PARTIALLY CONFORMAL TRANSFORMATIONS WITH RESPECT TO ($m-1$)-DIMENSIONAL DISTRIBUTIONS OF m-DIMENSIONAL RIEMANNIAN MANIFOLDS, II

Shûkichi Tanno*

(Received May 21, 1966)

This is part II of my preceding paper [*] and contains chapter III. As an application of Lemma 15.10 , we consider a regular, compact K-contact Riemannian manifold $M(\operatorname{dim} M>3)$ and its fibering $M \rightarrow M / \zeta$ ([21]), where ζ is an associated vector field with a given contact form. The distribution D is, in this case, an orthogonal distribution to ζ with respect to an associated Riemannian metric. Let u be an infinitesimal $[m-1]^{s}$-conformal transformation on M, then it induces an infinitesimal conformal transformation u on M / ζ by the Lemma, and it is known that any infinitesimal conformal transformation on a compact almost Kaehlerian manifold is a Killing vector field ([25], [26]). Thus we see that u is an infinitesimal $[m-1]^{s}$-isometry.

In §17, generalizing Lemma 15.10, we show the invariance of the coefficient α for g of $\varphi^{*} g$ on each trajectory of ζ. As a continuation of §15, we study the structure of $\mathfrak{P}^{s c}$ in $\S 18$. In $\S \S 20 \sim 23$, we discuss the properties of ($m-1$)conformal transformations or infinitesimal ($m-1$)-conformal transformations in analogous way to the usual conformal transformations in Riemannian geometry.

The author desires to express his appreciations to Professor S. Sasaki and also to The Sakkokai Foundation.

Chapter III

17. A property of α
18. The structure of Lie algebra $\mathfrak{P}^{s c}$
19. Volume preserving $[m-1]^{s}$-conformal transformations
20. A characterization of infinitesimal $(m-1)^{s}$-conformal transformations on compact Riemannian manifolds
21. The case of negative Ricci curvature
22. The relations of scalar curvatures
23. The case of constant scalar curvature

[^0]24. Infinitesimal $(m-1)^{s}$-conformal transformations which leave the Ricci curvature invariant
25. Appendices

Chapter III

17. A property of α. Every $u \in \mathfrak{P}^{s}$ generates a local 1-parameter group $\boldsymbol{\varphi}_{t}$ of local $(m-1)^{s}$-conformal transformations. In $\S 15$ by using Lemma 15.10 we have seen that the coefficient α_{t} for g of ${\varphi_{t}}^{*} g$ is constant on each trajectory of ζ, if ζ_{U} is a Killing vector field. Generally we prove

Lemma 17.1. If ζ_{U} and ξ_{V} are Killing vector fields on each U and V

Proof. Taking the Lie derivatives with respect to ζ of the equation $\varphi^{*} h=\alpha g+\beta w \otimes w$, we have

$$
L(\zeta) \varphi^{*} h=(\zeta \alpha) g+(\zeta \beta) w \otimes w .
$$

As $L(\zeta) \varphi^{*} h=\phi^{*}(L(\varphi \zeta) h)$ and $\varphi \zeta=\mu \xi$, we have

$$
\gamma \varphi^{*}(d \mu) \otimes w+\gamma w \otimes \varphi^{*}(d \mu)=(\zeta \alpha) g+(\zeta \beta) w \otimes w .
$$

Therefore $\zeta \alpha=0$ holds.
By this Lemma, we get
Proposition 17.2. If ${ }^{\varepsilon} \zeta$ is complete, regular and ζ_{0} is a Killing vector field for each U, then every $\varphi \in \Pi^{s}$ on M induces a conformal transformation on M / ζ.
18. The structure of Lie algebra $\mathfrak{B}^{s c}$. In $\S 15$ we proved that the subgroup $\Pi^{s c}$ is a Lie transformation group on a manifold on which ${ }^{\varepsilon} \zeta$ is complete, regular and ζ_{J} is a Killing vector field for each U. In the proof, we made use of the fact that any infinitesimal $[m-1]^{s}$-conformal transformation on M induces an infinitesimal conformal transformation on M / ζ. In this section we consider the converse. Let a vector field X^{*} on M be the lift of a vector field X on M / ζ with respect to w, i.e. it is characterized by $\pi X^{*}=X$ and $w\left(X^{*}\right)=0$. For any vector fields X and Y on M / ζ, the relations

$$
\begin{equation*}
\left[X^{*}, \zeta\right]=0 \tag{18.1}
\end{equation*}
$$

$$
\begin{equation*}
\left[X^{*}, Y^{*}\right]=[X, Y]^{*}-d w\left(X^{*}, Y^{*}\right) \cdot \zeta \tag{18.2}
\end{equation*}
$$

hold good. As in $\S 15 h$ denotes a Riemannian metric on M / ζ which satisfies $g=\pi^{*} h+w \otimes w$.

