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1. Introduction. In this paper I discuss a necessary condition on con-
vergence factors for Riesz summability (R, N, ¥) (for any «=0), and also
necessary and sufficient conditions on convergence factors for generalized Cesaro
summability (C, M\, ¥) (where « is an integer); since (under the hypotheses
used) (C, M, k) and (R, M, k) are equivalent, this also gives a representation for
Riesz convergence factors in the case where « is an integer. Much attention
has been given recently in work on Riesz means to the problem of imposing
minimal restrictions on the sequence M ; the restriction considered here will be
one which occurs naturally as a necessary condition in some circumstances,
and which also appears to be capable of being used to generalize a number
of existing results in which heavier restrictions on A have been imposed.

We suppose throughout that A= {A,} is a sequence satisfying
0= <N <eee <N, — 00,
and we shall also employ (when indicated) the condition
(1) Aoy = O(A,), where A, = Npt/Nper—Ny) -
Given any series® Za,, denote

Aw) = Y (0—M)a, (k=0), R(o)= 0"*A%(o);

<o

C"I)lr = Zav ) Cv’: - Z()\’n-l-l_)"v) A (k'n+p_)\'u)av (P':]-» 2: e )3
v=0 =0

1) This paper was written while the author was a Fellow at the Summer Research Institute
of the Canadian Mathematical Congress, Kingston, Ontario, 1966.

2) When not otherwise specified, limits of summation are assumed to be 0, co. Also K will
denote a constant, independent of the particular variables under consideration, and possibly
different at each occurrence. We denote Ab,=b,—by41. Finally, A is included in B (ASB)
if every series summable-A is also summable-B (to the same value); A and B are
equivalent (A~B) when each is included in the other.
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(2) g = (1=570) - (1-57) O=2<h), 0@=0 @=).0),

th= Zg"o"")a" = O"’H'l e 7\'n+p)_1C5: .
v=0

Sa, is summable (R,\, k) to s when R%(w) —s as o — +oo0, and summable
(C,\, p) to s when t5—s as n—oo.  For properties of (C,\, ) summability see
Jurkat [5], Burkill [2], Russell [14], Borwein [1], Meir [16], Berwein-Russel [17].

If A,B denote series transformations (or the matrices of such trans-
formations), we shall denote by [A, B] the class of all summability-factors
x={z,} such that 3a,x, is summable-B for every series 3a, which is
summable-A. When B=1I (convergence), [A, I] is the class of all convergence-
factors for A-summability. It is trivial that

(3) if CCA then [A,BICI[C, B].

We shall require some properties of divided differences, of which an account
can be found in Milne-Thomson [11], Chapter I. For non-negative integers
m, v, p, denote

m-+p+1

(4) %’I«?': my = jI[/(M—M)

where IT' indicates that any zero factor corresponding to j=wv is to be omitted.
Given any function f defined in the interval [N, An.,:1], the (p+1Dth. order
divided difference corresponding to the points A, m =v=m+p+1) is

(5) Fls s hepir] = 2 29

if the derivative f®*V exists in (Apmy Mpip+r) and fP is continuous also at the
end-points, we have the mean-value theorem

1 .
Sy s s o s Mpapin] = Wf("“’({-), for some & in Np<& <Apip+:-

Also denote

(6) 77(!{‘:)) = Y = Bmm/ﬂmv;
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so that

m+p+1

(7) > Ym=0;

this last result follows from (5) by taking flx) =1.

LEMMA 1. Let p be a non-negative integer; if p=1 assume that

(1) Ay = OA,).
Then
(8) V2 = K@Au/An)y for m=v=m+p+1.

