NOTE ON CONVERGENCE FACTORS

Dennis C. Russell ${ }^{1)}$

(Received August 9, 1966)

1. Introduction. In this paper I discuss a necessary condition on convergence factors for Riesz summability (R, λ, κ) (for any $\kappa \geqq 0$), and also necessary and sufficient conditions on convergence factors for generalized Cesàro summability (C, λ, κ) (where κ is an integer); since (under the hypotheses used) (C, λ, κ) and (R, λ, κ) are equivalent, this also gives a representation for Riesz convergence factors in the case where κ is an integer. Much attention has been given recently in work on Riesz means to the problem of imposing minimal restrictions on the sequence λ; the restriction considered here will be one which occurs naturally as a necessary condition in some circumstances, and which also appears to be capable of being used to generalize a number of existing results in which heavier restrictions on λ have been imposed.

We suppose throughout that $\lambda=\left\{\lambda_{n}\right\}$ is a sequence satisfying

$$
0 \leqq \lambda_{0}<\lambda_{1}<\cdots<\lambda_{n} \rightarrow \infty
$$

and we shall also employ (when indicated) the condition

$$
\begin{equation*}
\Lambda_{n-1}=O\left(\Lambda_{n}\right), \quad \text { where } \quad \Lambda_{n}=\lambda_{n+1} /\left(\lambda_{n+1}-\lambda_{n}\right) \tag{1}
\end{equation*}
$$

Given any series ${ }^{2)} \Sigma a_{n}$, denote

$$
\begin{gathered}
A^{\kappa}(\omega)=\sum_{\lambda \nu<\omega}\left(\omega-\lambda_{v}\right)^{\kappa} a_{v}(\kappa \geqq 0), \quad R^{\kappa}(\omega)=\omega^{-\kappa} A^{\kappa}(\omega) ; \\
C_{n}^{0}=\sum_{\nu=0}^{n} a_{v}, \quad C_{n}^{p}=\sum_{\nu=0}^{n}\left(\lambda_{n+1}-\lambda_{\nu}\right) \cdots\left(\lambda_{n+p}-\lambda_{v}\right) a_{\nu} \quad(p=1,2, \cdots),
\end{gathered}
$$

[^0]\[

$$
\begin{gather*}
g_{n}(x)=\left(1-\frac{x}{\lambda_{n+1}}\right) \cdots\left(1-\frac{x}{\lambda_{n+p}}\right)\left(0 \leqq x<\lambda_{n+1}\right), g_{n}(x)=0\left(x \geqq \lambda_{n+1}\right), \tag{2}\\
t_{n}^{p}=\sum_{v=0}^{n} g_{n}\left(\lambda_{v}\right) a_{v}=\left(\lambda_{n+1} \cdots \lambda_{n+p}\right)^{-1} C_{n}^{p} .
\end{gather*}
$$
\]

Σa_{n} is summable (R, λ, κ) to s when $R^{\kappa}(\omega) \rightarrow s$ as $\omega \rightarrow+\infty$, and summable (C, λ, p) to s when $t_{n}^{p} \rightarrow s$ as $n \rightarrow \infty$. For properties of (C, λ, κ) summability see Jurkat [5], Burkill [2], Russell [14], Borwein [1], Meir [16], Bcrwein-Russel [17].

If A, B denote series transformations (or the matrices of such transformations), we shall denote by $[A, B]$ the class of all summability-factors $x=\left\{x_{n}\right\}$ such that $\Sigma a_{n} x_{n}$ is summable- B for every series Σa_{n} which is summable- A. When $B=I$ (convergence), $[A, I]$ is the class of all convergencefactors for A-summability. It is trivial that

$$
\begin{equation*}
\text { if } C \subseteq A \quad \text { then } \quad[A, B] \subseteq[C, B] \tag{3}
\end{equation*}
$$

We shall require some properties of divided differences, of which an account can be found in Milne-Thomson [11], Chapter I. For non-negative integers m, ν, p, denote

$$
\begin{equation*}
\beta_{m \nu}^{(p)}=\beta_{m \nu}=\prod_{j=m}^{m+p+1}\left(\lambda_{\nu}-\lambda_{j}\right) \tag{4}
\end{equation*}
$$

where Π^{\prime} indicates that any zero factor corresponding to $j=\nu$ is to be omitted. Given any function f defined in the interval $\left[\lambda_{m}, \lambda_{m+p+1}\right]$, the $(p+1)$ th. order divided difference corresponding to the points $\lambda_{\nu}(m \leqq \nu \leqq m+p+1)$ is

$$
\begin{equation*}
f\left[\lambda_{m}, \cdots, \lambda_{m+p+1}\right]=\sum_{\nu=m}^{m+p+1} \frac{f\left(\lambda_{\nu}\right)}{\beta_{m \nu}} \tag{5}
\end{equation*}
$$

if the derivative $f^{(p+1)}$ exists in $\left(\lambda_{m}, \lambda_{m+p+1}\right)$ and $f^{(p)}$ is continuous also at the end-points, we have the mean-value theorem

$$
f\left[\lambda_{m}, \cdots, \lambda_{m+p+1}\right]=\frac{1}{(p+1)!} f^{(p+1)}(\xi), \text { for some } \xi \text { in } \lambda_{m}<\xi<\lambda_{m+p+1}
$$

Also denote

$$
\begin{equation*}
\gamma_{m \nu}^{(p)}=\gamma_{m \nu}=\beta_{m m} / \beta_{m \nu}, \tag{6}
\end{equation*}
$$

so that

$$
\begin{equation*}
\sum_{\nu=m}^{m+p+1} \boldsymbol{\gamma}_{m \nu}=0 ; \tag{7}
\end{equation*}
$$

this last result follows from (5) by taking $f(x) \equiv 1$.

