Tôhoku Math. Journ. Vol. 18, No. 4, 1966

NOTE ON THE INTEGRABILITY CONDITIONS OF (ϕ, ψ) -STRUCTURES

CHEN-JUNG HSU AND CHORNG-SHI HOUH

(Received April 27, 1966)

Some years ago, Professor S. Sasaki proposed an open question on the integrability conditions of (ϕ, ψ) -structure defind in his paper [1]¹⁾. A (ϕ, ψ) -structure on an *n*-dimensional differentiable manifold M^n is defined by two tensor fields ϕ, ψ of type (1, 1) satisfying the conditions as follows:

 $\mathrm{rank}\,\phi=l\,,\quad\mathrm{rank}\,\psi=m\,,\quad l+m=n$ $\phi\psi=\psi\phi=0\,,\quadarepsilon\phi^2+arepsilon\psi^2=1\,,$

where 1 denotes the unit tensor and \mathcal{E} , \mathcal{E}' are plus or minus one. Such structures contain as a special case the almost contact structures [2].

In this short note we intend to show that the integrability conditions of (ϕ, ψ) -structure can be obtained by using a result on the integrability conditions of π -structure by the first author, provided that the structure is of class C° . At the same time, we also improve some results by the both authors [4], [5]. It is furthermore shown that the integrability of the structure f satisfying $f^3 + f = 0$ studied by K. Yano and S. Ishihara [6] can also be derived in this way, if the structure is of class C° .

1. An *n*-dimensional manifold is said to be endowed with an r- π -structure if there exist *r* distributions (differentiable) T_1, \dots, T_r of (complex) tangent subspaces such that $T_p^c = T_{1p} + \dots + T_{rp}$ (direct sum) holds at each point, where T_p^c is the complexification of the tangent space at *P* and T_{tp} is the subspace at *P* belonging to the distribution T_t ; $t = 1, \dots, r$.

An r- π -structure defined by r distributions T_t is said to be integrable if at each point of the manifold, there is a complex coordinate system such that the subspace T_t of complexified tangent space is represented as $dz^{\bar{\alpha}_t} = 0$, i.e. $dz^i = 0$ except dz^{α_t} where α_t varies from $n_1 + \cdots + n_{t-1}$ to $n_1 + \cdots + n_t$ $(n_t = \dim T_t, n_0 = 0)$ $t = 1, \cdots, r$.

¹⁾ Numbers in brackets refer to the reference at the end of the paper.

It is proved that an *r*- π -structure of class C^{ω} is integrable if and only if [3]

(1)
$$T(u,v) = -\sum_{\alpha=1}^{r} P_{\alpha} N(P_{\alpha})(u,v) = 0$$

for any pair (u, v) of vector fields, where $N(P_{\alpha})$ denotes the Nijenhuis tensor for the projection tensor field P_{α} to the α -th distribution given by the r- π -structure.

This is equivalent to the following set of conditions:

(2)
$$P_1 N(P_1)(u, v) = 0, \dots, P_r N(P_r)(u, v) = 0.$$

For example, the first condition can be written as

(3)
$$P_1[P_1u, P_1v] - P_1[u, P_1v] - P_1[P_1u, v] + P_1[u, v] = 0.$$

Another expression for this condition is

(4)
$$P_1[(P_2 + \cdots + P_r) u, (P_2 + \cdots + P_r) v] = 0,$$

which is also equivalent to the following set:

(5)
$$P_1[P_j u, P_k v] = 0; \quad j, k = 2, \cdots, r.$$

These are obtained from (4) by putting $P_{j}u$, $P_{k}v$ in the place of u and v. Thus the integrability conditions (2) is also given by the following set:

(6)
$$P_i[P_j u, P_k v] = 0, \ i = 1, \cdots, r$$

j, k being any number in $\{(1, 2, \dots, r) - (i)\}$.