PROOF. For p=0 we have |v&|=1 for m =v=m+1. If pis a positive
integer and m=v=m+ p+1 then, by (4) and (6),

()‘m+l —)\‘m) ce ()\'u_)'m) ’ ()"u+1_7\'m) ce ()'m+p+l —)'m)

Y| =

l (7\'”_)\'"") 0T (7""_)’"—1)°O\'u+1_7\'u) °c O"m+p+1_7\'u)
= (Mns1= M . Ay =M ces Ny =N M1 =M m+p_u+1.
= )’m*’l_)\'m hm+2_)\'m+1 )\‘V—A'v—l 7\'U+1—7"v >

here we have merely used the fact that {A,} increases, together with the
property that if a <b < x then (x—a)/(x—>b) decreases as x increases. Now

if (1) holds then

(9) 7\'m+q—'7\'m Sk'm+q—x'm+q—1+ S Mns1— N — 1 doeee 4+ K

1
7\'m+q - 7\'m+q Mms1 Am+q—1 Am A

Q

A

3

and applying this to our last inequality for v,, we obtain, since v =m+p+1,

| V| SK( Ao\t . MAGL )( = >m+p-,,+1

7\'m+2_7\'m+1 ) 7\'u"7\'u—1 7\'v+1“7\w
= KA;LpAmH e Av—lALnﬂ’_Hl

=KAZAZ, by (),

where K is independent of » and m; and this is the required result (8).
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REMARK. We note, for future reference, the following consequences of this
lemma: If p is a positive integer and A,-;=O(A,) then, for m=v=m+p+1:

(7\'7n+p+1—)'m)7\'m+1 b 7\'m+p — Mpar®e 7\«m+p l-fy(p)l
IB;IZL,U) O\'m+1_)\'m) e (7\'7n+p'—7\'m) e
(10) = AL -K(A/AR)P = KAZ;
(11) %@p_ﬂéKAg.%éKAgAméKAg+l;
my m+p+1 m

if, in addition, we have N, = = M,1,4+: and k=p, then, by (9),

(t—?\,,,)/t = ()'m+p-i-1_)\'V)/7\'m+p+l = KA
and hence

12) =N AL YR = KAR/A)YP=K.

2. Convergence-factors for (R,),«) summability. When the matrix
A=(a,,) of a series-to-sequence transformation is normal (i.e. a,,=0 for v>n,
a,,70), the diagonal elements of A provide a limitation on the order of
magnitude of the convergence-factors for A-summability. The following lemma
is a consequence of Jurkat and Peyerimhoff [6], Satz 5.

LEMMA 2a. If A is normal and x<[A, 1] then xn=O(a,;,,).

Normal matrices have a number of attributes which simplify consideration
of their summability properties, notably the possession of a unique right inverse
(which is also a left inverse). Since the (R,A,«) method is not normal,
attempts have been made to define normal methods equivalent to it (for a
discussion see [14]), which sometimes necessitate restrictions on A. Thus, for
example, I have shown in [14], Theorems 4 and 5, that

(133') (C,NP)Q(R,NP) (P=0,1’2,"');

(13b) if, when p > 2, (1) holds, then (R, N, p) T(C, N, p) ($=0,1,2,+-+).
(Note : Meir [16] has recently shown that (13 b) holds without restriction on A).
Again, by restricting o in the definition of (R, \, k) to the sequence {\,}, we

obtain ‘discrete’ Riesz summability (R*,\, «) (which is normal), and Jurkat [4]
has shown that
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14) RN )~ (REN k) (0=e=1),

without restriction on A. Since, if A=(R¥*,\, ), we have a,,=A;*, we obtain
from (14) and Lemma 2a the result ([3], Satz 4) that

(15) if0=«k=1and x<[(R,N,«),I] then z, = O(A;*).
Maddox [8] gives an example to show that
Snx such that xe[(R,M2),11 but z,# O,

so that we cannot hope to extend (15) to all x> 1 without some restriction
on A. However, Jurkat [3], Sédtze 4,5, has shown that (15) remains true for
x> 1 when the following conditions are imposed :

AN, AN,

(16) @ 0<m=40m, B At

_M<oo

Now if we take A = (C, A, p), we get

a. = 7\'n+1'_7\"n) . 7\'n+z:o_-7\'n
" )'n+l J 7\'1:+p

and if (1) holds then, by 9), a,,=O0(A;?); thus, from (13) and Lemma 2a:

if, when p>1, (1) holds, and if xe[(R,\, p),1), then x, = O(A;")
n=0,1,2,---).