Lemma 1. Let p be a non-negative integer; if $p \geqq 1$ assume that

$$
\begin{equation*}
\Lambda_{n-1}=O\left(\Lambda_{n}\right) \tag{1}
\end{equation*}
$$

Then

$$
\begin{equation*}
\left|\gamma_{m v}^{(p)}\right| \leqq K\left(\Lambda_{v} / \Lambda_{m}\right)^{p} \quad \text { for } \quad m \leqq \nu \leqq m+p+1 . \tag{8}
\end{equation*}
$$

PROOF. For $p=0$ we have $\left|\boldsymbol{\gamma}_{m \nu}^{(0)}\right|=1$ for $m \leqq \nu \leqq m+1$. If p is a positive integer and $m \leqq \nu \leqq m+p+1$ then, by (4) and (6),

$$
\begin{aligned}
\left|\gamma_{m \nu}^{(p)}\right| & =\frac{\left(\lambda_{m+1}-\lambda_{m}\right) \cdots\left(\lambda_{\nu}-\lambda_{m}\right) \cdot\left(\lambda_{\nu+1}-\lambda_{m}\right) \cdots\left(\lambda_{m+p+1}-\lambda_{m}\right)}{\left(\lambda_{\nu}-\lambda_{m}\right) \cdots\left(\lambda_{\nu}-\lambda_{\nu-1}\right) \cdot\left(\lambda_{\nu+1}-\lambda_{\nu}\right) \cdots\left(\lambda_{m+p+1}-\lambda_{\nu}\right)} \\
& \leqq\left(\frac{\lambda_{m+1}-\lambda_{m}}{\lambda_{m+1}-\lambda_{m}} \cdot \frac{\lambda_{m+2}-\lambda_{m}}{\lambda_{m+2}-\lambda_{m+1}} \cdots \frac{\lambda_{\nu}-\lambda_{m}}{\lambda_{\nu}-\lambda_{\nu-1}}\right)\left(\frac{\lambda_{\nu+1}-\lambda_{m}}{\lambda_{\nu+1}-\lambda_{\nu}}\right)^{m+p-\nu+1} ;
\end{aligned}
$$

here we have merely used the fact that $\left\{\lambda_{n}\right\}$ increases, together with the property that if $a<b<x$ then $(x-a) /(x-b)$ decreases as x increases. Now if (1) holds then
(9) $\frac{\lambda_{m+q}-\lambda_{m}}{\lambda_{m+q}} \leqq \frac{\lambda_{m+q}-\lambda_{m+q-1}}{\lambda_{m+q}}+\cdots+\frac{\lambda_{m+1}-\lambda_{m}}{\lambda_{m+1}}=\frac{1}{\Lambda_{m+q-1}}+\cdots+\frac{1}{\Lambda_{m}} \leqq \frac{K_{q}}{\Lambda_{m}}$
and applying this to our last inequality for $\gamma_{m \nu}$ we obtain, since $\nu \leqq m+p+1$,

$$
\begin{aligned}
\left|\boldsymbol{\gamma}_{m \nu}\right| & \leqq K\left(\frac{\lambda_{m+2} \Lambda_{m}^{-1}}{\lambda_{m+2}-\lambda_{m+1}} \cdots \frac{\lambda_{\nu} \Lambda_{m}^{-1}}{\lambda_{\nu}-\lambda_{\nu-1}}\right)\left(\frac{\lambda_{\nu+1} \Lambda_{m}^{-1}}{\lambda_{\nu+1}-\lambda_{\nu}}\right)^{m+p-\nu+1} \\
& =K \Lambda_{m}^{-p} \Lambda_{m+1} \cdots \Lambda_{v-1} \Lambda_{\nu}^{m+p-\nu+1} \\
& \leqq K \Lambda_{m}^{-p} \Lambda_{v}^{p}, \quad \text { by (1), }
\end{aligned}
$$

where K is independent of ν and m; and this is the required result (8).

REmARK. We note, for future reference, the following consequences of this lemma: If p is a positive integer and $\Lambda_{n-1}=O\left(\Lambda_{n}\right)$ then, for $m \leqq \nu \leqq m+p+1$:

$$
\begin{align*}
& \frac{\left(\lambda_{m+p+1}-\lambda_{m}\right) \lambda_{m+1} \cdots \lambda_{m+p}}{\left|\beta_{m \nu}^{(p)}\right|}=\frac{\lambda_{m+1} \cdots \lambda_{m+p}}{\left(\lambda_{m+1}-\lambda_{m}\right) \cdots\left(\lambda_{m+p}-\lambda_{m}\right)}\left|\gamma_{m \nu}^{(p)}\right| \\
& \leqq \Lambda_{m}^{p} \cdot K\left(\Lambda_{\nu} / \Lambda_{m}\right)^{p}=K \Lambda_{\nu}^{p} ; \tag{10}\\
& \frac{\lambda_{m+1} \cdots \lambda_{m+p+1}}{\left|\beta_{m \nu}^{(p)}\right|} \leqq K \Lambda_{\nu}^{p} \cdot \frac{\lambda_{m+p+1}}{\lambda_{m+p+1}-\lambda_{m}} \leqq K \Lambda_{\nu}^{p} \Lambda_{m} \leqq K \Lambda_{\nu}^{p+1} ; \tag{11}
\end{align*}
$$

if, in addition, we have $\lambda_{\nu} \leqq t \leqq \lambda_{m+p+1}$ and $\kappa \geqq p$, then, by (9),

$$
\left(t-\lambda_{\nu}\right) / t \leqq\left(\lambda_{m+p+1}-\lambda_{\nu}\right) / \lambda_{m+p+1} \leqq K \Lambda_{\nu}^{-1}
$$

and hence

$$
\begin{equation*}
t^{-\kappa}\left(t-\lambda_{\nu}\right)^{\kappa} \Lambda_{m}^{\kappa}\left|\gamma_{m \nu}^{(p)}\right| \leqq K\left(\Lambda_{m} / \Lambda_{\nu}\right)^{\kappa-p} \leqq K \tag{12}
\end{equation*}
$$

2. Convergence-factors for $(\boldsymbol{R}, \lambda, \boldsymbol{\kappa})$ summability. When the matrix $A=\left(a_{n v}\right)$ of a series-to-sequence transformation is normal (i.e. $a_{n v}=0$ for $\boldsymbol{\nu}>n$, $a_{n n} \neq 0$), the diagonal elements of A provide a limitation on the order of magnitude of the convergence-factors for A-summability. The following lemma is a consequence of Jurkat and Peyerimhoff [6], Satz 5.