2. Now suppose there are given two tensor fields F_1 , F_2 of type (1, 1) and of class C^{ω} such that [4]

(7)
$$F_1^2 = \lambda_1^2 I, \ F_2^2 = \lambda_2^2 I \text{ and } F_1 F_2 = F_2 F_1$$

where I also denotes unit tensor field. If we put $F_1F_2 = F_2F_1 = -F_3$, then it follows that $F_3^2 = \lambda_1^2 \lambda_2^2 I$, λ_1, λ_2 are non zero complex constants.

It is shown that such structure either defines a $3-\pi$ -structure (this case is characterized by $\frac{1}{\lambda_2}F_2 - \frac{1}{\lambda_1}F_1 - \frac{1}{\lambda_1\lambda_2}F_3 = I$ for suitably chosen square roots

370 CHEN-JUNG HSU AND CHORNG-SHI HOUH

 λ_1 of λ_1^2 and λ_2 of λ_2^2) or a 4- π -structure. Such structure is said to be integrable if at each point of the manifold, there exists a coordinate system in which the fields F_1 , F_2 , F_3 have simultaneously numerical components.

It is also known that such structure is integrable if and only if the corresponding $3-\pi$ -structure or $4-\pi$ -structure is integrable [4].

CASE I. If it defines a $3-\pi$ -structure, then we can express them as

(8)
$$F_1 = \lambda_1 (P_1 - P_2 - P_3), \quad F_2 = \lambda_2 (P_1 + P_2 - P_3),$$
$$F_3 = -\lambda_1 \lambda_2 (P_1 - P_2 + P_3), \quad I = P_1 + P_2 + P_3,$$

where P_1 , P_2 , P_3 are three projection tensors to the distributions defined by the structure $\{F_1, F_2\}$.

It is well-known that the integrability condition of the structure defined by F_1 is $[F_1, F_1]=0$, that is

(9)
$$(P_2+P_3)[P_1u, P_1v] = 0 \text{ and } P_1[(P_2+P_3)u, (P_2+P_3)v] = 0.$$

This latter condition is equivalent to $P_1 N(P_1) = 0$.

Therefore, the integrability conditions (6) for the case r=3 is equivalent to

(10)
$$[F_1, F_1] = 0$$
, $[F_2, F_2] = 0$ and $[F_3, F_3] = 0$.

Thus we have

PROPOSITION 1. The integrability condition of the class C^{ω} structure $\{F_1, F_2\}$ giving a 3- π -distribution is the set (10).

It can be shown that

PROPOSITION 2. The integrability condition of the class C^{∞} structure $\{F_1, F_2\}$ related to a $3-\pi$ -structure may also be given by

(11)
$$[F_1, F_1] = 0, \quad [F_2, F_2] = 0 \text{ and } [F_1, F_2] = 0$$

where $[F_1, F_2]$ is defined by the following:

(12)
$$[F_1, F_2](u, v) = [F_1u, F_2v] - F_1[u, F_2v] - F_2[F_1u, v] + F_1F_2[u, v]$$
$$+ [F_2u, F_1v] - F_2[u, F_1v] - F_1[F_2u, v] + F_2F_1[u, v].$$

Since it is trivial that

(13)
$$[\alpha F_1 + \beta F_2, \lambda F_1 + \mu F_2] = 2\alpha \lambda [F_1, F_1] + 2\beta \mu [F_2, F_2] + (\alpha \mu + \beta \lambda) [F_1, F_2],$$

the set (11) is equivalent to the set

(14)
$$[F_1, F_1] = 0$$
, $[F_2, F_2] = 0$ and $[\alpha F_1 + \beta F_2, \alpha F_1 + \beta F_2] = 0$

with $\alpha\beta = 0$. From (8) we have $(1/2)(I + \frac{1}{\lambda_1\lambda_2}F_3) = P_2$. As [I,I] = 0 and [F,I] = 0, it follows that

(15)
$$[P_2, P_2] = \left[(1/2) \left(I + \frac{1}{\lambda_1 \lambda_2} F_3 \right), (1/2) \left(I + \frac{1}{\lambda_1 \lambda_2} F_3 \right) \right] = \frac{1}{4\lambda_1^2 \lambda_2^2} [F_3 F_3].$$

 P_2 can also be expressed as $P_2 = (1/2) \Big(\frac{1}{\lambda_2} F_2 - \frac{1}{\lambda_1} F_1 \Big)$, therefore

(16)
$$[P_2P_2] = (1/4) \left[\frac{1}{\lambda_2} F_2 - \frac{1}{\lambda_1} F_1, \frac{1}{\lambda_2} F_2 - \frac{1}{\lambda_1} F_1 \right].$$

The above proposition follows from (15) and (16).