Lemma 18.1. Suppose that ${ }^{\text {E }} \xi$ is complete, regular and ζ_{v} is a Killing vector field on each U. If X is an infinitesimal conformal transformation such that $L(X) h=A h$, A denoting a scalar function on M / ζ, then X^{*} is an infinitesimal ($m-1$)-conformal transformation such that

$$
\begin{equation*}
L\left(X^{*}\right) g=a g+w \otimes i\left(X^{*}\right) d w+i\left(X^{*}\right) d w \otimes w+(-a) w \otimes w, \tag{18.3}
\end{equation*}
$$

where $a=A \cdot \pi$ is a scalar function on M.
Proof. Let Y^{*}, Z^{*} be lifts of vector fields Y, Z on M / ζ, then we have

$$
\begin{aligned}
\left(L\left(X^{*}\right) g\right)\left(Y^{*}, Z^{*}\right) & =X^{*} \cdot g\left(Y^{*}, Z^{*}\right)-g\left(\left[X^{*}, Y^{*}\right], Z^{*}\right)-g\left(Y^{*},\left[X^{*}, Z^{*}\right]\right) \\
& =(L(X) h)(Y, Z) \cdot \pi \\
& =((A \cdot \pi) g)\left(Y^{*}, Z^{*}\right)
\end{aligned}
$$

Similarly

$$
\begin{aligned}
&\left(L\left(X^{*}\right) g\right)\left(Y^{*}, \zeta\right)=-g\left(-d w\left(X^{*}, Y^{*}\right) \zeta, \zeta\right) \\
&=\left(i\left(X^{*}\right) d w\right)\left(Y^{*}\right), \\
&\left(L\left(X^{*}\right) g\right)(\zeta, \zeta)=0 .
\end{aligned}
$$

These three equations imply (18.3), since $i(\zeta) d w=0$.
Lemma 18.2. In Lemma 18.1, X^{*} is special if and only if $L\left(X^{*}\right) w=0$.

Proof. By (18.3) X^{*} is special if and only if $i\left(X^{*}\right) d w$ is proportional to w, and this is equivalent to $i\left(X^{*}\right) d w=0$ by virtue of $i(\zeta) d w=0$.

We can prove that if M admits a vector field u such that $w_{0}(u)$ is constant in each U and $L(u) w=c w$ for a scalar function c, then $c=0$. So we consider the case where $w_{v}(u)$ is not constant, let ${ }^{\varepsilon} f=\left\{f_{0}\right\}$ be a family of scalar functions f_{U} such that ${ }^{\varepsilon} f^{\iota} \xi$ is a vector field. Then

$$
\begin{equation*}
L(f \zeta) g=w \otimes d f+d f \otimes w . \tag{18.4}
\end{equation*}
$$

Thus if X is an infinitesimal conformal transformation on M / ζ, then $u=X^{*}+f \zeta$ is an infinitesimal ($m-1$)-conformal transformation :

$$
\begin{align*}
L(u) g= & a g+w \otimes\left\{i\left(X^{*}\right) d w+d f-\zeta f \cdot w\right\} \tag{18.5}\\
& +\left\{i\left(X^{*}\right) d w+d f-\zeta f \cdot w\right\} \otimes w+(2 \zeta f-a) w \otimes w .
\end{align*}
$$

And we have

$$
\begin{equation*}
L(u) w=i\left(X^{*}\right) d w+d f . \tag{18.6}
\end{equation*}
$$

Thus, in order that a vector field $X^{*}+f \zeta$ belongs to $\mathfrak{S}^{s c}$, it is necessary and sufficient that f is a solution of the equation

$$
\begin{equation*}
i\left(X^{*}\right) d w+d f-c w=0 \tag{18.7}
\end{equation*}
$$

for some constant c. Suppose that D is completely integrable and $M \rightarrow M / \zeta$ has a global section S which is an integral submanifold of D. As in this case the equation (18.7) is equivalent to $\zeta f=c$ and $Y^{*} f=0$ for any vector field Y on M / ζ, we can solve ${ }^{\varepsilon} f$ by giving the initial condition (constants) on S. Notice here that the complete integrability of D is equivalent to the fact that ζ is a parallel field.

From Lemmas 18.1 and 18.2 the next Proposition follows.
PROPOSITION 18.3. If ${ }^{\varepsilon} \zeta$ is parallel, regular and complete, then for any infinitesimal conformal transformation X on $M / \zeta, X^{*}$ is an infinitesimal $[m-1]^{s}$-conformal transformation such that $L\left(X^{*}\right) w=0$.

Let $\mathbb{5}$ be a Lie algebra of all infinitesimal conformal transformations on M / ζ and \mathbb{S}^{*} be one composed of lifts of all ellements of \mathbb{C}, and we get

THEOREM 18.4. Assume that ${ }^{\text {E }} \zeta$ is parallel, regular and complete, then we have the direct decomposition

$$
\mathfrak{P}^{s c} \approx \mathbb{C}^{*}+\Omega,
$$

where \AA is one of the followings:
(a) If ${ }^{\varepsilon} \zeta$ does not define a vector field on $M, \Omega=\{0\}$, or $\left\{r^{\varepsilon} f^{\varepsilon} \zeta ; r \in R\right\}$.
(b) If ${ }^{\text {® }} \zeta$ defines a vector field ζ on $M, \mathscr{\Omega}=\{r \zeta ; r \in R\}$ or $\{r \zeta+s f \zeta$; $r, s \in R\}$.

In (a) or (b), ${ }^{\varepsilon} f$ is a family of certain functions f_{V} on U, and f is a certain function on M.

