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1. Introduction. In this paper I discuss a necessary condition on con-
vergence factors for Riesz summability (R, λ, /e) (for any tc ̂  0), and also
necessary and sufficient conditions on convergence factors for generalized Cesaro
summability (C, λ, K) (where tc is an integer); since (under the hypotheses
used) (C, λ, K) and (R, λ, K) are equivalent, this also gives a representation for
Riesz convergence factors in the case where K is an integer. Much attention
has been given recently in work on Riesz means to the problem of imposing
minimal restrictions on the sequence λ the restriction considered here will be
one which occurs naturally as a necessary condition in some circumstances,
and which also appears to be capable of being used to generalize a number
of existing results in which heavier restrictions on λ have been imposed.

We suppose throughout that λ= {\n} is a sequence satisfying

0 ̂  λ0 < \! < < λw -> 00 ,

and we shall also employ (when indicated) the condition

C 1) Λn-ι = O(An) , where A.n = λn+1/(λn+1-λn) .

Given any series2) Σαn, denote

Aκ(ω) = Σ (ω-\Y av (K ̂  0) , R*(ω) = ω~κAκ(ω)
λv«a

n n

c° = E^, Q^ΣOn+i-XV Cλ^-λ^K 0=1,2,...),
v=0 ι>=0

1) This paper was written while the author was a Fellow at the Summer Research Institute
of the Canadian Mathematical Congress, Kingston, Ontario, 1966.

2) When not otherwise specified, limits of summation are assumed to be 0, oo. Also K will
denote a constant, independent of the particular variables under consideration, and possibly
different at each occurrence. We denote Abn=bn— bn+ι- Finally, A is included in B (A^B)
if every series summable-A is also summable-β (to the same value) A and B are
equivalent (A~B) when each is included in the other.
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( 2 ) g
n
(x) = l - -̂

Σαn is summable (jR, λ, #) to 5 when R*(ω)-^>s as ω — >+oo, and summable
(C, λ, jί) to 5 when t%-*s as w— >oo. For properties of (C, λ, #) summability see
Jurkat [5], Burkill [2], Russell [14], Borwein [1], Meir [16], Bcrwein-Russel [17].

If A, B denote series transformations (or the matrices of such trans-
formation's), we shall denote by [A, B] the class of all summability- factors
χ — {xn} such that Σanxn is summable-5 for every series Σαn which is
summable- A When B=I (convergence), [A,/] is the class of all convergence-
factors for A-summability. It is trivial that

(3) ifC^A then [A, B] <^[C, B] .

We shall require some properties of divided differences, of which an account
can be found in Milne -Thomson [11], Chapter I. For non-negative integers
m, v, p, denote

m+p-rl

(4) β£} = βmv= Π'Ow-λ,-)

where IT indicates that any zero factor corresponding to j=v is to be omitted.
Given any function / defined in the interval [λm, λTO+p+1], the (p + ϊ)ih. order
divided difference corresponding to the points \ (m ^v^m+p + 1) is

ra+ρ+1

V 3 ) / LΛ»ra > * * " ? Λ'm + β + lJ == / >

if the derivative f(J}+1) exists in (λm?λm+p+1) and /(p) is continuous also at the
end-points, we have the mean-value theorem

)> for some ^ in

Also denote

(6)
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so that

m+p+l

(7) £ 7^=0;
v=m

this last result follows from (5) by taking f(x) = 1.

LEMMA 1. Let p be a non-negative integer if p §: 1 assume that

[(i)] ^

(8) |γ<g| ^K(A.v/λmY for m^v^

PROOF. For p = 0 we have | γ^ϋ | = 1 for m ±g z> ̂  m + 1. If ^> is a positive
integer and m^v^m+p+\ then, by (4) and (6),

I (p) I _ (Xn + i— λm) * * (\ — 'λπϊ) (\+ι — λm) * * (λm + p + 1— λm)

^

"λ _
7̂71 + 2

here we have merely used the fact that [λn] increases, together with the
property that if a <b <x then (x—ά)/(x—b) decreases as x increases. Now
if (1) holds then

/ Q \ Λ»m + q ^m <-• ̂ m+g -^rn + q-1 _ι β β β _ι_ ^m + 1 ^m *• _ι_ . . . _ι_ <C g

and applying this to our last inequality for jmv we obtain, since v ̂

|γ«-l^x|

where K is independent of v and m; and this is the required result (8).
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REMARK. We note, for future reference, the following consequences of this
lemma: If p is a positive integer and Λn_ 1 = O(Λrι) then, for m^v^

_

|£S| ~ (λm+1-λm)

(10) ^ AS

(11) m+1 rtT**31 ^ ̂  A? . zV- ̂  tfΛ A, ̂  JϋC AΓ1

I Pmi; I Λ'ra + p + l Λ'ΪΛ

if, in addition, we have \^t^\m+p+1 and κ^p, then, by (9),

and hence

(12) rκ(t-\γ Λ UΎSI ^ κ(λm/kvy-p ^ K .

