NOTE ON THE INTEGRABILITY CONDITIONS OF (ϕ, ψ)-STRUCTURES

Chen-Jung Hsu and Chorng-Shi Houh
(Received April 27, 1966)

Some years ago, Professor S. Sasaki proposed an open question on the integrability conditions of (ϕ, ψ)-structure defind in his paper [1] ${ }^{11}$. A (ϕ, ψ) structure on an n-dimensional differentiable manifold M^{n} is defined by two tensor fields ϕ, ψ of type $(1,1)$ satisfying the conditions as follows:

$$
\begin{aligned}
\operatorname{rank} \phi & =l, \quad \operatorname{rank} \psi=m, \quad l+m=n \\
\phi \psi & =\psi \phi=0, \quad \varepsilon \phi^{2}+\varepsilon^{\prime} \psi^{2}=1,
\end{aligned}
$$

where 1 denotes the unit tensor and $\varepsilon, \varepsilon^{\prime}$ are plus or minus one. Such structures contain as a special case the almost contact structures [2].

In this short note we intend to show that the integrability conditions of (ϕ, ψ)-structure can be obtained by using a result on the integrability conditions of π-structure by the first author, provided that the structure is of class C°. At the same time, we also improve some results by the both authors [4], [5]. It is furthermore shown that the integrability of the structure f satisfying $f^{3}+f=0$ studied by K. Yano and S. Ishihara [6] can also be derived in this way, if the structure is of class C^{ω}.

1. An n-dimensional manifold is said to be endowed with an r - π-structure if there exist r distributions (differentiable) T_{1}, \cdots, T_{r} of (complex) tangent subspaces such that $T_{p}{ }^{c}=T_{1 p}+\cdots+T_{r_{p}}$ (direct sum) holds at each point, where $T_{p}{ }^{c}$ is the complexification of the tangent space at P and $T_{t p}$ is the subspace at P belonging to the distribution $T_{t} ; t=1, \cdots, r$.

An $r-\pi$-structure defined by r distributions T_{t} is said to be integrable if at each point of the manifold, there is a complex coordinate system such that the subspace T_{t} of complexified tangent space is represented as $d z^{\bar{\alpha}_{t}}=0$, i.e. $d z^{i}=0$ except $d z^{\alpha_{t}}$ where α_{t} varies from $n_{1}+\cdots+n_{t-1}$ to $n_{1}+\cdots+n_{t}\left(n_{t}=\operatorname{dim} T_{t}\right.$, $\left.n_{0}=0\right) t=1, \cdots, r$.

[^0]It is proved that an $r-\pi$-structure of class C^{ω} is integrable if and only if [3]

$$
\begin{equation*}
T(u, v)=-\sum_{\alpha=1}^{r} P_{\alpha} N\left(P_{\alpha}\right)(u, v)=0 \tag{1}
\end{equation*}
$$

for any pair (u, v) of vector fields, where $N\left(P_{\alpha}\right)$ denotes the Nijenhuis tensor for the projection tensor field P_{α} to the α-th distribution given by the r - π-structure.

This is equivalent to the following set of conditions:

$$
\begin{equation*}
P_{1} N\left(P_{1}\right)(u, v)=0, \cdots, P_{r} N\left(P_{r}\right)(u, v)=0 . \tag{2}
\end{equation*}
$$

For example, the first condition can be written as

$$
\begin{equation*}
P_{1}\left[P_{1} u, P_{1} v\right]-P_{1}\left[u, P_{1} v\right]-P_{1}\left[P_{1} u, v\right]+P_{1}[u, v]=0 . \tag{3}
\end{equation*}
$$

Another expression for this condition is

$$
\begin{equation*}
P_{1}\left[\left(P_{2}+\cdots+P_{r}\right) u,\left(P_{2}+\cdots+P_{r}\right) v\right]=0, \tag{4}
\end{equation*}
$$

which is also equivalent to the following set:

$$
\begin{equation*}
P_{1}\left[P_{j} u, P_{k} v\right]=0 ; \quad j, k=2, \cdots, r . \tag{5}
\end{equation*}
$$