Lemma 2a. If A is normal and $x \in[A, I]$ then $x_{n}=O\left(a_{n n}\right)$.
Normal matrices have a number of attributes which simplify consideration of their summability properties, notably the possession of a unique right inverse (which is also a left inverse). Since the (R, λ, κ) method is not normal, attempts have been made to define normal methods equivalent to it (for a discussion see [14]), which sometimes necessitate restrictions on λ. Thus, for example, I have shown in [14], Theorems 4 and 5, that

$$
\begin{equation*}
(C, \lambda, p) \subseteq(R, \lambda, p)(p=0,1,2, \cdots) \tag{13a}
\end{equation*}
$$

(13b) if, when $p>2$, (1) holds, then $(R, \lambda, p) \subseteq(C, \lambda, p)(p=0,1,2, \cdots)$.
(Note: Meir [16] has recently shown that (13 b) holds without restriction on λ). Again, by restricting ω in the definition of (R, λ, κ) to the sequence $\left\{\lambda_{n}\right\}$, we obtain 'discrete' Riesz summability (R^{*}, λ, κ) (which is normal), and Jurkat [4] has shown that

$$
\begin{equation*}
(R, \lambda, \kappa) \sim\left(R^{*}, \lambda, \kappa\right)(0 \leqq \kappa \leqq 1), \tag{14}
\end{equation*}
$$

without restriction on λ. Since, if $A=\left(R^{*}, \lambda, \kappa\right)$, we have $a_{n n}=\Lambda_{n}^{-\kappa}$, we obtain from (14) and Lemma 2a the result ([3], Satz 4) that

$$
\begin{equation*}
\text { if } 0 \leqq \kappa \leqq 1 \text { and } x \in[(R, \lambda, \kappa), I] \text { then } x_{n}=O\left(\Lambda_{n}^{-\kappa}\right) \tag{15}
\end{equation*}
$$

Maddox [8] gives an example to show that

$$
\exists \lambda, x \text { such that } x \in[(R, \lambda, 2), I] \text { but } x_{n} \neq O\left(\Lambda_{n}^{-2}\right) \text {, }
$$

so that we cannot hope to extend (15) to all $\kappa>1$ without some restriction on λ. However, Jurkat [3], Sätze 4,5, has shown that (15) remains true for $\kappa>1$ when the following conditions are imposed:

$$
\begin{equation*}
\text { (a) } 0<m \leqq \frac{\Delta \lambda_{n}}{\Delta \lambda_{n-1}}, \quad \text { (b) } \quad \frac{\Delta \lambda_{n}}{\Delta \lambda_{n-1}} \leqq M<\infty \text {. } \tag{16}
\end{equation*}
$$

Now if we take $A=(C, \lambda, p)$, we get

$$
a_{n n}=\left(\frac{\lambda_{n+1}-\lambda_{n}}{\lambda_{n+1}}\right) \cdots\left(\frac{\lambda_{n+p}-\lambda_{n}}{\lambda_{n+p}}\right)
$$

and if (1) holds then, by (9), $a_{n n}=O\left(\Lambda_{n}^{-p}\right)$; thus, from (13) and Lemma 2a :

$$
\begin{aligned}
& \text { if, when } p>1 \text {, (1) holds, and if } x \in[(R, \lambda, p), I] \text {, then } x_{n}=O\left(\Lambda_{n}^{-p}\right) \\
& \qquad(n=0,1,2, \cdots) .
\end{aligned}
$$

The question therefore arises as to whether this result remains true with a general κ in place of the integer p, and without imposing any additional restriction on λ besides (1). It will be shown in Corollary 2 that this is in fact the case, thus showing that hypothesis (16a) can be completely removed in Jurkat's theorem ([3], Satz 4), and that (16b) can be replaced by the weaker hypothesis (1).

A further question concerns the conditions under which the sequence $\left\{\Lambda_{n}^{-\kappa}\right\}$ itself can be a convergence-factor for (R, λ, κ)-summability, and in considering this (at least for those values of κ for which a normal method is known which is included in (R, λ, κ) without restriction on λ) we find that the condition (1) now appears as a necessary condition. It is convenient first to supplement Lemma 2a with

Lemma 2b. If A is normal and $x \in[A, I]$ then

$$
x_{n} a_{n, n-1}=O\left(a_{n n} a_{n-1, n-1}\right) .
$$

Proof. Denoting by $A^{-1}=\left(a_{v i}^{-1}\right)$ the two-sided inverse of $A,\left\{\sigma_{n}\right\}$ the partial sums of $\Sigma a_{\nu} x_{\nu}$, and $\left\{t_{n}\right\}$ the A-transform of Σa_{ν}, it is easy to deduce that

$$
\sigma_{n}=\sum_{i=0}^{n} b_{n i} t_{i}, \quad \text { where } \quad b_{n i}=\sum_{v=i}^{n} x_{\nu} a_{v i}^{-1} .
$$

Thus $\left\{\sigma_{n}\right\}$ converges whenever $\left\{t_{n}\right\}$ converges (i.e. $x \in[A, I]$) if and only if ($b_{n i}$) is conservative, and in particular it is necessary that

$$
\sum_{i=0}^{n}\left|b_{n i}\right| \leqq M \text { independently of } n .
$$

Hence $\left|b_{n i}\right| \leqq M$ for every n and i; the choice $i=n$ leads at once to Lemma 2a (since $a_{n n}^{-1}=1 / a_{n n}$) and the choice $i=n-1$ to Lemma 2 b , since $a_{n, n-1}^{-1}$ $=-a_{n, n-1} /\left(a_{n n} a_{n-1, n-1}\right)$.