2. Convergence-factors for (jβ,λ,*) summability. When the matrix
A=(αnu) of a series-to-sequence transformation is normal (i.e. αnυ=0 for v>n,
annφϋ)> the diagonal elements of A provide a limitation on the order of
magnitude of the convergence-factors for A-summability. The following lemma
is a consequence of Jurkat and Peyerimhoff [6], Satz 5.

LEMMA 2a. If A is normal and xz[A, I] then xn = O(ann).

Normal matrices have a number of attributes which simplify consideration
of their summability properties, notably the possession of a unique right inverse
(which is also a left inverse). Since the (R, λ, K) method is not normal,
attempts have been made to define normal methods equivalent to it (for a
discussion see [14]), which sometimes necessitate restrictions on λ. Thus, for
example, I have shown in [14], Theorems 4 and 5, that

(13 a) (C,λ,/>)C(Λ,λ,/0 (£=0,1,2,.-.);

(13 b) if, when p > 2, (1) holds, then (R, λ, p) CI (C, λ, />) (/>=0, 1, 2, ) •

(Note : Meir [16] has recently shown that (13 b) holds without restriction on λ).
Again, by restricting ω in the definition of (R,\,κ) to the sequence {λw}, we
obtain 'discrete' Riesz summability (R*9 λ, K) (which is normal), and Jurkat [4]
has shown that
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(14) CR,λ,*)-(lί*,λ,*) (0^*^1),

without restriction on λ. Since, if A=CR*, λ, #), we have *znn = Λήκ, we obtain
from (14) and Lemma 2$ the result ([3], Satz 4) that

(15) if 0 ̂  K ̂  1 and x € [(R, λ, *), /] then xn = O(\Γn ") .

Maddox [8] gives an example to show that

3 λ, x such that x <E [(jR, λ, 2), /] έwί ;rn

so that we cannot hope to extend (15) to all K > 1 without some restriction
on λ. However, Jurkat [3], Satze 4,5, has shown that (15) remains true for
K > 1 when the following conditions are imposed :

(16) (a) 0 < m 5 g - , (b) ~^M<oo.

Now if we take A = (C, λ, p\ we get

and if (1) holds then, by (9), ann = O(An

p); thus, from (13) and Lemma 2a:

if, when ρ>l, (1) holds, and if xz[(R9\ρ\I]> then xn = O(A"P)

(* = 0,1,2, .)

The question therefore arises as to whether this result remains true with a
general K in place of the integer p9 and without imposing any additional
restriction on λ besides (1). It will be shown in Corollary 2 that this is in
fact the case, thus showing that hypothesis (16a) can be completely removed
in Jurkat's theorem ([3], Satz 4), and that (16b) can be replaced by the weaker
hypothesis (1).

A further question concerns the conditions under which the sequence
{An*} itself can be a convergence-factor for (R, λ, /e)-summability, and in con-
sidering this (at least for those values of K for which a normal method is
known which is included in (JR, λ,/t) without restriction on λ) we find that
the condition (1) now appears as a necessary condition. It is convenient first
to supplement Lemma 2a with
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LEMMA 2b. // A is normal and x 6 [A, 7] then

PROOF. Denoting by A~1 = (α;£

1) the two-sided inverse of A, [σn] the
partial sums of S<ZA, and [tn] the A-transform of 2αy, it is easy to deduce
that

<rn = Σ&»A , where bni =

Thus {ern} converges whenever [tn] converges (i.e. x € [A, /]) if and only if
(bni) is conservative, and in particular it is necessary that

n

Σ l & W i | ^ M independently of n.
ί=0

Hence \bni\ ^M for every n and ί; the choice i=n leads at once to Lemma
2a (since <zήί =!/#„„) and the choice ί = n — 1 to Lemma 2b, since αή^n-i

THEOREM 1. If 0 < K ̂  1, or ί/1 K is a positive integer, and if

PROOF. Let xn = Λ^κ. Then taking A = (Λ*, λ, K) (K > 0) we find that

while taking A=(C, λ, /c) (Λ: a positive integer) we obtain

Xn&n.n-l ^ An-χ

annan-ιιn-ι Λn

Using these inequalities in Lemma 2b, together with (13a), (14) and (3), the
theorem follows.