Proof. This decomposition is exactly given by $u=(\pi u)^{*}+w(u) \cdot \zeta$ for $u \in \mathfrak{P}^{s c}$, where we have $(\pi u)^{*} \in \mathfrak{C}^{*}$ by Proposition 18.3 and $w(u) \cdot \zeta$ belongs to some \AA.

REmARK. Under the same conditions as in Theorem 18.4, we have the decomposition $\mathfrak{P}^{s} \approx \complement^{*}+\Omega$, where Ω is spanned by vectors ${ }^{\varepsilon} f^{\varepsilon} \zeta$ for any family $\left\{f_{V}\right\}$ of functions on U which satisfy $Y^{*} f_{V}=0$ for any vector field Y on M / ζ. \mathscr{C} is generally infinite dimensional.
19. Volume preserving $[m-1]^{s}$-conformal transformations. Assume that a compact M has a point x such that the integral curve i.e. leaf $l(x)$ of ζ passing through x is closed, and let φ be an $[m-1]^{s}$-conformal transformation. Then we have $\varphi \zeta=\mu \zeta, \mu^{2} \cdot \varphi=\alpha+\beta$. We assume that $\alpha+\beta$ is constant and smaller than 1 , then the length of $\phi^{k} l(x)$ approaches to 0 as $k \rightarrow \infty$. As M is compact this can not happen, so $\alpha+\beta$ must be 1 . By virtue of (10.1) and this, we can conclude the following

THEOREM 19.1. Let φ be an $[m-1]^{s}$-conformal transformation which preserves the volume element of a compact M. If $\alpha+\beta$ is constant and M has a closed leaf of ${ }^{\varepsilon} \zeta$, then φ is an isometry.

Concerning an infinitesimal transformation we have
THEOREM 19.2. Let u be an infinitesimal [$m-1]^{s}$-conformal transformation which preserves the volume element of a compact M with properties (i) and (ii). If c is constant, then u is a Killing vector field.

Proof. We have $2 c=a+b=0$ (Theorem 16.2) and as u is volume preserving, $a m+b=0$ holds, and so u is a Killing vector field.

Lemma 19.3. Suppose that ζ_{U} is a Killing vector field for each U and M has a closed leaf of ${ }^{\varepsilon} \zeta$. If u satisfies $L(u) \zeta=-c \zeta$ for some constant c, then $c=0$.

THEOREM 19.4. Suppose that ζ_{U} is a Killing vector field for each U and M has a closed leaf of ${ }^{\varepsilon} \zeta$. If an infinitesimal $[m-1]^{s}$-conformal transformation preserves the volume element and c is constant, then u is a Killing vector field.

Proofs of Lemma 19.3 and Theorem 19.4. Let l be a closed leaf of ζ. We take a tublar neighborhood W of l as in $\S 15$. Then, under the assumption that ζ_{v} is a Killing vector field, each leaf of ζ contained in W has the same length as l. On the other hand, as c is constant, the function $\mu_{t}^{2}=\left(\alpha_{t}+\beta_{t}\right) \cdot \varphi_{t}^{-1}$ in $\varphi_{t} \zeta=\mu_{t} \zeta$ is also constant for each small t. And so μ_{t}^{2} must be 1 , namely $c=0$ holds, combining this with $a m+b=0$ we have $a=b=0$.
20. A characterization of infinitesimal $(m-1)^{s}$-conformal transformations on compact Riemannian manifolds. Analogously to the case of infinitesimal conformal transformations (see p. 128, [7]), we construct an integral formula and we get necessary and sufficient conditions for an infinitesimal transformation to define an infinitesimal $(m-1)^{s}$-conformal transformation on a compact Riemannian manifold. By the same letter u we also denote the covariant vector field $u_{i}=g_{i j} u^{j}$. Now we define a (0,2)-tensor field $S=S(u)$ as follows:

$$
\begin{equation*}
S_{i j}=u_{i, j}+u_{j, i}-m^{-1}\left(2 u^{r}, r-b\right) g_{i j}-b w_{i} w_{j}, \tag{20.1}
\end{equation*}
$$

where we have put

$$
b=b(u)=2(m-1)^{-1}\left(m u_{i, j} w^{i} w^{j}-u^{r}, r\right) .
$$

First we have

$$
\begin{equation*}
S_{i j} g^{i j}=0, \quad S_{i j} w^{i} w^{j}=0 . \tag{20.2}
\end{equation*}
$$

Differentiating (20.1) covariantly, we get

$$
\begin{equation*}
S_{i j}{ }^{i}=u_{j, i}{ }^{i}+R_{i j} u^{i}+\left(1-2 m^{-1}\right) u^{i}{ }_{, i j}+m^{-1} b_{j}-\left(b w w^{i} w_{j}\right)_{, i}, \tag{20.3}
\end{equation*}
$$

where we used the Ricci identity : $u_{, j i}^{i}-u^{i}{ }_{, i j}=R_{i j} u^{i}$. Let Q be the operator $Q: u_{i} \rightarrow 2 R_{i j} u^{j}$, then we have

$$
\begin{equation*}
S_{i j^{i}}=\left[Q u-\Delta u-\left(1-2 m^{-1}\right) d \delta u+m^{-1} d b\right]_{j}-\left(b w w^{i} w_{j}\right)_{, i}, \tag{20.4}
\end{equation*}
$$

where $\Delta=d \delta+\delta d$. As $S_{i j}$ is a symmetric tensor, we obtain

$$
\begin{equation*}
\left(S_{i j} u^{j}\right)^{i}=S_{i j}{ }^{i} u^{j}+2^{-1} S_{i j}\left(u^{i, j}+u^{j, i}\right) . \tag{20.5}
\end{equation*}
$$