It is to be noted that

PROPOSITION 3. The condition

(17)
$$\left[\frac{1}{\lambda_1}F_1 + \frac{1}{\lambda_2}F_2, \frac{1}{\lambda_1}F_1 + \frac{1}{\lambda_2}F_2\right] = 0$$

alone also gives the integrability condition of the class C^{ω} structure $\{F_1, F_2\}$ related to a $3-\pi$ -structure.

By (8), this condition may also be written as

(18)
$$[P_1 - P_3, P_1 - P_3] = [P_1, P_1] + [P_3, P_3] - [P_1, P_3] = 0.$$

As $P_1+P_3 = I-P_2$ we have $[P_2, P_2] = [P_1+P_3, P_1+P_3] = [P_1, P_1] + [P_3, P_3] + [P_1, P_3]$. Thus (17) is written as

(19)
$$2[P_1, P_1] + 2[P_3, P_3] - [P_2, P_2] = 0.$$

This is equivalent to

372

(20)
$$2P_i[P_1, P_1] + 2P_i[P_3, P_3] - P_i[P_2, P_2] = 0; \quad i = 1, 2, 3,$$

from which we have

(21)
$$\begin{cases} P_1[P_2u, P_2v] + 4P_1[P_3u, P_3v] + 2P_1[P_2u, P_3v] + 2P_1[P_3u, P_2v] = 0\\ P_2[P_1u, P_1v] + P_2[P_3u, P_3v] - P_2[P_1u, P_3v] - P_2[P_3u, P_1v] = 0\\ 4P_3[P_1u, P_1v] + P_3[P_2u, P_2v] + 2P_3[P_1u, P_2v] + 2P_3[P_2u, P_1v] = 0. \end{cases}$$

This system is equivalent to (6) for the case r=3.

3. The above result can be used to derive the integrability conditions of the structure defined by a non-null tensor field f of type (1, 1) and of class C° satisfying $f^3 + f = 0$ [6]. If the rank of f is r, then in the tangent space at every point, the kernel of f is an (n-r)-dimensional subspace and the range of f is the complementary r-dimensional subspace on which f acts as $f^2 = -1$. Thus we get a $3 - \pi$ -structure such that

(22)
$$f = i(P_1 - P_3), f^2 + 1 = P_2, P_1 + P_2 + P_3 = 1,$$

and therefore, (18) is equivalent to [f, f] = 0. Thus we have:

PROPOSITION 4. The necessary and sufficient condition for the structure f of class C^{ω} to be integrable is [f, f]=0. By the above mentioned result, this is equivalent to the fact that there exists a coordinate system in which f has constant components. [6]

4. CASE II. If the structure $\{F_1, F_2, F_3\}$ defines a 4- π -structure then we have

(23)
$$\begin{cases} F_1 = \lambda_1 (P_1 + P_2 - P_3 - P_4), & F_2 = \lambda_2 (P_1 - P_2 + P_3 - P_4), \\ F_3 = -\lambda_1 \lambda_2 (P_1 - P_2 - P_3 + P_4), & I = P_1 + P_2 + P_3 + P_4, \end{cases}$$

with P_i as the projection tensors to the four distributions. In this case the integrability condition $[F_1, F_1]=0$ for the structure F_1 is written as:

(24)
$$\begin{cases} (P_1 + P_2)[(P_3 + P_4)u, (P_3 + P_4)v] = 0, \\ (P_3 + P_4)[(P_1 + P_2)u, (P_1 + P_2)v] = 0. \end{cases}$$

This set is equivalent to the following set.