These are obtained from (4) by putting $P_{j} u, P_{k} v$ in the place of u and v. Thus the integrability conditions (2) is also given by the following set:

$$
\begin{equation*}
P_{i}\left[P_{j} u, P_{k} v\right]=0, i=1, \cdots, r \tag{6}
\end{equation*}
$$

$$
j, k \text { being any number in }\{(1,2, \cdots, r)-(i)\} .
$$

2. Now suppose there are given two tensor fields F_{1}, F_{2} of type $(1,1)$ and of class C^{ω} such that [4]

$$
\begin{equation*}
F_{1}^{2}=\lambda_{1}^{2} I, \quad F_{2}^{2}=\lambda_{2}^{2} I \quad \text { and } \quad F_{1} F_{2}=F_{2} F_{1} \tag{7}
\end{equation*}
$$

where I also denotes unit tensor field. If we put $F_{1} F_{2}=F_{2} F_{1}=-F_{3}$, then it follows that $F_{3}{ }^{2}=\lambda_{1}{ }^{2} \lambda_{2}^{2} I, \lambda_{1}, \lambda_{2}$ are non zero complex constants.

It is shown that such structure either defines a $3-\pi$-structure (this case is characterized by $\frac{1}{\lambda_{2}} F_{2}-\frac{1}{\lambda_{1}} F_{1}-\frac{1}{\lambda_{1} \lambda_{2}} F_{3}=I$ for suitably chosen square roots
λ_{1} of λ_{1}^{2} and λ_{2} of λ_{2}^{2}) or a 4 - π-structure. Such structure is said to be integrable if at each point of the manifold, there exists a coordinate system in which the fields F_{1}, F_{2}, F_{3} have simultaneously numerical components.

It is also known that such structure is integrable if and only if the corresponding $3-\pi$-structure or $4-\pi$-structure is integrable [4].

CASE I. If it defines a $3-\pi$-structure, then we can express them as

$$
\begin{align*}
& F_{1}=\lambda_{1}\left(P_{1}-P_{2}-P_{3}\right), \quad F_{2}=\lambda_{2}\left(P_{1}+P_{2}-P_{3}\right), \tag{8}\\
& F_{3}=-\lambda_{1} \lambda_{2}\left(P_{1}-P_{2}+P_{3}\right), \quad I=P_{1}+P_{2}+P_{3},
\end{align*}
$$

where P_{1}, P_{2}, P_{3} are three projection tensors to the distributions defined by the structure $\left\{F_{1}, F_{2}\right\}$.

It is well-known that the integrability condition of the structure defined by F_{1} is $\left[F_{1}, F_{1}\right]=0$, that is

$$
\begin{equation*}
\left(P_{2}+P_{3}\right)\left[P_{1} u, P_{1} v\right]=0 \quad \text { and } \quad P_{1}\left[\left(P_{2}+P_{3}\right) u,\left(P_{2}+P_{3}\right) v\right]=0 . \tag{9}
\end{equation*}
$$

This latter condition is equivalent to $P_{1} N\left(P_{1}\right)=0$.
Therefore, the integrability conditions (6) for the case $r=3$ is equivalent to

$$
\begin{equation*}
\left[F_{1}, F_{1}\right]=0, \quad\left[F_{2}, F_{2}\right]=0 \quad \text { and } \quad\left[F_{3}, F_{3}\right]=0 \tag{10}
\end{equation*}
$$

Thus we have
Proposition 1. The integrability condition of the class C^{ω} structure $\left\{F_{1}, F_{2}\right\}$ giving a 3 - π-distribution is the set (10).

It can be shown that
Proposition 2. The integrability condition of the class C^{ω} structure $\left\{F_{1}, F_{2}\right\}$ related to a 3 -т-structure may also be given by

$$
\begin{equation*}
\left[F_{1}, F_{1}\right]=0, \quad\left[F_{2}, F_{2}\right]=0 \quad \text { and } \quad\left[F_{1}, F_{2}\right]=0 \tag{11}
\end{equation*}
$$

where $\left[F_{1}, F_{2}\right]$ is defined by the following:

$$
\begin{gather*}
{\left[F_{1}, F_{2}\right](u, v)=\left[F_{1} u, F_{2} v\right]-F_{1}\left[u, F_{2} v\right]-F_{2}\left[F_{1} u, v\right]+F_{1} F_{2}[u, v]} \tag{12}\\
\quad+\left[F_{2} u, F_{1} v\right]-F_{2}\left[u, F_{1} v\right]-F_{1}\left[F_{2} u, v\right]+F_{2} F_{1}[u, v] .
\end{gather*}
$$