The question therefore arises as to whether this result remains true with a
general ¢ in place of the integer p, and without imposing any additional
restriction on M besides (1). It will be shown in Corollary 2 that this is in
fact the case, thus showing that hypothesis (16a) can be completely removed
in Jurkat’s theorem ([3], Satz 4), and that (16b) can be replaced by the weaker
hypothesis (1).

- A further question concerns the conditions under which the sequence
{A;*} itself can be a convergence-factor for (R, \, ¥)-summability, and in con-
‘sidering this (at least for those values of « for which a normal method is
known which is included in (R, M, x) without restriction on A) we find that
the condition (1) now appears as a necessary condition. It is convenient first
to supplement Lemma 2a with
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LEMMA 2b. If A is normal and x<[A,I] then
Zn@na-1= NAnn@n-1n-1) -

PROOF. Denoting by A '=(a;') the two-sided inverse of A, {o',,}> the
partial sums of 3a,z,, and {¢,} the A-transform of Sa, it is easy to deduce
that

n n
On = zbmtt ’ Where bﬁi = qua;il .
i=0 v=i

Thus {¢,} converges whenever {¢,} converges (i.e. z<[A,I]) if and only if
(b,.:) is conservative, and in particular it is necessary that

> 16| =M independently of 7.
=0

Hence |b,;| = M for every n and 7; the choice =7 leads at once to Lemma
2a (since azi=1/a,,) and the choice i =#n—1 to Lemma 2b, since a;-
= _an,n—l/(ann an—l,n—l)-
THEOREM 1. If 0 <k =1, or if « is a positive integer, and if
{AZ"} € [(R, N\, 6), 1], then A, = O(A,).
PROOF. Let x, = A;*. Then taking A = (R*,\,«) (k> 0) we find that
Ly Cn,n-1 Any ‘,
annan—l,'n-1> (A-n ) ’

while taking A=(C,\, «) (x a positive integer) we obtain

xnan,n—l > An—l
annan—l,n—l An

Using these inequalities in Lemma 2b, together with (13a), (14) and (3), the
theorem follows.

While Theorem 1 gives a simple necessary condition in order that {A;*}
should be an (R, M, £) convergence-factor, it is hardly to be expected that this
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condition will be sufficient, and in fact Jurkat [3], Satz 3, gives three fairly
complicated sufficient conditions for such a result to hold. Taking the most
tractable case for purposes of comparison, namely «=1, we find that his first
condition (which is that A, ) then implies the second, while the third
automatically holds, so that we have the following:

In order that {A;'} should be an (R, A, 1) convergence- -factor, it is
necessary that A,_,=O0(A,) and sufficient that A,_; = A,.

However, the precise necessary and sufficient conditions in order that a sequence

{x,} should be an (R, N, 1) convergence-factor are already given in Jurkat [3],

Satz 1 (the third condition given in this theorem is superfluous, since it can

be deduced from the other two, as pointed out by Maddox [10]) and if we put
=A;! in this theorem, we obtain :

In order that {A;'} should be an (R, N,1) convergence-factor, it is
necessary and sufficient that
AA;?
+(4)

We turn now to the main theorem of this section, the motivation for
which has been discussed earlier.

< oo,

o
-

Z 7\'u+1

v=0

THEOREM 2. Let «>0. If > 1 assume
[(1)] Apy = O<An) .

Then for each unbounded sequence {6,} of real or complex numbers, there
is a series 2a,, with partial sums s,, which is summable (R, \, k) to zero,
but such that

a7 Sp F O(A:/on) , an 7 o(AL/0,).