(25)
$$\begin{cases} P_1[P_k u, P_l v] = 0, & P_2[P_k u, P_l v] = 0; & k, l = 3, 4, \\ P_3[P_l u, P_j v] = 0, & P_4[P_l u, P_j v] = 0; & l, j = 1, 2. \end{cases}$$

Thus we have

PROPOSITION 1. The integrability conditions for the class C° structure $\{F_1, F_2, F_3\}$ related to a 4- π -structure is given by

(26)
$$[F_1, F_1] = 0$$
, $[F_2, F_2] = 0$ and $[F_3, F_3] = 0$.

Because this set is equivalent to the integrability conditions (6) for the case r=4. This proposition together with Proposition 1 improve a theorem stated in [4] by deleting a redundant condition.

It can also be shown that

PROPOSITION 2'. The integrability conditions for the class C^{ω} structure $\{F_1, F_2, F_3\}$ giving a 4- π -structure are [5]:

(27)
$$[F_1, F_1] = 0$$
, $[F_2, F_2] = 0$ and $[F_1, F_2] = 0$.

It is obvious that in the set (27) the condition $[F_1, F_2] = 0$ may be replaced by

(28)
$$[\alpha F_1 + \beta F_2, \alpha F_1 + \beta F_2] = 0 \quad \text{with} \quad \alpha \beta \succeq 0.$$

Take $\alpha F_1 + \beta F_2 = (1/2) \left(\frac{1}{\lambda_1} F_1 + \frac{1}{\lambda_2} F_2 \right) = P_1 - P_4$, then (28) can be written

(29)
$$[P_1 - P_4, P_1 - P_4] = [P_1 P_1] + [P_4 P_4] - [P_1 P_4] = 0$$

which is in turn equivalent to

(30)
$$P_i([P_1P_1] + [P_4P_4] - [P_1P_4]) = 0; \quad i = 1, 2, 3, 4.$$

These conditions are respectively written as

$$\begin{cases} P_1[(P_2+P_3+P_4)u, (P_2+P_3+P_4)v] + P_1[P_4uP_4v] \\ + P_1[(P_2+P_3+P_4)u, P_4v] + P_1[P_4u, (P_2+P_3+P_4)v] = 0 \end{cases}$$

CHEN-JUNG HSU AND CHORNG-SHI HOUH 374

(31)
$$\begin{cases} P_{2}[P_{1}u, P_{1}v] + P_{2}[P_{4}u, P_{4}v] - P_{2}[P_{1}u, P_{4}v] - P_{2}[P_{4}u, P_{1}v] = 0, \\ P_{3}[P_{1}u, P_{1}v] + P_{3}[P_{4}u, P_{4}v] - P_{3}[P_{1}u, P_{4}v] - P_{3}[P_{4}u, P_{1}v] = 0, \\ P_{4}[(P_{1}+P_{2}+P_{3})u, (P_{1}+P_{2}+P_{3})v] + P_{4}[P_{1}u, P_{1}v] \\ + P_{4}[P_{1}u, (P_{1}+P_{2}+P_{3})v] + P_{4}[(P_{1}+P_{2}+P_{3})u, P_{1}v] = 0 \end{cases}$$

These give 26 conditions in all, and which cover all conditions supplied by

$$[F_3F_3] = 0 \text{ (i.e., } [P_1 + P_4, P_1 + P_4] = 0 \text{ or } [P_2 + P_3, P_2 + P_3] = 0).$$

Since $[P_2 - P_3, P_2 - P_3] = 0$ gives analoguous conditions which together with (31) cover all conditions in (6) for the case r=4, we have

PROPOSITION 5. The following set is also the integrability conditions for the class C° structure $\{F_1, F_2, F_3\}$ giving a 4- π -structure:

$$\left[(1/2) \left(\frac{1}{\lambda_1} F_1 + \frac{1}{\lambda_2} F_2 \right), (1/2) \left(\frac{1}{\lambda_1} F_1 + \frac{1}{\lambda_2} F_2 \right) \right] = \left[P_1 - P_4, P_1 - P_4 \right] = 0,$$
(32)
$$\left[(1/2) \left(\frac{1}{\lambda_1} F_1 - \frac{1}{\lambda_2} F_2 \right), (1/2) \left(\frac{1}{\lambda_2} F_1 - \frac{1}{\lambda_2} F_2 \right) \right] = \left[P_2 - P_3, P_2 - P_3 \right] = 0.$$

$$[\ \Lambda_1 \ \Lambda_2 \ / \ \Lambda_1 \ \Lambda_2 \ /]$$

5. We are now going to discuss on the integrability conditions for the (ϕ, ψ) -structures of class C^{ω}. (ϕ, ψ) -structures can be divided into the following three cases:

1°.
$$\psi^2 - \phi^2 = 1$$
, $\phi \psi = 0$, $\psi \phi = 0$ and $\psi^3 = \psi$, $\phi^3 = -\phi$;
2°. $\psi^2 + \phi^2 = -1$, $\phi \psi = 0$, $\psi \phi = 0$ and $\psi^3 = -\psi$, $\phi^3 = -\phi$;
3°. $\psi^2 + \phi^2 = 1$, $\phi \psi = 0$, $\psi \phi = 0$ and $\psi^3 = \psi$, $\phi^3 = \phi$.

For the case 1°, put $\psi^2 = P_2$ and $-\phi^2 = P_1$. Then $P_1 + P_2 = 1$ and $P_1 P_2$ $= P_2 P_1 = 0$. Thus we have two projection tensor fields. The subspaces of complexified tangent space at a point corresponding to P_1 and P_2 are denoted as R_1 and R_2 respectively. Then R_2 consists of the vectors of the form $\psi^2 u$ $=P_2u$, R_1 consists of the vectors of the form $-\phi^2 u = P_1 u$. Since $\psi P_2 u = \psi^3 u$ $=\psi^2(\psi u)=P_2(\psi u), \ \psi P_1u=-\psi\phi^2u=0, \ \text{and} \ \psi^2 P_2u=P_2^2u=P_2u, \ \text{the transforma-}$ tion ψ acts on R_2 as $\psi^2 = 1$ and kernel $\psi = R_1$. Similarly, $\phi P_2 u = \phi \psi^2 u = 0$,

 $\phi P_1 u = -\phi^2(\phi u) = P_1(\phi u)$ and $\phi^2 P_1 u = -P_1^2 u = -P_1 u$, so ϕ acts on R_1 as $\phi^2 = -1$ and kernel $\phi = R_2$.

The proper values of ψ on R_2 are 1 or -1. If ψ has only one proper value 1 on R_2 , then $\psi P_2 u = P_2 u$ and $\psi u = \psi (P_1 + P_2) u = \psi P_2 u = P_2 u$ for all u. Thus $\psi = P_2$ and $\psi^2 = P_2^2 = P_2 = \psi$. If ψ has only one proper value -1 on R_2 , then $\psi P_2 u = -P_2 u$ and $\psi u = \psi (P_1 + P_2) u = \psi P_2 u = -P_2 u$ for all u. Thus $\psi = -P_2$ and $\psi^2 = P_2^2 = P_2 = -\psi$.

If ψ has both proper values 1 and -1 on R_2 , denote the subspaces of R_2 corresponding to 1 and -1 as R_{22} and R_{23} . Let P_{22} , P_{23} be the projection tensors to R_{22} and R_{23} , then $P_2 = P_{22} + P_{23}$ and $P_1 P_{22} = P_{22} P_1 = P_1 P_{23} = P_{23} P_1 = 0$. Then $\psi P_1 u = 0$, $\psi P_{22} u = P_{22} u$, $\psi P_{23} u = -P_{23} u$ and $\psi u = \psi (P_1 + P_{22} + P_{23}) u = \psi P_{22} u + \psi P_{23} u = (P_{22} - P_{23}) u$. Therefore $\psi = P_{22} - P_{23}$ and $\psi^2 = P_{22} + P_{23} = P_2 \neq \pm \psi$.