Since it is trivial that
(13) $\left[\alpha F_{1}+\beta F_{2}, \lambda F_{1}+\mu F_{2}\right]=2 \alpha \lambda\left[F_{1}, F_{1}\right]+2 \beta \mu\left[F_{2}, F_{2}\right]+(\alpha \mu+\beta \lambda)\left[F_{1}, F_{2}\right]$,
the set (11) is equivalent to the set

$$
\begin{equation*}
\left[F_{1}, F_{1}\right]=0, \quad\left[F_{2}, F_{2}\right]=0 \quad \text { and } \quad\left[\alpha F_{1}+\beta F_{2}, \alpha F_{1}+\beta F_{2}\right]=0 \tag{14}
\end{equation*}
$$

with $\alpha \beta \neq 0$. From (8) we have $(1 / 2)\left(I+\frac{1}{\lambda_{1} \lambda_{2}} F_{3}\right)=P_{2} . \quad$ As $[I, I]=0$ and $[F, I]$ $=0$, it follows that

$$
\begin{equation*}
\left[P_{2}, P_{2}\right]=\left[(1 / 2)\left(I+\frac{1}{\lambda_{1} \lambda_{2}} F_{3}\right),(1 / 2)\left(I+\frac{1}{\lambda_{1} \lambda_{2}} F_{3}\right)\right]=\frac{1}{4 \lambda_{1}{ }^{2} \lambda_{2}^{2}}\left[F_{3} F_{3}\right] \tag{15}
\end{equation*}
$$

P_{2} can also be expressed as $P_{2}=(1 / 2)\left(\frac{1}{\lambda_{2}} F_{2}-\frac{1}{\lambda_{1}} F_{1}\right)$, therefore

$$
\begin{equation*}
\left[P_{2} P_{2}\right]=(1 / 4)\left[\frac{1}{\lambda_{2}} F_{2}-\frac{1}{\lambda_{1}} F_{1}, \frac{1}{\lambda_{2}} F_{2}-\frac{1}{\lambda_{1}} F_{1}\right] . \tag{16}
\end{equation*}
$$

The above proposition follows from (15) and (16).
It is to be noted that

Proposition 3. The condition

$$
\begin{equation*}
\left[\frac{1}{\lambda_{1}} F_{1}+\frac{1}{\lambda_{2}} F_{2}, \frac{1}{\lambda_{1}} F_{1}+\frac{1}{\lambda_{2}} F_{2}\right]=0 \tag{17}
\end{equation*}
$$

alone also gives the integrability condition of the class C^{ω} structure $\left\{F_{1}, F_{2}\right\}$ related to a $3-\pi$-structure.

By (8), this condition may also be written as

$$
\begin{equation*}
\left[P_{1}-P_{3}, P_{1}-P_{3}\right]=\left[P_{1}, P_{1}\right]+\left[P_{3}, P_{3}\right]-\left[P_{1}, P_{3}\right]=0 . \tag{18}
\end{equation*}
$$

As $P_{1}+P_{3}=I-P_{2}$ we have $\left[P_{2}, P_{2}\right]=\left[P_{1}+P_{3}, P_{1}+P_{3}\right]=\left[P_{1}, P_{1}\right]+\left[P_{3}, P_{3}\right]$ $+\left[P_{1}, P_{3}\right]$. Thus (17) is written as

$$
\begin{equation*}
2\left[P_{1}, P_{1}\right]+2\left[P_{3}, P_{3}\right]-\left[P_{2}, P_{2}\right]=0 \tag{19}
\end{equation*}
$$

This is equivalent to

$$
\begin{equation*}
2 P_{i}\left[P_{1}, P_{1}\right]+2 P_{i}\left[P_{3}, P_{3}\right]-P_{i}\left[P_{2}, P_{2}\right]=0 ; \quad i=1,2,3, \tag{20}
\end{equation*}
$$

from which we have

$$
\left\{\begin{array}{l}
P_{1}\left[P_{2} u, P_{2} v\right]+4 P_{1}\left[P_{3} u, P_{3} v\right]+2 P_{1}\left[P_{2} u, P_{3} v\right]+2 P_{1}\left[P_{3} u, P_{2} v\right]=0 \tag{21}\\
P_{2}\left[P_{1} u, P_{1} v\right]+P_{2}\left[P_{3} u, P_{3} v\right]-P_{2}\left[P_{1} u, P_{3} v\right]-P_{2}\left[P_{3} u, P_{1} v\right]=0 \\
4 P_{3}\left[P_{1} u, P_{1} v\right]+P_{3}\left[P_{2} u, P_{2} v\right]+2 P_{3}\left[P_{1} u, P_{2} v\right]+2 P_{3}\left[P_{2} u, P_{1} v\right]=0 .
\end{array}\right.
$$