While Theorem 1 gives a simple necessary condition in order that {A;*}
should be an (R, λ, K) convergence-factor, it is hardly to be expected that this
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condition will be sufficient, and in fact Jurkat [3], Satz 3, gives three fairly
complicated sufficient conditions for such a result to hold. Taking the most
tractable case for purposes of comparison, namely κ = ί, we find that his first
condition (which is that A,,/*) then implies the second, while the third
automatically holds, so that we have the following :

In order that {A^1} should be an (R, λ, 1) convergence-factor, it is
necessary that Aw-! = O(An) and sufficient that An_! ^ΛM.

However, the precise necessary and sufficient conditions in order that a sequence
{xn} should be an (R, λ, 1) convergence-factor are already given in Jurkat [3],
Satz 1 (the third condition given in this theorem is superfluous, since it can
be deduced from the other two, as pointed out by Maddox [10]), and if we put
xn = ̂  in this theorem, we obtain:

In order that {A^1} should be an (R, λ, 1) convergence-factor, it is
necessary and sufficient that

ΔA;1

< 00.,

We turn now to the main theorem of this section, the motivation for
which has been discussed earlier.

THEOREM 2. Let κ>0. If K > 1 assume

[(!)] Λ^

Then for each unbounded sequence [θn] of real or complex numbers, there
is a series Σaυ, with partial sums sn, which is summable (R, λ, K) to zero,
but such that

(17) sn^o(Δ*n/θn}, an^o(M<n/θn).

PROOF. The proof is essentially similar to that of Jurkat [3], but here
we use Lemma 1 and also alter the definition of an, in order to obtain
sharper estimates. The choice of the series Σaυ depends on an increasing
sequence of non-negative integers [nr] chosen inductively as follows : suppose
that n0, nl9 , nr-ί have been chosen and that aυ has been defined for
Q^v^nr-ί+p + I (where p is the integer such that p<κ^p-\-l) in such a
way that
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(18) Σ a. = Q;
V=Q

now choose nr so that

(19) nr > nr-! + p + 1

(20) \θnr\^r

(21) ±g for ω > λn r.

Such a choice of ^r is possible since [θn] is unbounded, by hypothesis, and
since the left hand side of (21) tends to zero as ω — > oo? by virtue of (18).
Now define

(22)

(23) aυ =

where γmy is given by (6), and it then follows from (7) that (18) holds with
r-f 1 in place of r. By making the initial choice

7*0 = 0> aυ = 0 for nQ ̂  v^ nQ

(18)— (23) are then valid for r = 1, 2, - - .

av=0 for n^+p + 1 <v<nr

v for m = nr ̂  v ̂  nr +p + 1 ,

It is clear that (17) holds with this choice of 2αy, for when v=nr we see
from (22), (23) and (6) that

snr = anr = Λ*nr/θnr (r = 1, 2, 3, - - - ) -

We now show that the series Σαy is summable (R, λ, K) to 0. Given ω>0,
let n be the integer-valued function of ω satisfying λn < ω ίg λn+1; then there
is an r such that nr^n< nr+1, and hence

ω~ -\)κ aυ , by (22)
V=0
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(24) =o(l) + S, by (21),

where

min(τι

(25) S = θ£ Mi, ω-*

Suppose first that m^nr^n^nr+p9 so that ω ̂  λm+p+1; if (when
^ 1) we assume (1), then (12) and (20) show at once that

(26) S = O(θ£) = 0(1) as ω -» oo (nr ̂  TZ ̂

Alternatively, if nr+p + l ^n < nr+l then, by (6) and (25),

ΞΞ θ-1 A*m αΓ" /9mm rf(ω), say.

