Tôhoku Math. Journ. Vol. 18, No. 4, 1966

IMMERSIONS OF LENS SPACES*

FUICHI UCHIDA

(Received June 23, 1966)

Introduction. In this paper we consider the immersions of lens spaces in Euclidean spaces, where the immersion means C^{∞} -differentiable one. M. W. Hirsch [1] proved the following beautiful result.

THEOREM. Let k-dimensional differentiable manifold M^k be immersible in Euclidean (m+r)-space R^{m+r} with a transversal r-field, then M^k is immersible in R^m , if k < m.

The purpose of this note is to prove the following theorems by making use of the above result.

THEOREM A. For any odd integer $p \ge 3$ and any positive integer n, the (2n+1)-dimensional lens space $L^n(p)$ is immersible in Euclidean $2\left[\frac{3n+4}{2}\right]$ -space, where [x] means the integer part of x.

THEOREM B. For any odd integer $p \ge 3$ and any integer $n \ge 5$, $L^n(p)$ is immersible in Euclidean (4n-4)-space.

When $5 \leq n \leq 6$, Theorem B is better than Theorem A.

1. Lens spaces. Let S^{2n+1} be the unit (2n+1)-sphere. A point of S^{2n+1} is represented by a sequence (z_0, z_1, \dots, z_n) , where z_i $(i = 0, 1, \dots, n)$ are complex numbers with $\sum_{i=0}^{n} |z_i|^2 = 1$. Let p be an integer greater than one and λ be the rotation of S^{2n+1} defined by

$$\lambda(z_0, z_1, \cdots, z_n) = (z_0 e^{2\pi i/p}, z_1 e^{2\pi i/p}, \cdots, z_n e^{2\pi i/p}).$$

Let Λ denote the topological transformation group of S^{2n+1} of order p generated

^{*} This work was supported by the Sakkokai Foundation.

F. UCHIDA

by λ . Then the lens space mod p is defined to be the orbit spaces:

$$L^n(p) = S^{2n+1}/\Lambda$$

It is the compact connected orientable differentiable (2n+1)-manifold without boundary, and $L^{n}(p)$ is canonically embedded in $L^{n+1}(p)$.

As a CW-complex, $L^{n}(p)$ has one cell e^{i} in each dimension $(0 \le i \le 2n+1)$, and the integral cohomology groups of $L^{n}(p)$ are given by (cf. [7], p. 67)

$$H^{i}(L^{n}(p), Z) = \begin{cases} Z_{p} & i = 2, 4, \cdots, 2n, \\ Z & i = 0, 2n+1, \\ 0 & \text{for other } i. \end{cases}$$

By making use of universal coefficient theorem, we have the cohomology groups of $L^{n}(p)$ over Z_{k} which are given by

(1.1)
$$H^{i}(L^{n}(p), Z_{k}) = \begin{cases} Z_{k} & i = 0, 2n+1, \\ Z_{(p,k)} & i = 1, 2, 3, \cdots, 2n, \end{cases}$$

where (p, k) is the greatest common measure of p and k.

2. Stiefel manifolds. Let $V_{n,m}$ be the Stiefel manifold of *m*-frames in Euclidean *n*-space. Then, by normal cell decomposition ([7], p. 54), the 2*k*-skeleton of $V_{n,n-k}$ is the stunted projective space P^{2k}/P^{k-1} if n > 2k, and the *n*-skeleton of $V_{n,n-k}$ is the stunted projective space P^{n-1}/P^{k-1} if $n \le 2k$.

For any positive integer n, the integral reduced homology groups of the projective space P^n are given by

$$\widetilde{H}_r(P^n,Z) = \left\{ egin{array}{ll} 0 & ext{if } r ext{ is even and } 0 \leq r \leq n\,, \ Z_2 & ext{if } r ext{ is odd and } 0 < r < n\,, \ Z & ext{if } r ext{ is odd and } r = n\,. \end{array}
ight.$$

So the integral reduced homology groups of the stunted projective space P^m/P^{2k} are given by

$$\widetilde{H}_r(P^m/P^{2k}, Z) = \begin{cases} Z_2 & ext{if } r ext{ is odd and } 2k < r < m \ , \\ Z & ext{if } r ext{ is odd and } r = m \ , \\ 0 & ext{ for other } r. \end{cases}$$

394

If $k \ge 1$, then P^m/P^{2k} is simply connected, and following the generalized Hurewicz theorem (cf. [2], p. 305), the homotopy group $\pi_r(P^m/P^{2k})$ is a finite group and has only 2-primary component if $r \le 2 \left\lceil \frac{m}{2} \right\rceil$.

For example, if $4n \ge 4k > 2n+3$, the homotopy group $\pi_r(V_{2n+3,2k})$ is a finite group and has only 2-primary component for $r \le 4(n-k)+6$.

3. Local coefficient. Let ξ be an *n*-dimensional vector bundle over an arcwise connected space X, and $\xi^{(m)}$ be the associated $V_{n,m}$ -bundle. And let $\xi_r^{(m)}$ be the bundle of coefficients ([6], p. 151) associated with $\pi_r(V_{n,m})$. Then we have the following result (cf. Serre, Homologie singulière des espaces fibrés, p. 445, Prop. 3).