THEOREM 1. If $0<\kappa \leqq 1$, or if κ is a positive integer, and if

$$
\left\{\Lambda_{n}^{-\kappa}\right\} \in[(R, \lambda, \kappa), I], \text { then } \Lambda_{n-1}=O\left(\Lambda_{n}\right) .
$$

Proof. Let $x_{n}=\Lambda_{n}^{-\kappa}$. Then taking $A=\left(R^{*}, \lambda, \kappa\right)(\kappa>0)$ we find that

$$
\frac{x_{n} a_{n, n-1}}{a_{n n} a_{n-1, n-1}}>\left(\frac{\Lambda_{n-1}}{\Lambda_{n}}\right)^{\kappa} ;
$$

while taking $A=(C, \lambda, \kappa)$ (κ a positive integer) we obtain

$$
\frac{x_{n} a_{n, n-1}}{a_{n n} a_{n-1, n-1}}>\frac{\Lambda_{n-1}}{\Lambda_{n}} .
$$

Using these inequalities in Lemma 2 b , together with (13a), (14) and (3), the theorem follows.

While Theorem 1 gives a simple necessary condition in order that $\left\{\Lambda_{n}^{-\kappa}\right\}$ should be an (R, λ, κ) convergence-factor, it is hardly to be expected that this
condition will be sufficient, and in fact Jurkat [3], Satz 3, gives three fairly complicated sufficient conditions for such a result to hold. Taking the most tractable case for purposes of comparison, namely $\kappa=1$, we find that his first condition (which is that $\Lambda_{n} \nearrow$) then implies the second, while the third automatically holds, so that we have the following:

In order that $\left\{\Lambda_{n}^{-1}\right\}$ should be an $(R, \lambda, 1)$ convergence-factor, it is necessary that $\Lambda_{n-1}=O\left(\Lambda_{n}\right)$ and sufficient that $\Lambda_{n-1} \leqq \Lambda_{n}$.

However, the precise necessary and sufficient conditions in order that a sequence $\left\{x_{n}\right\}$ should be an ($R, \lambda, 1$) convergence-factor are already given in Jurkat [3], Satz 1 (the third condition given in this theorem is superfluous, since it can be deduced from the other two, as pointed out by Maddox [10]), and if we put $x_{n}=\Lambda_{n}^{-1}$ in this theorem, we obtain :

In order that $\left\{\Lambda_{n}^{-1}\right\}$ should be an $(R, \lambda, 1)$ convergence-factor, it is necessary and sufficient that

$$
\sum_{\nu=0}^{\infty} \lambda_{\nu+1}\left|\Delta\left(\frac{\Delta \Lambda_{v}^{-1}}{\Delta \lambda_{\nu}}\right)\right|<\infty .
$$

We turn now to the main theorem of this section, the motivation for which has been discussed earlier.

Theorem 2. Let $\kappa>0$. If $\kappa>1$ assume

$$
\begin{equation*}
\Lambda_{n-1}=O\left(\Lambda_{n}\right) \tag{1}
\end{equation*}
$$

Then for each unbounded sequence $\left\{\theta_{n}\right\}$ of real or complex numbers, there is a series Σa_{v}, with partial sums s_{n}, which is summable (R, λ, κ) to zero, but such that

$$
\begin{equation*}
s_{n} \neq o\left(\Lambda_{n}^{\kappa} / \theta_{n}\right), \quad a_{n} \neq o\left(\Lambda_{n}^{\kappa} / \theta_{n}\right) \tag{17}
\end{equation*}
$$

Proof. The proof is essentially similar to that of Jurkat [3], but here we use Lemma 1 and also alter the definition of a_{n}, in order to obtain sharper estimates. The choice of the series Σa_{v} depends on an increasing sequence of non-negative integers $\left\{n_{r}\right\}$ chosen inductively as follows: suppose that $n_{0}, n_{1}, \cdots, n_{r-1}$ have been chosen and that a_{v} has been defined for $0 \leqq \nu \leqq n_{r-1}+p+1$ (where p is the integer such that $p<\kappa \leqq p+1$) in such a way that

$$
\begin{equation*}
\sum_{\nu=0}^{n_{r-1}+p+1} a_{\nu}=0 \tag{18}
\end{equation*}
$$

now choose n_{r} so that

$$
\begin{equation*}
n_{r}>n_{r-1}+p+1 \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\left|\theta_{n_{r}}\right| \geqq r \tag{20}
\end{equation*}
$$

$$
\begin{equation*}
\left|\omega^{-\kappa} \sum_{\nu=0}^{n_{r-1}+p+1}\left(\omega-\lambda_{\nu}\right)^{\kappa} a_{\nu}\right| \leqq \frac{1}{r} \text { for } \omega>\lambda_{n_{r}} . \tag{21}
\end{equation*}
$$

Such a choice of n_{r} is possible since $\left\{\theta_{n}\right\}$ is unbounded, by hypothesis, and since the left hand side of (21) tends to zero as $\omega \rightarrow \infty$, by virtue of (18). Now define

$$
\begin{gather*}
a_{\nu}=0 \quad \text { for } \quad n_{r-1}+p+1<\nu<n_{r} \tag{22}\\
a_{\nu}=\theta_{m}^{-1} \Lambda_{m}^{\kappa} \gamma_{m \nu} \quad \text { for } m \equiv n_{r} \leqq \nu \leqq n_{r}+p+1, \tag{23}
\end{gather*}
$$

where $\gamma_{m \nu}$ is given by (6), and it then follows from (7) that (18) holds with $r+1$ in place of r. By making the initial choice

$$
n_{0}=0, \quad a_{\nu}=0 \quad \text { for } \quad n_{0} \leqq \nu \leqq n_{0}+p+1,
$$

(18)-(23) are then valid for $r=1,2, \cdots$.