PROOF. The proof is essentially similar to that of Jurkat [3], but here
we use Lemma 1 and also alter the definition of a,, in order to obtain
sharper estimates. The choice of the series Za, depends on an increasing
sequence of non-negative integers {n,} chosen inductively as follows: suppose
that 7y, 7n;,+-+,n,_, have been chosen and that a, has been defined for
0=v=n,,+p+1 (where p is the integer such that p<<«=p+1) in such a
way that :
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Tra+D+1

(18) 2. a=0;
v=0

now choose 7, so that
19 n>n_,+p+1
(20) |6n,1 =r

Rrat D+l 1
21) [ Z (0—M)a,| = o for o > A, -

v=0

Such a choice of 7, is possible since {#,} is unbounded, by hypothesis, and
since the left hand side of (21) tends to zero as o — oo, by virtue of (18).
Now define

(22) a,=0 for n._+p+1<v<m,

(23) a,= 0 A Y for m=n,=v=n.+p+1,

where v,,, is given by (6), and it then follows from (7) that (18) holds with
r+1 in place of . By making the initial choice

n,=0, a,=0 for ny=v=n,+p+1,
(18)—(23) are then valid for r=1,2,---

It is clear that (17) holds with this choice of Sa,, for when »v=n, we see
from (22), (23) and (6) that

Sn, = An, = A:r/enr (7': 1’2’3"'°)-
We now show that the series 3a, is summable (R, \, «) to 0. Given >0,

let 7 be the integer-valued function of e satisfying N, < ® = A,.; then there
is an 7 such that n, =n <n,,;, and hence

0" ANw) = 0™ )_(0—\,)a,
v=0

Nra+p+1 n

—o 3 (e—MYa+ oY (0-MFa, by (22

v=0 V="0r
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(24) =o(l)+ S, by (2D),
where
min(n, m+p+1)
(25) S=0A%0" 2. (0—N)Ym (m=n,).

v=m

Suppose first that m=n,=n =n,+p, so that ® =Np4,4+1; if (when
p=1) we assume (1), then (12) and (20) show at once that

(26) S=00:D=01) as 0o— o n,=n=n+p).

Alternatively, if n,+p+1=n <n,,, then, by (6) and (25),

m+p+1

S = 01N 0 B O 3”—;’”—”)" ’

=6 Ano™ Bmm d((D), say.
Now, by (5), d(®) = €u[Mn;* s Mpsps1]l, Where e (x) = (0—x)¢ for o > x; and

it follows as in Jurkat [3], p. 270, using the mean-value theorem for divided
differences, that |d(e)|=|d\n+p+1)| fOor @ > Nyyps, whence

m+p+1 L3
ISI = 16z A% 22 (M’L’—x—) | Y|

v=m )\'m+p+l ’
which gives, by substituting £=N,,,.+; in (12),
@7 S=00:)=01) as @—oc0 (M+p<n<n.).

It now follows from (24), (26), (27) that o ™*A%(®)= o(1l) as @ — oo; thus
Sa, is summable (R, A, k) to zero, and the theorem is proved.

COROLLARY 2. Let > 0; if €> 1 assume that A,-;= O(A,). Then in
order that Sa,x, should converge whenever Za, is summable (R, \, k), it is
necessary that x, = O(A;"). :

PROOF. This follows directly from the theorem, as in the proof of [3],
Satz 5.

3. Convergence-factors for (C,\, «) summability. Although Lemmas 2a,
2b give limitations on the order of magnitude of convergence-factors for
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A-summability (A normal), some more precise representations are needed in
order to obtain necessary and sufficient conditions for these convergence-factors.
The following result is due essentially to Peyerimhoff [12] — see also Russell
[13], §2.