Since ϕ acts on R_1 as $\phi^2 = -1$, so R_1 is even dimensional and ϕ has proper values *i* and -i. Denote the subspaces of R_1 corresponding to *i* and -i as R_{11} and R_{14} , the projection tensors to these subspaces as P_{11} and P_{14} , then P_1 $=P_{11}+P_{14}$ and $P_{11}P_2=P_2P_{11}=P_{14}P_2=P_2P_{14}=0$. Then $\phi P_2u=0$, $\phi P_{11}u=iP_{11}u$, $\phi P_{14}u=-iP_{14}u$ and $\phi u=\phi(P_{11}+P_{14}+P_2)u=\phi P_{11}u+\phi P_{14}u=i(P_{11}-P_{14})u$. Therefore $\phi=i(P_{11}-P_{14})$ and $\phi^2=-(P_{11}+P_{14})\neq\pm\phi$.

Consequently, if $\psi^2 = \pm \psi$, then the (ϕ, ψ) -structure defines a 3π -structure expressed by $\psi = P_2$ (or $-P_2$), $\phi = i(P_{11} - P_{14})$. If $\psi^2 \neq \pm \psi$, the (ϕ, ψ) -structure defines a 4π -structure expressed by $\psi = P_{22} - P_{23}$, $\phi = i(P_{11} - P_{14})$.

For the case 2°, if we put $-\psi^2 = P_2$ and $-\phi^2 = P_1$ we can show that both ψ and ϕ act on R_2 and R_1 respectively as $\psi^2 = -1$ and $\phi^2 = -1$. Therefore this case always defines a 4- π -structure which is expressed by $\phi = i(P_{11} - P_{14})$, $\psi = i(P_{22} - P_{23})$.

For the case 3°, if we put $\psi^2 = P_2$ and $\phi^2 = P_1$ we can show that both ψ and ϕ act on R_2 and R_1 respectively as $\psi^2 = 1$ and $\phi^2 = 1$. So as in case 1°, if $\psi^2 = \pm \psi$ and $\phi^2 = \pm \phi$ then the structure defines a 2- π -structure F given by $F = P_1 - P_2$. If $\psi^2 = \pm \psi$ and $\phi^2 \neq \pm \phi$, (or $\psi^2 \neq \pm \psi$ and $\phi^2 = \pm \phi$) then the (ϕ, ψ) -structure defines a 3- π -structure expressed by $\psi = P_2$ (or $-P_2$) and $\phi = P_{11} - P_{14}$ (or $\psi = P_{22} - P_{23}$, $\phi = P_1$ (or $-P_1$)). If both $\psi^2 \neq \pm \psi$ and $\phi^2 \neq \pm \phi$, then the (ϕ, ψ) -structure defines a 4- π -structure expressed by $\psi = P_{22} - P_{23}$, $\phi = P_{11} - P_{14}$.

It is to be noted that for a structure satisfying $\psi^3 = -\psi$, it can not happen that $\psi^2 = \pm \psi$. For, if $\psi^2 = \pm \psi$ then $\psi^3 = \pm \psi^2 = \pm (\pm \psi) = \psi$. Thus from the above argument we have

PROPOSITION 6. A (ϕ, ψ) -structure defines a 2- π -structure if and only if $\psi^2 = \pm \psi$ and $\phi^2 = \pm \phi$. It defines a 3- π -structure if and only if $\psi^2 = \pm \psi$ and $\phi^2 \neq \pm \phi$ or $\psi^2 \neq \pm \psi$ and $\phi^2 = \pm \phi$. It defines a 4- π -structure if $\psi^2 \neq \pm \psi$ and $\phi^2 \neq \pm \psi$. 6. If the (ϕ, ψ) -structure defines a 2- π -structure $F = P_1 - P_2 = 2P_1 - 1$, then $\phi = \pm P_1$ and $\psi = \pm P_2$, so $F = \pm 2\phi - 1$. Consequently, the integrability condition is given by $[F, F] = 4[\phi, \phi] = 0$ (or $[\psi, \psi] = 0$.)