It is clear that (17) holds with this choice of Σa_{v}, for when $\nu=n_{r}$ we see from (22), (23) and (6) that

$$
s_{n_{r}}=a_{n_{r}}=\Lambda_{n_{r}}^{\kappa} / \theta_{n_{r}}(r=1,2,3, \cdots) .
$$

We now show that the series Σa_{ν} is summable (R, λ, κ) to 0 . Given $\omega>0$, let n be the integer-valued function of ω satisfying $\lambda_{n}<\omega \leqq \lambda_{n+1}$; then there is an r such that $n_{r} \leqq n<n_{r+1}$, and hence

$$
\begin{aligned}
\omega^{-\kappa} A^{\kappa}(\omega) & =\omega^{-\kappa} \sum_{v=0}^{n}\left(\omega-\lambda_{\nu}\right)^{\kappa} a_{\nu} \\
& =\omega^{-\kappa} \sum_{\nu=0}^{n_{r-1}+p+1}\left(\omega-\lambda_{\nu}\right)^{\kappa} a_{\nu}+\omega^{-\kappa} \sum_{\nu=n_{r}}^{n}\left(\omega-\lambda_{\nu}\right)^{\kappa} a_{v}, \quad \text { by }(22)
\end{aligned}
$$

$$
\begin{equation*}
=o(1)+S, \quad \text { by }(21) \tag{24}
\end{equation*}
$$

where

$$
\begin{equation*}
S=\theta_{m}^{-1} \Lambda_{m}^{\kappa} \omega^{-\kappa} \sum_{\nu=m}^{\min (n, m+p+1)}\left(\omega-\lambda_{\nu}\right)^{\kappa} \gamma_{m v}\left(m=n_{r}\right) . \tag{25}
\end{equation*}
$$

Suppose first that $m \equiv n_{r} \leqq n \leqq n_{r}+p$, so that $\omega \leqq \lambda_{m+p+1}$; if (when $p \geqq 1$) we assume (1), then (12) and (20) show at once that

$$
\begin{equation*}
S=O\left(\theta_{n_{r}}^{-1}\right)=o(1) \quad \text { as } \quad \omega \rightarrow \infty\left(n_{r} \leqq n \leqq n_{r}+p\right) \tag{26}
\end{equation*}
$$

Alternatively, if $n_{r}+p+1 \leqq n<n_{r+1}$ then, by (6) and (25),

$$
\begin{aligned}
S & =\theta_{m}^{-1} \Lambda_{m}^{\kappa} \omega^{-\kappa} \boldsymbol{\beta}_{m m} \sum_{\nu=m}^{m+p+1} \frac{\left(\omega-\lambda_{\nu}\right)^{\kappa}}{\boldsymbol{\beta}_{m \nu}} \\
& \equiv \theta_{m}^{-1} \Lambda_{m}^{\kappa} \omega^{-\kappa} \boldsymbol{\beta}_{m m} d(\omega), \text { say } .
\end{aligned}
$$

Now, by (5), $d(\omega)=e_{\omega}\left[\lambda_{m}, \cdots, \lambda_{m+p+1}\right]$, where $e_{\omega}(x)=(\omega-x)^{\kappa}$ for $\omega>x$; and it follows as in Jurkat [3], p. 270, using the mean-value theorem for divided differences, that $|d(\omega)| \leqq\left|d\left(\lambda_{m+p+1}\right)\right|$ for $\omega>\lambda_{m+p+1}$, whence

$$
|S| \leqq\left|\theta_{m}^{-1}\right| \Lambda_{m}^{\kappa} \sum_{\nu=m}^{m+p+1}\left(\frac{\lambda_{m+p+1}-\lambda_{v}}{\lambda_{m+p+1}}\right)^{\kappa}\left|\boldsymbol{\gamma}_{m \nu}\right|
$$

which gives, by substituting $t=\lambda_{m+p+1}$ in (12),

$$
\begin{equation*}
S=O\left(\theta_{n_{r}}^{-1}\right)=o(1) \quad \text { as } \quad \omega \rightarrow \infty \quad\left(n_{r}+p<n<n_{r+1}\right) . \tag{27}
\end{equation*}
$$

It now follows from (24), (26), (27) that $\omega^{-\kappa} A^{\kappa}(\omega)=o(1)$ as $\omega \rightarrow \infty$; thus Σa_{ν} is summable (R, λ, κ) to zero, and the theorem is proved.

COROLLARY 2. Let $\kappa>0$; if $\kappa>1$ assume that $\Lambda_{n-1}=O\left(\Lambda_{n}\right)$. Then in order that $\Sigma a_{n} x_{n}$ should converge whenever Σa_{n} is summable (R, λ, κ), it is necessary that $x_{n}=O\left(\Lambda_{n}^{-\kappa}\right)$.

Proof. This follows directly from the theorem, as in the proof of [3], Satz 5.
3. Convergence-factors for ($\boldsymbol{C}, \boldsymbol{\lambda}, \boldsymbol{\kappa}$) summability. Although Lemmas 2a, 2 b give limitations on the order of magnitude of convergence-factors for
A-summability (A normal), some more precise representations are needed in order to obtain necessary and sufficient conditions for these convergence-factors. The following result is due essentially to Peyerimhoff [12] - see also Russell [13], §2.