By (20.2), the second term of the right hand side is equal to the inner product of S, i.e. $2^{-1}\left(S_{i j} S^{i j}\right)$. Now we get

Lemma 20.1. Let M be a compact orientable Riemannian manifold, then we have the following integral formula

$$
\begin{aligned}
<S(u), S(u)>=<u, \Delta u-Q u & +\left(1-2 m^{-1}\right) d \delta u-m^{-1} d b \\
& +\zeta b \cdot w-b \delta w \cdot w+b \nabla_{\xi} w>
\end{aligned}
$$

for any 1-form u on M.
Proposition 20.2. In order that a vector field u defines an infinitesimal ($m-1)^{s}$-conformal transformation on a compact M, it is necessary and sufficient that u is a solution of the equation

$$
\begin{equation*}
\Delta u-Q u+\left(1-2 m^{-1}\right) d \delta u-m^{-1} d b+\zeta b \cdot w-b \delta w \cdot w+b \nabla_{\xi} w=0 \tag{20.6}
\end{equation*}
$$

where $b=2(m-1)^{-1}\left(m\left(\nabla_{\xi} u\right)(\xi)+\delta u\right)$.
Proof. We may assume that M is oriented, because otherwise we can consider the double covering manifold. If u defines an infinitesimal $(m-1)^{s}$ conformal transformation on M, we have (20.6) by (20.4). Conversely if u satisfies (20.6), by Lemma $20.1 S=0$ holds. Equivalently u is an infinitesimal ($m-1)^{s}$-conformal transformation.

Proposition 20.3. Let M be a compact Riemannian manifold with properties (i) and (ii), and suppose that u satisfies $L(u) w_{U}=c w_{0}$ for some constant c, then u is an infinitesimal $[m-1]^{s}$-conformal transformation if and only if

$$
\begin{equation*}
\Delta u-Q u+(m-1)^{-1}\{(m-3) d \delta u+2 i(\zeta) d \delta u \cdot w\}=0 \tag{20.7}
\end{equation*}
$$

Proof. As M has properties (i) and. (ii), c must be zero by Theorem 16.2, equivalently we see that $u_{i, j}\left(w^{i} w^{j}=0\right.$ holds. Then we have $b=2(m-1)^{-1} \delta u$, thus (20.7) is equivalent to (20.6).

Theorem 20.4. Let M be a compact 3-dimensional Riemannian manifold such that ζ_{v} is a Killing vector field on each U. Then $\Pi^{s c}$ is a Lie group.

Proof. Let $u \in \mathfrak{P}^{s c}$, then we have $L(u) w=0$ and $L(u) \zeta=0$. On the other hand, as ζ_{U} is a Killing vector field, we have $i(\zeta) d \delta u=L(\zeta) \delta u=\delta L(\zeta) u=0$. Therefore by Proposition 20.3, any $u \in \mathfrak{P}^{s c}$ satisfies $\Delta u=Q u$. This system of differential equations is of elliptic type, and $\mathfrak{P}^{s c}$ is finite dimensional [24].
21. The case of negative Ricci curvature. Assume that u is an infinitesimal $[m-1]^{s}$-conformal transformation which satisfies $L(u) w=0$ on a compact and orientable M. Then as the relations $u_{i, j} w w^{i} w^{j}=c=0$ hold, by (20.1) we have

$$
\begin{equation*}
u_{i, j}+u_{j, i}=2(m-1)^{-1} u^{r}{ }_{, r} g_{i j}-2(m-1)^{-1} u^{r}, r w_{i} w_{j} \tag{21.1}
\end{equation*}
$$

Contracting (21.1) with $u^{i, j}$ we get

$$
\begin{equation*}
u^{i, j} u_{j, i}=-u_{i, j} u^{i, j}+2(m-1)^{-1}\left(u^{r}, r\right)^{2} . \tag{21.2}
\end{equation*}
$$

On the other hand, it is known that

$$
<R_{1}(u, u)+u^{i, j} u_{j, i}-\left(u^{r}, r\right)^{2}, 1>=0
$$

in any compact orientable Riemannian manifold. Substituting (21.2) into the last equation, we get

$$
<R_{1}(u, u), 1>=2<\nabla u, \nabla u>+(m-1)^{-1}(m-3)<\delta u, \delta u>,
$$