If the (ϕ, ψ) -structure defines a $3 - \pi$ -structure and $\psi^2 = \pm \psi$ and $\phi^2 \neq \pm \phi$, then $\phi = P_{11} - P_{14}$ or $\phi = i(P_{11} - P_{14})$ according as $\phi^2 = 1$ or $\phi^2 = -1$ on R_1 . Thus $[\phi, \phi] = 0$ gives $[P_1 - P_3, P_1 - P_3] = 0$ (where $P_1 = P_{11}, P_3 = P_{14}$) and this is the integrability condition as already shown in the proof of Proposition 3. Thus we have:

PROPOSITION 7. If the (ϕ, ψ) -structure of class C^{ω} satisfies $\psi^2 = \pm \psi$ (or $\phi^2 = \pm \phi$) then the integrability condition is given by $[\phi, \phi] = 0$ (or $[\psi, \psi] = 0$).

Now, if we put $\psi = 1 + f^2$, $\phi = f$ in the case of structure f satisfying $f^3 + f = 0$, then we have $\phi \psi = \psi \phi = f^3 + f = 0$, so it defines a (ϕ, ψ) -structure of case 1° with $\psi^2 = \psi$ and the integrability condition is $[\phi, \phi] = [f, f] = 0$ as shown above.

A (ϕ, ξ, η) -structure on (2n+1)-dimensional manifold is a structure defined by a tensor field ϕ_j^i , a contravariant vetor field ξ^i and a covariant vector field η_j satisfying

$$\xi^i\eta_i=1, \ \ ext{rank} \ \phi=2n, \ \ \phi_j{}^i\xi^j{=}\phi^i{}_j\eta_i=0 \ \ \ ext{and} \ \ \phi_j^i\phi_k^j=-\delta_k^i{+}\xi^i\eta_k\,.$$

Therefore, if we put $\psi_k^i = \xi^i \eta_k$, then we have $\psi^2 - \phi^2 = 1$, $\phi \psi = \psi \phi = 0$ and $\psi^2 = \psi$. This is a special case of the above structure f, and the the integrability condition is also $[\phi, \phi] = 0$.

Finally, if the (ϕ, ψ) -structure defines a 4- π -structure (that is, if $\psi^2 \neq \pm \psi$ and $\phi^2 \neq \pm \phi$), then $\phi = P_{11} - P_{14}$ or $\phi = i(P_{11} - P_{14})$ according as $\phi^2 = 1$ or $\phi^2 = -1$ on R_1 ; and $\psi = P_{22} - P_{23}$ or $\psi = i(P_{22} - P_{23})$ according as $\psi^2 = 1$ or $\psi^2 = -1$ on R_2 . Thus $[\phi, \phi] = 0$ gives $[P_1 - P_4, P_1 - P_4] = 0$ (where $P_1 = P_{11}, P_4 = P_{14})$ and $[\psi, \psi] = 0$ gives $[P_2 - P_3, P_2 - P_3] = 0$ (where $P_2 = P_{22}, P_3 = P_{23})$. It is shown in the proof of Proposition 5 that these two conditions give the integrability conditions of the corresponding 4- π -structure. Thus we have

PROPOSITION 8. If $\psi^2 \neq \pm \psi$ and $\phi^2 \neq \pm \phi$, then the integrability conditions for the (ϕ, ψ) -structure of class C^{ω} are $[\phi, \phi] = 0$ and $[\psi, \psi] = 0$.

References

- [1] S. SASAKI, On differentiable manifolds with (ϕ, ψ) -structures, Tôhoku Math. Journ., 13(1961), 132–153.
- [2] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tôhoku Math. Journ., 12(1960), 456-476.

- [3] C. J. HSU, On some properties of *m*-structures on differentiable manifold, Tôhoku Math.
- Journ., 12(1960), 429-454.
 [4] C. J. HSU, Note on the integrability of a certain structure on differentiable manifold, Tôhoku Math. Journ., 12(1960), 349-360.
- [5] C.S. HOUH, The integrability of a structure on a differentiable manifold, Tôhoku Math. Journ., 17(1965), 72–75.
- [6] S. ISHIHARA AND K. YANO, On integrability conditions of a structure f satisfying f^3+f =0, Quarterly Journ. of Math., 15(1964), 217-222.

KANSAS STATE UNIVERSITY UNIVERSITY OF MANITOBA