Lemma 3. Let A be normal and $\lim _{n \rightarrow \infty} a_{n \nu}=1(\nu=0,1,2, \cdots)$, and let $x \in[A, I]$. Then

$$
\begin{equation*}
\exists \eta,\left\{\eta_{k}\right\}, \text { with } \Sigma\left|\eta_{k}\right|<\infty, \text { such that } x_{\nu}=\eta+\sum_{k=v}^{\infty} \eta_{k} a_{k v} ; \tag{28}
\end{equation*}
$$

moreover,

$$
\begin{equation*}
\eta_{\nu}=\sum_{k=\nu}^{\infty} x_{k} a_{k \nu}^{-1} . \tag{29}
\end{equation*}
$$

If, in addition, A is regular (a γ-matrix) and $1 / a_{n n} \neq O(1)$, then $\boldsymbol{\eta}=0$.
We obtain the last clause of the lemma as follows: if A is a γ-matrix then in particular $\left|a_{k v}\right| \leqq K$ for every k and ν and so, from (28), $x_{\nu}=\eta+o(1)$; but if $1 / a_{n n} \neq O(1)$ then, by Lemma 2a, there is a sub-sequence of integers such that $x_{\nu_{s}}=o(1)$; hence $\eta=0$.

We now apply this lemma to find the form of the convergence-factors for (C, λ, p) summability, where p is an integer; there is a related result in Jurkat [5], Satz 12 - there the theorem is a consequence of a number of general results on convergence-factors, and it is interesting to see what can be proved in a direct way with fewer restrictions on λ.

Theorem 3. Let p be a non-negative integer and $g_{n}(x)$ be defined as in (2); let

$$
\begin{equation*}
\Lambda_{n} \neq O(1) \tag{30}
\end{equation*}
$$

and when $p \geqq 2$ assume that

$$
\begin{equation*}
\Lambda_{n-1}=O\left(\Lambda_{n}\right) \tag{1}
\end{equation*}
$$

Then $x \in[(C, \lambda, p), I]$ if and only if

$$
\begin{equation*}
x_{n}=O\left\{g_{n}\left(\lambda_{n}\right)\right\} \tag{31}
\end{equation*}
$$

$$
\begin{equation*}
\exists\left\{\boldsymbol{\eta}_{k}\right\}, \Sigma\left|\boldsymbol{\eta}_{k}\right|<\infty, \text { such that } x_{\nu}=\sum_{k=v}^{\infty} \boldsymbol{\eta}_{k} g_{k}\left(\lambda_{\nu}\right) . \tag{32}
\end{equation*}
$$

Proof. If A is the (C, λ, p) matrix, then $a_{n v}=g_{n}\left(\lambda_{v}\right)$ and the necessity of (31) follows at once from Lemma 2a, without restriction on λ; however, under the hypothesis (1) (imposed for $p \geqq 2$), (9) shows that (31) is equivalent to

$$
\begin{equation*}
x_{n}=O\left(\Lambda_{n}^{-p}\right) \tag{31}
\end{equation*}
$$

In addition, A is normal and regular and $1 / a_{n n} \neq O(1)$ when (30) and (1) are imposed; the necessity of (32) then follows from Lemma 3. [It should be remarked that (30) is a relatively trivial requirement, for if $\Lambda_{n}=O(1)$ then (see [14], Corollary 3B) $(C, \lambda, p) \sim I$ and the necessary and sufficient conditions for convergence-factors in this case are well-known (see, for example, Hardy [7], Theorem 7), namely : $x \in[I, I]$ if and only if $\Sigma\left|\Delta x_{n}\right|<\infty$.]

It remains to prove the sufficiency of (31) [or (31)'] and (32), and we may suppose, without loss of generality, that

$$
t_{k}^{p} \equiv \sum_{\nu=0}^{k} g_{k}\left(\lambda_{\nu}\right) a_{\nu}=o(1) \text { as } k \rightarrow \infty
$$

Then, by (32),

$$
\begin{aligned}
\sum_{v=0}^{n} a_{v} x_{v} & =\sum_{v=0}^{n} a_{v}\left(\sum_{k=v}^{n}+\sum_{k=n+1}^{\infty}\right) \eta_{k} g_{k}\left(\lambda_{v}\right) \\
& \equiv \sum_{k=0}^{n} \eta_{k} t_{k}^{p}+S_{n}, \quad \text { say. }
\end{aligned}
$$

Since $t_{k}^{p}=o(1)$ and $\Sigma\left|\eta_{k}\right|<\infty$, it follows that $\Sigma \eta_{k} t_{k}^{p}$ converges, so that $\Sigma a_{v} x_{v}$ converges if and only if the sequence $\left\{S_{n}\right\}$ converges. Now

$$
S_{n}=\sum_{k=n+1}^{\infty} \eta_{k} \sum_{v=0}^{n} g_{k}\left(\lambda_{\nu}\right) a_{v}
$$

and by partial summation it can be shown (see Russell [14], Lemma 1) that

$$
\begin{aligned}
& \sum_{\nu=0}^{n} g_{k}\left(\lambda_{\nu}\right) a_{\nu}=\sum_{r=0}^{p}(-1)^{r} g_{k}\left[\lambda_{n+1}, \cdots, \lambda_{n+r+1}\right] C_{n}^{r}+ \\
&+(-1)^{p+1} \sum_{\nu=0}^{n} g_{k}\left[\lambda_{\nu}, \cdots, \lambda_{\nu+p+1}\right]\left(\lambda_{\nu+p+1}-\lambda_{\nu}\right) C_{\nu}^{p}
\end{aligned}
$$

For $\nu \leqq n<k-p, g_{k}\left[\lambda_{\nu}, \cdots, \lambda_{\nu+p+1}\right]$ is a ($p+1$)th. order divided difference of a polynomial of degree p, and hence vanishes; consequently

$$
\begin{equation*}
S_{n}=S_{n}^{\prime}+S_{n}^{\prime} \tag{34}
\end{equation*}
$$

where

$$
\begin{gather*}
S_{n}^{\prime}=\sum_{k=n+1}^{\infty} \eta_{k} \sum_{r=0}^{p}(-1)^{r} g_{k}\left[\lambda_{n+1}, \cdots, \lambda_{n+r+1}\right] C_{n}^{r}, \tag{35}\\
S_{n}^{\prime \prime}=\sum_{k=n+1}^{n+p} \eta_{k}(-1)^{p+1} \sum_{v=k-p}^{n} g_{k}\left[\lambda_{\nu}, \cdots, \lambda_{\nu+p+1}\right]\left(\lambda_{\nu+p+1}-\lambda_{v}\right) C_{v}^{p} .
\end{gather*}
$$