from which we can conclude the following

THEOREM 21.1. If M is compact and the Ricci curvature is negative, then any infinitesimal $[m-1]^{s}$-conformal transformation u such that $L(u)$ w $=0$ is a parallel field. If the Ricci curvature is negative definite, then there is no non-trivial infinitesimal $[m-1]^{s}$-conformal transformation satisfying $L(u) w=0$.
22. The relations of scalar curvatures. The Lie derivatives of the scalar curvature by an infinitesimal ($m-1$)-conformal transformation is written as (14.6) and it satisfies (14.7) which is a simple relation. However the relation of ${ }^{\varphi} R$ and R for an ($m-1$)-conformal transformation φ is not so simple, so we impose some assumptions on manifolds M and transformations φ. One of utilities of the relations of the scalar curvatures ${ }^{\varphi} R$ and R is to obtain the analogous theorems to Theorems 16.10 and 16.12 . Accordingly we take up two cases (a) and (b) in this section.
(a) ${ }^{\text {® }}{ }^{\zeta},{ }^{\delta} \eta$ are parallel and φ is an $(m-1)^{s}$-conformal transformation of M to N. Under these assumptions, we have $\zeta \alpha=0$ by Lemma 17.1. Then from (4.6) we have
(22.1) $\quad W_{j k}^{i}=\frac{1}{2 \alpha}\left(\alpha_{j} \delta_{k}^{i}+\alpha_{k} \delta_{j}^{i}-\alpha^{i} g_{j k}\right)-\frac{1}{2 \alpha} \beta^{i} w_{j} w_{k}$

$$
+\frac{w^{i}}{2 \alpha(\alpha+\beta)}\left\{\beta(\zeta \beta) w_{j} w_{k}-\beta\left(\alpha_{j} w_{k}+\alpha_{k} w_{j}\right)+\alpha\left(\beta_{j} w_{k}+\beta_{k} w_{j}\right)\right\}
$$

from which one can deduce

$$
\begin{equation*}
W_{j k}^{i} g^{j k}=\frac{2-m}{2 \alpha} \alpha^{i}-\frac{1}{2 \alpha} \beta^{i}+\frac{2 \alpha+\beta}{2 \alpha(\alpha+\beta)} \zeta \beta \cdot w^{i} \tag{22.3}
\end{equation*}
$$

$$
\begin{equation*}
W_{j k}^{i} w^{j} w w^{k}=-\frac{1}{2 \alpha}\left(\alpha^{i}+\beta^{i}\right)+\frac{2 \alpha+\beta}{2 \alpha(\alpha+\beta)} \zeta \beta \cdot w^{i} . \tag{22.4}
\end{equation*}
$$

Substituting these into (6.4), after calculation we get
(22.5) ${ }^{\varphi} R={ }^{\prime} R \cdot \phi=\frac{R}{\alpha}-\frac{1}{4 \alpha^{3}(\alpha+\beta)^{2}}\left\{(m-1)(m-6) \alpha^{2}+2\left(m^{2}-8 m+11\right) \alpha \beta\right.$

$$
\begin{aligned}
& \left.+(m-2)(m-7) \beta^{2}\right\}(d \alpha, d \alpha)-\frac{1}{2 \alpha^{2}(\alpha+\beta)^{2}}\{(m-5) \alpha+(m-3) \beta\}(d \alpha, d \beta) \\
& +\frac{1}{2 \alpha(\alpha+\beta)^{2}}(d \beta, d \beta)+\frac{1}{\alpha^{2}(\alpha+\beta)}\{(m-1) \alpha+(m-2) \beta\} \delta d \alpha \\
& +\frac{1}{\alpha(\alpha+\beta)} \delta d \beta-\frac{1}{2 \alpha(\alpha+\beta)^{2}}(\zeta \beta)^{2}+\frac{1}{\alpha(\alpha+\beta)} \zeta \zeta \beta .
\end{aligned}
$$

Now, as φ is an $(m-1)^{s}$-conformal transformation, we have $\phi^{*} \eta=\gamma w$ where $\gamma^{2}=\alpha+\beta$. Taking the exterior derivatives, we have $d \gamma \wedge w=0$, since w and η are parallel. So $d \gamma$ is proportional to w and we get $d \alpha+d \beta=(\zeta \beta) w$. Then the next two relations are immediate consequences.

$$
\begin{equation*}
(d \alpha, d \beta)=-(d \alpha, d \alpha) \tag{22.6}
\end{equation*}
$$

$$
\begin{equation*}
(d \beta, d \beta)=(d \alpha, d \alpha)+(\zeta \beta)^{2} \tag{22.7}
\end{equation*}
$$

Also from $d \alpha+d \beta=(\zeta \beta) w$, it follows that

$$
\begin{equation*}
\delta d \alpha+\delta d \beta=-\zeta \zeta \beta \tag{22.8}
\end{equation*}
$$

Thus, by substituting (22.6), (22.7) and (22.8) into (22.5), we can eliminate β from (22.5), and we have

PROPOSITION 22.1. If ${ }^{\varepsilon} \zeta$ and ${ }^{\delta} \eta$ are parallel and φ is an $(m-1)^{s}$ conformal transformation, the scalar curvatures satisfy

$$
\begin{equation*}
\alpha^{\varphi} R-R=-\frac{(m-2)(m-7)}{4 \alpha^{2}}(d \alpha, d \alpha)+\frac{m-2}{\alpha} \delta d \alpha \tag{22.9}
\end{equation*}
$$