Now, by (5), d(ω) = eω[\m, ,λm+p+ι], where eω(x) = (ω—x)κ for ω > x\ and
it follows as in Jurkat [3], p. 270, using the mean-value theorem for divided
differences, that \d(ω)\ ^\d(\m+p+l)\ for ω > λm+ί,+1, whence

m-t-p+l /^ \ \ κ

|*S| ̂  |^|A^ X^ ^+P + 1 -) |7my|
v=m \ *

which gives, by substituting t=\m+p+ί in (12),

(27) 5 = O(θ£) = o(ΐ) as ω -> oo (Hr+p<n< Hf+l) .

It now follows from (24), (26), (27) that ω~κ Aκ(ω) = o(l) as ω -» oo; thus
is summable (R,\κ) to zero, and the theorem is proved.

COROLLARY 2. Let κ>0; if κ>l assume that An_!= O(Λn).
order that Σanxn should converge whenever Σan is summable (R, λ, κ)9 it is
necessary that xn = O(Λή").

PROOF. This follows directly from the theorem, as in the proof of [3],
Satz 5.

3. Convergence-factors for (C, λ, K) summability. Although Lemmas 2a,
2b give limitations on the order of magnitude of convergence-factors for
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A-summability (A normal), some more precise representations are needed in
order to obtain necessary and sufficient conditions for these convergence-factors.
The following result is due essentially to Peyerimhoff [12] — see also Russell
[13], §2.

LEMMA 3. Let A be normal and limanv=l (y = 0, 1, 2, ), and let

x€[A,I]. Then

oo

(28) 3 η, {ηk} , with 2 1 9* 1 < °°> such that xυ = η + Σ % akv
κ=v

moreover,

oo

(29), «&,=

Ify in addition, A is regular (a <γ -matrix) and \jann Φ O(l), then η = 0.

We obtain the last clause of the lemma as follows : if A is a γ- matrix
then in particular \akυ\ ^K for every k and v and so, from (28), xυ=η + o(V);
but if 1/ann φ O(l) then, by Lemma 2a, there is a sub-sequence of integers
such that xVi=o(\.}\ hence 97=0.

We now apply this lemma to find the form of the convergence-factors for
(C, λ, p) summability, where p is an integer; there is a related result in Jurkat
[5], Satz 12 — there the theorem is a consequence of a number of general
results on convergence-factors, and it is interesting to see what can be proved
in a direct way with fewer restrictions on λ.

THEOREM 3. Let p be a non-negative integer and gn(x) be defined as
in (2); let

(30) A** 0(1)

and when p^2 assume that

Then x € [(C, λ, p\ I] if and only if

(31) xn
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(32) 3 {%} , 2 1 % |< oo, swcΛ ί/utf a:, = 23
k=v

PROOF. If A is the (C, λ, p) matrix, then anυ = gn(\} and the necessity
of (31) follows at once from Lemma 2a, without restriction on λ; however,
under the hypothesis (1) (imposed for p g: 2), (9) shows that (31) is equivalent
to

(31)' *n = CW).

In addition, A is normal and regular and l/ann Φ O(l) when (30) and (1) are
imposed; the necessity of (32) then follows from Lemma 3. [It should be
remarked that (30) is a relatively trivial requirement, for if Λn = O(l) then
(see [14], Corollary 3B) (C, λ, p)^I and the necessary and sufficient conditions
for convergence-factors in this case are well-known (see, for example, Hardy [7],
Theorem 7), namely: #€[/,/] if and only if 2 Δxn\<oo.]

It remains to prove the sufficiency of (31) [or (31)'] and (32), and we may
suppose, without loss of generality, that

tl = Σ 9k(λv}av = o(l) as k
v=0

Then, by (32),

n n / n °° \

ΣΓ a*** = ΣX Σ + Σ ) V
v=0 v=Q \k=v k=n+l/

(33)
n

= Ση^ + Sn, say.
A:=0

Since ίj=o(l) and 2|7/Λ |<oo, it follows that 2*7^2 converges, so that Σα
converges if and only if the sequence {Sn} converges. Now

oo n

sn= Σ Vk Σ 0*0w) ̂ y
k=n+l v=0

and by partial summation it can be shown (see Russell [14], Lemma 1) that

n

v=0

n

ι>=0
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For v ̂  n < k— p, gk[\v, - , λy+p+i] is a (^> + l)th. order divided difference of
a polynomial of degree p, and hence vanishes; consequently