(3.1) If ξ is orientable, then $\xi_r^{(m)}$ is trivial, for any *m* and *r*.

4. Immersions of lens spaces.

THEOREM A. For any odd integer $p \ge 3$ and any positive integer n, the (2n+1)-dimensional lens space $L^n(p)$ is immersible in Euclidean $2\left[\frac{3n+4}{2}\right]$ -space.

PROOF. Let $f: L^{n+1}(p) \to R^{4n+6}$ be an immersion. Then the normal bundle ν of this immersion is an orientable (2n+3)-dimensional vector bundle. We consider the existence of a cross-section of the bundle $\nu^{(2k)}$ with fibre $V_{2n+3,2k}$ associated with ν . The obstructions are contained in

$$H^{r+1}(L^{n+1}(p), \pi_r(V_{2n+3, 2k}))$$
 ,

where the local coefficients are all trivial by (3.1). And if $n \ge k$ and 4k > 2n+3, then $\pi_r(V_{2n+3,2k})$ is a finite group and has only 2-primary component for $r \le 4(n-k)+6$. See the end of the section 2.

Let 2k=n+3 when n is odd and 2k=n+2 when n is even, then $\pi_r(V_{2n+3,2k})$ is a finite group and has only 2-primary component for $r \leq 2n$. And hence

$$H^{r+1}(L^{n+1}(p), \pi_r(V_{2n+3,2k})) = 0$$

for $r \leq 2n$ by (1.1). Hence $\nu^{(2k)}$ has a cross-section over $L^n(p)$, the (2n+1)-skeleton of $L^{n+1}(p)$. Thus $L^n(p)$ is immersible in Euclidean (4n+6-2k)-space. Therefore, $L^n(p)$ is immersible in Euclidean $2\left[\frac{3n+4}{2}\right]$ -space if n > 1. Clearly,

F. UCHIDA

 $L^{1}(p)$ is immersible in \mathbb{R}^{6} . This completes the proof.

THEOREM B. $L^{n}(p)$ is immersible in \mathbb{R}^{4n-4} , if $n \geq 5$.

PROOF. By Theorem A, $L^n(p)$ is immersible in R^{4n-2} if $n \ge 5$. Then the normal bundle ν of this immersion is an orientable (2n-3)-dimensional vector bundle. We consider the existence of a cross-section of the bundle $\nu^{(2)}$ with fibre $V_{2n-3,2}$ associated with ν . The obstructions are contained in

$$H^{r+1}(L^n(p), \pi_r(V_{2n-3,2})),$$

where the local coefficients are all trivial by (3.1). And if $n \ge 5$, then

by Paechter [4]. Thus $H^{r+1}(L^n(p), \pi_r(V_{2n-3,2})) = 0$ for all r by (1.1). Hence $\nu^{(2)}$ has a cross-section over $L^n(p)$, and hence $L^n(p)$, is immersible in R^{4n-2} with transversal 2-field. Therefore $L^n(p)$ is immersible in R^{4n-4} .

REMARK. If k is odd and $k \ge 15$, then $\pi_{k+13}(V_{k+2,2}) = 0$ by making use of Paechter's method (cf. [4], p. 260). When $n \ge 13$, $L^n(p)$ is immersible in R^{4n-10} by Theorem A. Then, if $n \ge 14$, $L^n(p)$ is immersible in R^{4n-12} , by similar argument. And this result is better than Theorem A if n=14.

REMARK. Recently, T. Kambe [3] has proved the following non-immersibility theorem of lens spaces: $L^{n}(p)$ cannot be immersed in Euclidean 2(n+L(n, p))-space, where L(n, p) is the integer defined by

$$L(n,p) = \max\left\{i \leq \left\lfloor \frac{n}{2} \right\rfloor \middle| \binom{n+i}{i} \equiv 0 \mod p^{1+\left\lfloor \frac{n-2i}{p-1} \right\rfloor} \right\}.$$

References

- [1] M. W. HIRSCH, Immersions of manifolds, Trans. Amer. Math. Soc., 93(1959), 242– 276.
- [2] S. T. HU, Homotopy theory, New York, Academic Press (1959).
- [3] T. KAMBE, The structure of K_A -rings of the lens spaces and their applications, Journ. Math. Soc. Japan, 18(1966), 135-146.
- [4] G. F. PAECHTER, The groups $\pi_r(V_{n,m})$ (I), Quart. Journ. Math. Oxford, 7(1956), 249-268.

396

- [5] B. J. SANDERSON, Immersions and embeddings of projective spaces, Proc. London Math. Soc., 14(1964), 137-153.
 [6] N. E. STEENROD, The topology of fibre bundles, Princeton Univ. (1951).
 [7] ______, Cohomology operations, Princeton Univ. (1962).
 [8] F. UCHIDA, Immersions and embeddings of tangent bundles, Tôhoku Math. Journ., 17 (1952) 161 150.

- (1965), 161-170.

TÔHOKU UNIVERSITY.