(b) $\zeta_{J,} \xi^{\prime} v$ are Killing vector fields and φ is an $(m-1)^{s}$-conformal transformation having constant γ^{2}. In this case, $d \alpha+d \beta=0$ holds. As $\zeta \alpha=0$, we have also $\zeta \beta=0$. Then (4.6) is

$$
\begin{align*}
W_{j k}^{i}= & \frac{1}{2 \alpha}\left(\alpha_{j} \delta_{k}^{i}+\alpha_{k} \delta_{j}^{i}-\alpha^{i} g_{j k}+\alpha^{i} w_{j} w_{k}\right) \tag{22.10}\\
& +\frac{\beta}{\alpha}\left(w_{k} w^{i},{ }_{, j}+w_{j} w_{, k}^{i}\right)-\frac{w^{i}}{2 \alpha}\left(\alpha_{j} w_{k}+\alpha_{k} w_{j}\right) .
\end{align*}
$$

And by contractions

$$
\begin{gather*}
W_{j i}^{i}=(m-1)(2 \alpha)^{-1} \alpha_{j}, \tag{22.11}\\
W_{j k}^{i} g^{j k}=-(m-3)(2 \alpha)^{-1} \alpha^{i}, \\
W_{j k}^{i} w^{j} w^{k}=0 .
\end{gather*}
$$

Then by (6.4) we have
 ($m-1)^{s}$-conformal transformation of M to N such that $\phi^{*} \eta^{\prime} v=\gamma_{V \sigma} w_{v}$ for some constant $\gamma, v 0$, then we have
(22.14) $\quad \alpha^{\varphi} R-R=-\frac{(m-2)(m-7)}{4 \alpha^{2}}(d \alpha, d \alpha)+\frac{m-2}{\alpha} \delta d \alpha-\frac{\beta}{\alpha} R_{1}\left({ }^{\varepsilon} \zeta,{ }^{\varepsilon} \xi\right)$.

Now we study the analogous properties to the results by M. Obata [10].
THEOREM 22.3. If M is compact and of non-positive (non-negative resp.) scalar curvature and N of non-negative (non-positive resp.) scalar
curvature, and if ${ }^{\varepsilon} \zeta$ is parallel, then there is no $(m-1)^{s}$-conformal transformation of M to N for which ${ }^{\delta} \eta$ is also parallel, unless both scalar curvatures vanish. And if both scalar curvatures vanish, every $(m-1)^{s}$ conformal transformation of M to N for which ${ }^{\delta} \eta$ is also parallel is an ($m-1)^{s}$-homothety.

PROOF. If we put $\phi=(1 / 2) \log \alpha$, we obtain

$$
\begin{equation*}
(d \alpha, d \alpha)=4 \alpha^{2}(d \phi, d \phi), \tag{22.15}
\end{equation*}
$$

$$
\begin{equation*}
\delta d \alpha=2 \alpha \delta d \phi-4 \alpha(d \phi, d \phi) \tag{22.16}
\end{equation*}
$$

And (22.9) turns to

$$
\begin{equation*}
\alpha^{\varphi} R-R=-(m-2)(m-3)(d \phi, d \phi)+2(m-2) \delta d \phi \tag{22.17}
\end{equation*}
$$

Assume that M is compact orientable, then integration of (22.17) gives

$$
<\alpha^{\varphi} R-R, 1>=-(m-2)(m-3)<d \phi, d \phi>\leqq 0,
$$

from which we have the first part and second part ($m>3$) of the Theorem. To prove the second part ($m=3$) we use (22.17) again.

Theorem 22.4. Let M and N be compact Riemannian manifolds of non-positive scalar curvatures which are not identically equal to zero and assume that ${ }^{\text {s }} \zeta$ and ${ }^{\delta} \eta$ are parallel field, then the $(m-1)^{s}$-conformal transformation φ of M to N is an $(m-1)^{s}$-homothety if and only if $R \cdot \varphi=e^{-2 \mu} R$ for some constant μ.

Proof. If φ is an $(m-1)^{s}$-homothety, we have ${ }^{\prime} R \cdot \varphi=e^{-2 \phi} R$ by (22.9). Conversely, assume that ' $R \cdot \varphi=e^{-2 \mu} R$ for some constant μ and M compact orientable, then

$$
\left(e^{2(\phi-\mu)}-1\right) R=-(m-2)(m-3)(d \phi, d \phi)+2(m-2) \delta d \phi
$$

holds. Contracting the last equation with $\left(e^{2 m(\phi-\mu)}-1\right)$, and integrating over M we have

$$
\begin{align*}
& <\left(e^{2(\phi-\mu)}-1\right) R, e^{2 m(\phi-\mu)}-1>=(m-2)(m-3)<d \phi, d \phi> \tag{22.18}\\
& \quad+3(m+1)(m-2)<e^{m(\phi-\mu)} d \phi, e^{m(\phi-\mu)} d \phi>
\end{align*}
$$

Thus ϕ must be constant.

TheOrem 22.5. Under the same assumption as in Theorem 22.4, the ($m-1)^{s}$-conformal transformation φ is an $(m-1)^{s}$-isometry if and only if φ preserves the scalar curvature.

Proof. This is a special case $\phi=\mu=0$ in Theorem 22.4.
23. The case of constant scalar curvature. From Theorems 22.3 and 22.5 , one deduces the following

TheOrem 23.1. Suppose that M and N are compact and of non-positive constant scalar curvature and ${ }^{\varepsilon \zeta} \zeta$ is parallel field. Then every $(m-1)^{s}$ conformal transformation of M to N for which ${ }^{\delta \xi}$ is parallel is an $(m-1)^{s}$ homothety.