Now $g_{k}\left[\lambda_{n+1}, \cdots, \lambda_{n+r+1}\right]=\sum_{i=n+1}^{n+r+1} \frac{g_{k}\left(\lambda_{i}\right)}{\beta_{n+1, i}^{\prime}}, \quad \boldsymbol{\beta}_{n+1, i}^{\prime}=\prod_{j=n+1}^{n+r+1}\left(\lambda_{i}-\lambda_{j}\right), \quad$ so that

$$
\begin{aligned}
\sum_{k=n+1}^{\infty} \eta_{k} g_{k}\left[\lambda_{n+1}, \cdots, \lambda_{n+r+1}\right] & =\sum_{i=n+1}^{n+r+1} \frac{1}{\beta_{n+1, i}^{\prime}} \sum_{k=n+1}^{\infty} \eta_{k} g_{k}\left(\lambda_{i}\right) \\
& =\sum_{i=n+1}^{n+r+1} \frac{x_{i}}{\boldsymbol{\beta}_{n+1, i}^{\prime}}
\end{aligned}
$$

by (32), and since $g_{k}\left(\lambda_{i}\right)=0$ for $n+1 \leqq k<i$. Expressing C_{n}^{r} in terms of t_{n}^{r}, it now follows from (35) that

$$
\begin{equation*}
S_{n}^{\prime}=\sum_{r=0}^{p}(-1)^{r} t_{n}^{r} \sum_{i=n+1}^{n+r+1} \lambda_{n+1} \cdots \lambda_{n+r} x_{i} / \beta_{n+1, i}^{\prime} . \tag{37}
\end{equation*}
$$

Now assuming (1) (for $r \geqq 2$), (11) shows (with $r-1$ in place of p) that

$$
\lambda_{n+1} \cdots \lambda_{n+r} /\left|\beta_{n+1, i}^{\prime}\right| \leqq K_{r} \Lambda_{i}^{r}(n+1 \leqq i \leqq n+r+1),
$$

and also, by (31)',

$$
x_{i}=O\left(\Lambda_{i}^{-p}\right) ;
$$

further (Russell [14], Corollary 3A) $t_{n}^{p}=o(1)$ implies

$$
t_{n}^{r}=o\left(\Lambda_{n}^{p-r}\right)(r=0,1, \cdots, p)
$$

Substitution of these estimates in (37) now gives, by (1),

$$
\begin{equation*}
S_{n}^{\prime}=\sum_{r=0}^{p} \sum_{i=n+1}^{n+r+1} o\left(\Lambda_{n}^{p-r} \Lambda_{i}^{r} \Lambda_{i}^{-p}\right)=o(1) . \tag{38}
\end{equation*}
$$

Turning to $S_{n}^{\prime \prime}$, we note first that $S_{n}^{\prime \prime}$ vanishes identically for $p=0$ and $p=1$. Now $g_{k}\left(\lambda_{i}\right)=0$ for $k<i \leqq \nu+p+1$, so that

$$
g_{k}\left[\lambda_{\nu}, \cdots, \lambda_{\nu+p+1}\right]=\sum_{i=v}^{k} \frac{g_{k}\left(\lambda_{i}\right)}{\beta_{v i}}, \quad \beta_{v i}=\prod_{j=\nu}^{\nu+p+1}\left(\lambda_{i}-\lambda_{j}\right) .
$$

Now (9) shows, making use of (1), that

$$
g_{k}\left(\lambda_{i}\right)=\frac{\left(\lambda_{k+1}-\lambda_{i}\right) \cdots\left(\lambda_{k+p}-\lambda_{i}\right)}{\lambda_{k+1} \cdots \lambda_{k+p}} \leqq K \Lambda_{i}^{-p} \quad \text { for } \quad k-p \leqq i \leqq k .
$$

Also

$$
\frac{\left(\lambda_{\nu+p+1}-\lambda_{v}\right)\left|C_{v}^{p}\right|}{\left|\beta_{v i}\right|}=\frac{\left(\lambda_{\nu+p+1}-\lambda_{\nu}\right) \lambda_{\nu+1} \cdots \lambda_{\nu+p}\left|t_{\nu}^{p}\right|}{\left|\beta_{v i}\right|} \leqq K \Lambda_{i}^{p}
$$

for $\nu \leqq i \leqq \nu+p+1$, by (10) (assuming (1)) and since $\left\{t_{v}^{p}\right\}$ is bounded, by hypothesis. Substituting these estimates into (26), we now find that

$$
\begin{equation*}
\left|S_{n}^{\prime \prime}\right| \leqq K \sum_{k=n+1}^{n+p}\left|\eta_{k}\right|=o(1) \tag{39}
\end{equation*}
$$

Hence, by (34), (38), (39), we have $S_{n}=o(1)$ and so, by (33), $\Sigma a_{\nu} x_{v}$ converges to $\Sigma \eta_{k} t_{k}^{p}$; and this proves the theorem.