LEMMA 3. Let A be normal and lima,=1 w=20,1,2,--.), and let
zel[A,I. Then

(28) S, {9}, with S|n,| < oo, such that x,= 5+ 2 7 aw;
moreover,
(29) - = Z T ag,

k=v

If, in addition, A is regular (a y-matriz) and 1/a,, # O(1), then » = 0.
We obtain the last clause of the lemma as follows: if A is a fy-matrix
then in particular |ay| = K for every % and v and so, from (28), x,=7n+o0(1);

but if 1/a,, # O(1) then, by Lemma 2a, there is a sub-sequence of integers
such that x,,=0(1); hence =0.

We now apply this lemma to find the form of the convergence-factors for
(C, M, p) summability, where p is an integer; there is a related result in Jurkat
[5], Satz 12 — there the theorem is a consequence of a number of general

results on convergence-factors, and it is interesting to see what can be proved
in a direct way with fewer restrictions on M.

THEOREM 3. Let p be a non-negative integer and ¢,(x) be defined as
in (2); let ' ,

(30) A, #= O1)
and when p= 2 assume that

1¢9) Any = 0(A,).
Then z<[(C,\, p), I if and only if
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(32) 3 {n}, Blme| < oo, such that x,= Z’?}c () -
k=vp

PrOOF. If A is the (C,\, p) matrix, then a,, = ¢,(A,) and the necessity
of (31) follows at once from Lemma 2a, without restriction on A ; however,
under the hypothesis (1) (imposed for p = 2), (9) shows that (31) is equivalent
to

31y z, = O(A;7).

In addition, A is normal and regular and 1/a,, # O(1) when (30) and (1) are
imposed; the necessity of (32) then follows from Lemma 3. [It should be
remarked that (30) is a relatively trivial requirement, for if A, = O(1) then
(see [14], Corollary 3B) (C, A, p)~1I and the necessary and sufficient conditions
for convergence-factors in this case are well-known (see, for example, Hardy [7],
Theorem 7), namely: x<[l, I] if and only if 3|Ax,| <co.]

It remains to prove the sufficiency of (31) [or (31)] and (32), and we may
suppose, without loss of generality, that

k
=2 gM)a, =ol) as k— oo,
v=0
Then, by (32),

Zauxv = Zav <; + i ) "71;91;(7\'»)

k=n+1,

(33)

n
Z Nk t]’:; + S” P Say.

k=0

Since #=0(1) and 3|7, | < oo, it follows that S, ¢ converges, so that Sa.x,
converges if and only if the sequence {S,} converges. Now

Sn = Z ke Z gk()‘v) a,

k=n+1 v=0

and by partial summation it can be shown (see Russell [14], Lemma 1) that
n D
Z gk()‘w) ay = Z (—l)r ng\'nH yo s Apri] Crt
v=0 r=0

+ ("1)“1 Z ng\'u »* 7"u+p+1](7\'u+p+1"7"u) C’,f .

v=0
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For v=n<k—p, gilh,*-, Mipa] is a (p+1)th. order divided difference of
a polynomial of degree p, and hence vanishes; consequently

(34) S, =S, + S,
where
(35) S;L = Z Nk Z (_1)1‘ gk[)’nA-l » % 7\'n+r+1] C;; ’

k=n+1 r=0

n+p
(36) S - Z "7k( 1)p+1 Z ng\'u,' * L+p+1](M+p+1—7w) Cﬁ.
k=n+1 v=k-p
n+r+1 g (7\') ) n+r+,1
Now ng\'n+1 »* % 7\'714-7‘-&-1] = Z _ka =i ’ Bn+1,i = ]I ()"i - >“J) » so that
i=n+1 ALl j=n+1

n+r+1

Z "kgk[y\'n+1, e n+r+l] - Z/

k=n+1 i=n+1

B’n+11 kz nkgk(hi)

n+1

n+r+l

B Z Bn+li

i=n+1

by (32), and since ¢,(\;) = 0 for n+1 =% <i. Expressing C; in terms of ¢,
it now follows from (35) that

n+r+l

(37) Sp = Z( 1)rtr Z Mo ® 7\'n+rxi/3;;+1,i-

i=n+1

Now assuming (1) (for » = 2), (11) shows (with »—1 in place of p) that
Nas1** * Mpar/ 1 Brsnil EK A (n+1=i=n+r+l),
and also, by (31),
z, = O(A;?);
further (Russell [14], Corollary 3A) #; = o(1) implies
th=o0Ar") (r=0,1,---,p).