(34) Sn = Sή + Sή

where

(35) S'n = Σ ^ Σ (-l)r Λ[λ»+ι, , λn+r+1] C»r,
k=n+l r=0

(36) £' - Σ, %(-l)p+1 Σ
fc=w+l v=fc-p

Now Λ[λn+1 , , λw+r+1] - Σ 1 o - ? A+ι,ι = j / (λ* - λ,) , so that
i=n+l Pw+1 ί J=n-

oo W + r + l oo

Σ 9*0*1X1+1, ,λn+r+ι] = Σ ~ — 7 Σ
i=n+l ^+1,1 k=n+ί

n+r+l

by (32), and since gk(\ι) — 0 for n + 1 ̂  ̂  < /. Expressing C^ in terms of
it now follows from (35) that

(37) Sn = Σ ("I)' ίr» Σ
ί=n+l

Now assuming (1) (for r ̂  2), (11) shows (with r— 1 in place of />) that

and also, by (31)',

further (Russell [14], Corollary 3A) ίj = o(l) implies

« = o(Arf)(' = 0,1, ••-,#).

Substitution of these estimates in (37) now gives, by (1),
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"(38)

Turning to S'ή, we note first that &ή vanishes identically for p = 0 and
> = 1. Now Sk(λt) = 0 for k<i^v+p + I, so that

Now (9) shows, making use of (1), that

for k — p<i<k.

Also
/•x s. \ -v x I j.p I
I Alj -j.τj^-1 /Vj ;) /Vy-^J /Vy-j-ip *Ί) \

1/8-1 l̂ l

for ι/±g z'^ ι/+/>+l, by (10) (assuming (1)) and since {ίj} is bounded, by
hypothesis. Substituting these estimates into (26), we now find that

(39) \S;\ ^K Σ |%| -o(l).

Hence, by (34), (38), (39), we have Sn = o(ϊ) and so, by (33), Σavxυ converges
to Σ^fc^? aτιd this proves the theorem.

To write Theorem 3 in an alternative form, an easy calculation shows
that the two-sided inverse matrix A"1 = (αjϋ1) of the γ-matrix A = (C, λ, />) is
given by

αi,1 - (-l^OV^-λ,) λ,+1 - - - \v+p//3vk (v^k^ v+p + ϊ) ,
(40)

a*£ = 0 otherwise,

where βvk is defined by (4). Thus A'1 consists of p + 2 diagonals containing
non-zero elements, with zero elements elsewhere. Now using (29), Theorem 3
takes the form :

THEOREM 3'. Under the hypotheses of Theorem 3, {xn} is a (C,λ,/>)
convergence- factor if and only if
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[(31)'] xn = O(A.ή")

•m^—^ . . * K 'T* . .

<oo.(41) Σ (λn+jH-l —λn)λn+ι λn

w=0

For λn = n, the inner sum in (41) reduces to ( — l)p+1(£-fl)! Δp+1;rn, and
we obtain as a corollary the well-known Bohr-Hardy-Fekete theorem:

COROLLARY 3'. Let p be a non-negative integer-, then Σanxn converges
whenever Σan is summable (C, p) if and only if xn = O(n~p) and Σnp+1 \ Δp+lxn \
<co.

This result has been generalized in several directions, notably by Bosanquet
and Andersen; for further references and a short discussion of convergence-
factors for Cesaro summability see Hardy [7], p. 146.

Finally, we remark that in view of 13 (a), (b), Theorems 3 and 3' also give
(for integral p) necessary and sufficient conditions in order that Σanxn should
converge whenever Σan is summable (R, λ, p). By restricting λ to satisfy (16a)
together with Λ^X + °° (which implies (16b)) Maddox [8] has been able to
obtain a considerably more general result for summability-factors [(R, λ, κ\
(R, λ, μ)] there the summability-factors are expressed in the form of an integral
instead of a series form such as (32). The precise relation between the two
forms would be quite difficult to determine, though Maddox [9] gives an
interesting construction in the case λn = n, i.e. for [(C, κ\ (C, μ)] summability-
factors. The problem is also mentioned by Jurkat and Peyerimhoff [6], p. 105,
in comparing (for 0 < K ̂  1) the integral form for (R, λ, K) convergence-factors
with the series form for (R*, λ, K) convergence-factors. Recently I have been
able to show (see [15]) that the conditions on λ imposed by Maddox [8],
Theorem A, in his result on [(R, λ, K), (R, λ, μ)] summability-factors, can be
removed entirely in the case 0 ίg μ =g K ̂  1.
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