To write Theorem 3 in an alternative form, an easy calculation shows that the two-sided inverse matrix $A^{-1}=\left(a_{k \nu}^{-1}\right)$ of the γ-matrix $A=(C, \lambda, p)$ is given by

$$
\begin{gather*}
a_{k \nu}^{-1}=(-1)^{p+1}\left(\lambda_{v+p+1}-\lambda_{v}\right) \lambda_{\nu+1} \cdots \lambda_{\nu+p} / \beta_{v k} \quad(\nu \leqq k \leqq \nu+p+1), \\
a_{k \nu}^{-1}=0 \quad \text { otherwise }, \tag{40}
\end{gather*}
$$

where $\beta_{\nu k}$ is defined by (4). Thus A^{-1} consists of $p+2$ diagonals containing non-zero elements, with zero elements elsewhere. Now using (29), Theorem 3 takes the form:

ThEOREM 3'. Under the hypotheses of Theorem 3, $\left\{x_{n}\right\}$ is a (C, λ, p) convergence-factor if and only if

$$
\begin{gathered}
x_{n}=O\left(\Lambda_{n}^{-p}\right) \\
\sum_{n=0}^{\infty}\left(\lambda_{n+p+1}-\lambda_{n}\right) \lambda_{n+1} \cdots \lambda_{n+p}\left|\sum_{i=0}^{p+1} \frac{x_{n+i}}{\beta_{n, n+i}}\right|<\infty .
\end{gathered}
$$

For $\lambda_{n}=n$, the inner sum in (41) reduces to $(-1)^{p+1}(p+1)!\Delta^{p+1} x_{n}$, and we obtain as a corollary the well-known Bohr-Hardy-Fekete theorem :

COROLLARY 3'. Let p be a non-negative integer; then $\Sigma a_{n} x_{n}$ converges whenever Σa_{n} is summable (C, p) if and only if $x_{n}=O\left(n^{-p}\right)$ and $\Sigma n^{p+1}\left|\Delta^{p+1} x_{n}\right|$ $<\infty$.

This result has been generalized in several directions, notably by Bosanquet and Andersen; for further references and a short discussion of convergencefactors for Cesàro summability see Hardy [7], p. 146.

Finally, we remark that in view of 13 (a), (b), Theorems 3 and 3^{\prime} also give (for integral p) necessary and sufficient conditions in order that $\Sigma a_{n} x_{n}$ should converge whenever Σa_{n} is summable (R, λ, p). By restricting λ to satisfy (16a) together with $\Lambda_{n} \nearrow+\infty$ (which implies (16b)) Maddox [8] has been able to obtain a considerably more general result for summability-factors $[(R, \lambda, \kappa)$, ($R, \lambda, \mu)]$; there the summability-factors are expressed in the form of an integral instead of a series form such as (32). The precise relation between the two forms would be quite difficult to determine, though Maddox [9] gives an interesting construction in the case $\lambda_{n}=n$, i.e. for $[(C, \kappa),(C, \mu)]$ summabilityfactors. The problem is also mentioned by Jurkat and Peyerimhoff [6], p. 105, in comparing (for $0<\kappa \leqq 1$) the integral form for (R, λ, κ) convergence-factors with the series form for (R^{*}, λ, κ) convergence-factors. Recently I have been able to show (see [15]) that the conditions on λ imposed by Maddox [8], Theorem A , in his result on $[(R, \lambda, \kappa),(R, \lambda, \mu)]$ summability-factors, can be removed entirely in the case $0 \leqq \mu \leqq \kappa \leqq 1$.

References

[1] D. Borwein, On a generalized Cesàro summability method of integral order, Tôhoku Math. Journ., (2), 18(1966), 71-73.
[2] H. Burkill, On Riesz and Riemann summability, Proc. Camb. Phil. Soc., 57(1961), 55-60.
[3] W. B. Jurkat, Über Konvergenzfaktoren bei Rieszschen Mitteln, Math. Zeit., 54(1951), 262-271.
[4] W. B. JURKat, Über Rieszsche Mittel mit unstetigem Parameter, Math. Zeit., 55(1951), 8-12.
[5] W. B. JURKAT, Über Rieszsche Mittel und verwandte Klassen von Matrixtransformationen, Math. Zeit., 57(1953), 353-394.
[6] W. B. Jurkat and A. Peyerimhoff, Mittelwertsätze bei Matrix- und Integraltransformationen, Math. Zeit., 55(1951), 92-108.
[7] G. H. Hardy, Divergent Series, Oxford University Press (1949).
[8] I. J. Maddox, Convergence and summability factors for Riesz means, Proc. London Math. Soc. (3), 12(1962), 345-366.
[9] I. J. Maddox, A note on summability factor theorams, Quart. Journ. Math. (Oxford) (2), 15(1964), 208-216.
[10] I. J. Maddox, Some inclusion theorems, Proc. Glasgow Math. Assn. 6(1964), 161-168.
[11] L. M. Milne-Thomson, The calculus of finite differences, Macmillan, London (1933, reprinted 1960).
[12] A. Peyerimhoff, Konvergenz- und Summierbarkeitsfaktoren, Math. Zeit., 55(1951), 23-54.
[13] D. C. Russell, Note on inclusion theorems for infinite matrices, Journ. London Math. Soc., 33(1958), 50-62.
[14] D. C. Russell, On generalized Cesàro means of integral order, Tôhoku Math. Journ. (2), 17(1965), 410-442. Corrigenda; 18(1966), 454-455.
[15] D. C. Russell, On a summability factor theorem for Riesz means, Journ. London Math. Soc. (to appear).
[16] A. Meir, An inclusion theorem for generalized Cesàro and Riesz means, Canada. Journ. Math. (to appear).
[17] D. BORWEIN AND D. C. Russel, On Riesz and generalized Cesàro summability of arbitrary positive order, Math. Zeit. (to appear).

York University.
TORONTO 12, CANADA.

[^0]: 1) This paper was written while the author was a Fellow at the Summer Research Institute of the Canadian Mathematical Congress, Kingston, Ontario, 1966.
 2) When not otherwise specified, limits of summation are assumed to be 0 , ∞. Also K will denote a constant, independent of the particular variables under consideration, and possibly different at each occurrence. We denote $\Delta b_{n}=b_{n}-b_{n+1}$. Finally, A is included in $B(A \subseteq B)$ if every series summable- A is also summable- B (to the same value); A and B are equivalent $(A \sim B)$ when each is included in the other.