Substitution of these estimates in (37) now gives, by (1),
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n+7r+1

(38) n = Z 2. oALTATAY) = o(1).

7=0 i=n+1

Turning to S,, we note first that S, vanishes identically for p =0 and
=1 Now gi(A) =0 for 2 <i=v+p+1, so that

v+p+1

ng\»u, s oo, Npsprr] = Z qk()\'i) B, = I[ ’ ()\uf‘)\:j) .
j=v
Now (9) shows, making use of (1), that

gk(xi)zwvwéKA{p for k_Pélék.
Mert®* Nesyp

Also

(A'v+p+1"7\'U)\Cg| _ O\'V+p+1_7\'u)7\'v+1‘"7\'v+pltﬂ - »
Bl 18 =KA

for v=7=w»+p+1, by (10) (assuming (1)) and since {#5} is bounded, by
hypothesis. Substituting these estimates into (26), we now find that

n+p

(39) ISAI=K 22 |ml = o(1).

k=n+1

Hence, by (34), (38), (39), we have S,=0(1) and so, by (33), 2a,x, converges
to S th; and this proves the theorem.

To write Theorem 3 in an alternative form, an easy calculation shows
that the two-sided inverse matrix A™' = (ai') of the y-matrix A = (C,\, p) is
given by

al:ul = (_1)p+10\'u+p+1_)’u) Npgreee 7\'u+p/8uk (V = k = V+P+1) 5
(40)

ant = 0 otherwise,

where B, is defined by (4). Thus A~ consists of p+2 diagonals containing
non-zero elements, with zero elements elsewhere. Now using (29), Theorem 3
takes the form:

THEOREM 3. Under the hypotheses of Theorem 3, {z,} is a (C,\, p)
convergence-factor if and only if



NOTE ON CONVERGENCE FACTORS 427
[(31)] z, = O(Az7)
p+1

Z Lyt
i=0

n,n+i

(41) Z (7\’7&+P+1—7\‘n)7\"n+1 e 7"n+z) < oo,
n=0

For N,=n, the inner sum in (41) reduces to (—1)"*'(p+1)! A"*'x,, and
we obtain as a corollary the well-known Bohr-Hardy-Fekete theorem:

COROLLARY 3. Let p be a non-negative integer; then Xa,x, converges
whenever Sa, is summable (C, p) if and only if x,=O0(n") and Zn**'|A**'x,|
< oo,

This result has been generalized in several directions, notably by Bosanquet
and Andersen; for further references and a short discussion of convergence-
factors for Cesdro summability see Hardy [7], p. 146.

Finally, we remark that in view of 13 (a), (b), Theorems 3 and 3" also give
(for integral p) necessary and sufficient conditions in order that Sa,z, should
converge whenever 2a, is summable (R, \, p). By restricting A to satisfy (16a)
together with A, "+ (which implies (16b)) Maddox [8] has been able to
obtain a considerably more general result for summability-factors [(R,\, k),
(R, N, p)]; there the summability-factors are expressed in the form of an integral
instead of a series form such as (32). The precise relation between the two
forms would be quite difficult to determine, though Maddox [9] gives an
interesting construction in the case A, = 7, i.e. for [(C, k), (C, p)] summability-
factors. The problem is also mentioned by Jurkat and Peyerimhoff [6], p. 105,
in comparing (for 0 <<« =1) the integral form for (R, \, ) convergence-factors
with the series form for (R*, M, k) convergence-factors. Recently I have been
able to show (see [15]) that the conditions on A imposed by Maddox [8],
Theorem A, in his result on [(R,\, ), (R, N, p)] summability-factors, can be
removed entirely in the case 0 =p =« =1.
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