal transformation, the Riemannian
curvature teneor ΨR of φ*g is given by the relation:

(2. 2) ' Λ V ^ Λ

in a local coordinate neighborhood, where a = (l/2)logσ and a^ — 'd^a. As M is
compact, there exists a point x oί M where σ takes the maximum. Then at x
we have Jα!=0 namely ak = 0. Let 3/ be the point <px, then by (2.1) we have
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(2 3)

Transvecting (2. 2) with k\φ~ιk)ι&> w e have

where we have utilyzed ak\x=0, kk^7)aΛχ = ~(Vj£*)aUx=0 since £ ^ = 0 , and
similar relation (<p~1ξ)kχ7jCtk\x=O. Thus we have

(2. 4)

However we have

Therefore by (2.3) and (2.4), we get

(2. 5) (σ,

Hence σx = l or l^tfzt^zO^"1^)]2 holds good. Suppose that [ηx(φ~1£)Y=σ'χ1 holds,
then as gx(φ~ιξ,φ~~1£)=σχ1, by (1. 2)2 we see that ^ ^ i s proportional to fx.
Let Z(̂ :) be the leaf of ^ which passes through x, then φl(x) is the leaf /(y)
which passes through y. While each leaf of £ is of the same length in a regular
contact manifold ([1], [9]). But the relation L(ξ)cr=0 implies that σ is constant
on l(x), and hence σ = l holds on l(x). Thus (2.5) shows that σ = l on l(x), and
as σx is the maximum, σ = l must hold on M. This completes the proof.
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