Corollary 23.2. Suppose that M is compact and of non-positive constant scalar curvature and ${ }^{\text {s }} \zeta$ is parallel. Then every $[m-1]^{s}$-conformal transformation of M is an $[m-1]^{s}$-isometry.

Corresponding to Theorem 16.12, we prove
ThEOREM 23.3. Assume that M is compact, of non-positive constant scalar curvature and admits a closed leaf of ${ }^{\text {® }}$, and assume that ζ_{v} is a Killing vector field on each U. Then any $[m-1]^{s}$-conformal transformation φ of M onto itself satisfying $\varphi^{*} w_{V}=\gamma_{V V} w_{U}$ for some constant $\gamma_{V U}$ is an isometry.

Proof. By the argument in $\S 19$, one get $\gamma_{V U}^{2}=1$ namely $\alpha+\beta=1$. Then, by (22.15) and (22.16), (22.14) can be written as

$$
\begin{equation*}
(\alpha-1) R=-(m-2)(m-3)(d \phi, d \phi)+2(m-2) \delta d \phi-\alpha^{-1}(1-\alpha) R_{1}(\zeta, \xi) \tag{23.1}
\end{equation*}
$$

Multiplying (23.1) by $\alpha^{m}-1$ and integrating over M which is assumed to be compact orientable, we have

$$
\begin{align*}
<(\alpha-1) R, \alpha^{m}-1>= & (m-2)(m-3)<d \phi, d \phi> \tag{23.2}\\
& +3(m+1)(m-2)<e^{m \phi} d \phi, e^{m \phi} d \phi> \\
& +<\alpha^{-1}(\alpha-1) R_{1}(\zeta, \zeta), \alpha^{m}-1>
\end{align*}
$$

As $R_{1}(\zeta, \zeta)$ is non-negative by Lemma 16.8, ϕ or α is constant. By Corollary 10.3, the relations $\alpha=1$ and $\beta=0$ hold, so φ is an isometry.
24. Infinitesimal $(m-1)^{s}$-conformal transformations which leave the Ricci curvature invariant. Some relations obtained in $\S 14$ are referred in this section. Let u be an infinitesimal $(m-1)^{s}$-conformal transformation on M. Transvecting (14.3) with $g^{j k}$ and $w^{j} w^{k}$ respectively, we have the following two reations

$$
\begin{align*}
& g^{j k} L(u) R_{j k}=(1-m) a^{r}{ }_{, r}-b^{r}{ }_{, r}+\zeta \zeta b+2 \zeta b \cdot w^{r}{ }_{, r} \tag{24.1}\\
&+w_{r, j} b^{r} w^{j}+b\left\{\left(w^{r}{ }_{, r} w^{j}\right)_{, j}+\left(w^{j, r} w_{r), j}\right\},\right. \\
& 2 w^{j} w^{k} L(u) R_{j k}=(2-m) a_{j, k} w^{j} w^{k}-a^{r}{ }_{, r}-b^{r}{ }_{, r}+b_{j, k} w w^{j} w^{k} \tag{24.2}\\
&+2 \zeta b \cdot w^{r}, r \\
&-w_{r, k} b^{r} w^{k} w^{k}+2 b\left\{w^{k}-w^{r}{ }_{j, k r} w^{k} w^{k} w^{j}{ }_{, r} w^{r}\right\}
\end{align*}
$$

Theorem 24.1. Assume that M is compact, ζ_{τ} is a Killing vector field on each U and the scalar curvature R is positive constant. If an infinitesimal ($m-1)^{s}$-conformal transformation u leaves the Ricci curvature invariant, then it is an infinitesimal ($m-1)^{s}$-isometry.

Proof. From (24.1) and (24.2) it follows that

$$
\begin{gather*}
(\mathrm{m}-1) \delta d a+\delta d b+\zeta \zeta b=0, \tag{24.3}\\
\delta d a+\delta d b+\zeta \zeta b+4 b w^{k, r} w_{k, r}=0 . \tag{24.4}
\end{gather*}
$$

On the other hand, (14.5) shows that $L(u) g^{j k} \cdot R_{j_{k}}=-a R-b T=0$, where $T=R_{j k} z w^{j} w^{k}=w^{j, k} w_{j, k}$. Then by (24.3) and (24.4), we get ($2-m$) $\delta d a=4 a R$. So if M is orientable we have $-(m-2)<d a, d a>=4<a^{2} R, 1>$. This completes the proof.

25. Appendices.

(a) Let u be an infinitesimal ($m-1$)-conformal transformation, transvecting (13.1) with $w^{i} w^{j}$ we get $2 u_{i, j} w^{i} w^{j}=a+b$. If M is orientable, compact and has properties (i) and (ii), the integration of $2\left(u_{i} w^{i} w^{j}\right)_{, j}=a+b$ over M gives $<a+b, 1>=0$. Thus combining this and (16.1), we have

Lemma 25.1. Let M be a compact orientable Riemannian manifold with properties (i) and (ii), and u be an infinitesimal ($m-1$)-conformal transformation, then

$$
<a, 1>=0,<b, 1\rangle=0
$$

hold good. (cf. Theorem 16.2)
Corollary 25.2. In a compact M with properties (i) and (ii), every infinitesimal ($m-1$)-homothety is an infinitesimal ($m-1$)-isometry.
(b) The orthogonality of u and a geodesic.

Theorem 25.3. Assume that u is an infinitesimal ($m-1$)-isometry and l is a geodesic which is also an integral curve of the distribution D. Then the inner product of u and a unit tangent vector field X on l to l is constant. Particularly, if u is orthogonal to l at one point of l, then u is orthogonal to l at every point of l.

Proof. Since X is a unit tangent vector to a geodesic we have $\left.\nabla_{X} X\right|_{t}$ $=0$. Difierentiating $g(u, X)$ along l we get

$$
\nabla_{X}(g(u, X))=g\left(\nabla_{X} u, X\right)+g\left(u, \nabla_{X} X\right) .
$$

The first term of the right hand side is equal to $u_{i, j} X^{i} X^{j}$. As u is an infinitesimal $(m-1)$-isometry and as $w_{i} X^{i}=0$ holds, we have $u_{i, j} X^{i} X^{j}=0$. Thus we have $\nabla_{X}(g(u, X))=0$ on l, so $g(u, X)$ is constant on l.
(c) The functions α_{t}, β_{t} and γ_{t}. Let x_{0} be an arbitrary point of M and u be infinitesimal $[m-1]^{s}$-conformal transformation. And take a neighborhoods U and $V(V \subset U)$ of x_{0}, where we consider a local 1-parameter group of local transformations $\boldsymbol{\varphi}_{t}: V \rightarrow \boldsymbol{\varphi}_{t} V \subset U\left(|t|<q\left(x_{0}\right)\right)$ generated by u as in $\S 15$. We have seen that every φ_{t} is an $[m-1]^{s}$-conformal transformation :

$$
\begin{gather*}
\varphi_{t}^{*} \cdot g=\alpha_{t} g+\beta_{t} w \otimes w, \tag{25.1}\\
\varphi_{t}^{*} w=\gamma_{t} w, \gamma_{t}^{2}=\alpha_{t}+\beta_{t} . \tag{25.2}
\end{gather*}
$$

We define functions α, β and γ on $\left(-q\left(x_{0}\right), q\left(x_{0}\right)\right) \times V$ by $\alpha(t, x)=\alpha_{t}(x), \beta(t, x)$ $=\beta_{t}(x)$ and $\gamma(t, x)=\gamma_{t}(x), t \in\left(-q\left(x_{0}\right), q\left(x_{0}\right)\right), x \in V$. Then α and β satisfy the following differential equations

$$
\begin{equation*}
\frac{\partial \alpha}{\partial t}(t, x)=\alpha(t, x)\left(a \cdot \varphi_{t}\right)(x) \tag{25.3}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial \beta}{\partial t}(t, x)=\beta(t, x)\left(a \cdot \varphi_{t}\right)(x)+b\left(\varphi_{t} x\right)\{\alpha(t, x)+\beta(t, x)\} . \tag{25.4}
\end{equation*}
$$

We give here a proof for (25.4). From (9.4) we have

$$
\beta(t+s, x)=\alpha_{s}\left(\varphi_{t} x\right) \beta_{t}(x)+\beta_{s}\left(\phi_{t} x\right)\left(\alpha_{t}(x)+\beta_{t}(x)\right)
$$

Therefore we get

$$
\beta(t+s, x)-\beta(t, x)=\beta_{t}(x)\left\{\alpha_{s}\left(\phi_{t} x\right)-1\right\}+\beta_{s}\left(\phi_{t} x\right)\left\{\alpha_{t}(x)+\beta_{t}(x)\right\}
$$

Then (25.4) follows.
Lemma 25.4. Solutions of (25.3) and (25.4) are

$$
\begin{gather*}
\alpha(t, x)=\exp \left(\int_{0}^{t} a\left(\boldsymbol{\varphi}_{s} x\right) d s\right) \tag{25.5}\\
\beta(t, x)=\exp \left(\int_{0}^{t}(a+b)\left(\boldsymbol{\varphi}_{s} x\right) d s\right)-\exp \left(\int_{0}^{t} a\left(\boldsymbol{\varphi}_{s} x\right) d s\right) \tag{25.6}
\end{gather*}
$$

Corollary 25.5. Let u be an infinitesimal $[m-1]^{s}$-conformal transformation, if a and b are constant, we have

$$
\alpha(t, x)=e^{a t}, \quad \beta(t, x)=e^{(a+b) t}-e^{a t}, \quad \gamma(t, x)=e^{c t}=e^{\frac{1}{2}(a+b) t} .
$$

Bibliography

[*] Partially conformal transformations with respect to ($m-1$)-dimensional distributions of m-dimensional Riemannian manifolds, Tôhoku Math. Journ., 17(1965), 358-409.
[24] S. Bochner, Tensor fields with finite bases, Ann. of Math., 53(1951), 400-411.
[25] S. I. Goldberg, Groups of transformations of Kaehler and almost Kaehler manifolds, Comm. Math. Helv., 35(1961), 35-46.
[26] S. Tachibana, On almost analytic vectors in almost Kählerian manifolds, Tôhoku Math. Journ., 11(1959), 247-265.

Tôhoku University.

[^0]: *) The author is supported partially by The Sakkokai Foundation.