This system is equivalent to (6) for the case $r=3$.
3. The above result can be used to derive the integrability conditions of the structure defined by a non-null tensor field f of type $(1,1)$ and of class C^{ω} satisfying $f^{3}+f=0$ [6]. If the rank of f is r, then in the tangent space at every point, the kernel of f is an $(n-r)$-dimensional subspace and the range of f is the complementary r-dimensional subspace on which f acts as $f^{2}=-1$. Thus we get a $3-\pi$-structure such that

$$
\begin{equation*}
f=i\left(P_{1}-P_{3}\right), \quad f^{2}+1=P_{2}, \quad P_{1}+P_{2}+P_{3}=1, \tag{22}
\end{equation*}
$$

and therefore, (18) is equivalent to $[f, f]=0$. Thus we have:
PROPOSITION 4. The necessary and sufficient condition for the structure f of class C^{ω} to be integrable is $[f, f]=0$. By the above mentioned result, this is equivalent to the fact that there exists a coordinate system in which f has constant components. [6]
4. CASE II. If the structure $\left\{F_{1}, F_{2}, F_{3}\right\}$ defines a $4-\pi$-structure then we have

$$
\left\{\begin{array}{l}
F_{1}=\lambda_{1}\left(P_{1}+P_{2}-P_{3}-P_{4}\right), \quad F_{2}=\lambda_{2}\left(P_{1}-P_{2}+P_{3}-P_{4}\right) \tag{23}\\
F_{3}=-\lambda_{1} \lambda_{2}\left(P_{1}-P_{2}-P_{3}+P_{4}\right), \quad I=P_{1}+P_{2}+P_{3}+P_{4}
\end{array}\right.
$$

with P_{i} as the projection tensors to the four distributions. In this case the integrability condition $\left[F_{1}, F_{1}\right]=0$ for the structure F_{1} is written as:

$$
\left\{\begin{array}{l}
\left(P_{1}+P_{2}\right)\left[\left(P_{3}+P_{4}\right) u,\left(P_{3}+P_{4}\right) v\right]=0, \tag{24}\\
\left(P_{3}+P_{4}\right)\left[\left(P_{1}+P_{2}\right) u,\left(P_{1}+P_{2}\right) v\right]=0 .
\end{array}\right.
$$

This set is equivalent to the following set.

$$
\left\{\begin{array}{lll}
P_{1}\left[P_{k} u, P_{l} v\right]=0, & P_{2}\left[P_{k} u, P_{l} v\right]=0 ; & k, l=3,4, \tag{25}\\
P_{3}\left[P_{i} u, P_{j} v\right]=0, & P_{4}\left[P_{i} u, P_{j} v\right]=0 ; & i, j=1,2 .
\end{array}\right.
$$

Thus we have
Proposition 1. The integrability conditions for the class C^{ω} structure $\left\{F_{1}, F_{2}, F_{3}\right\}$ related to a $4-\pi$-structure is given by

$$
\begin{equation*}
\left[F_{1}, F_{1}\right]=0, \quad\left[F_{2}, F_{2}\right]=0 \quad \text { and } \quad\left[F_{3}, F_{3}\right]=0 . \tag{26}
\end{equation*}
$$

Because this set is equivalent to the integrability conditions (6) for the case $r=4$. This proposition together with Proposition 1 improve a theorem stated in [4] by deleting a redundant condition.

It can also be shown that
Proposition 2'. The integrability conditions for the class C^{*} structure $\left\{F_{1}, F_{2}, F_{3}\right\}$ giving a 4-т-structure are [5]:

$$
\begin{equation*}
\left[F_{1}, F_{1}\right]=0, \quad\left[F_{2}, F_{2}\right]=0 \quad \text { and } \quad\left[F_{1}, F_{2}\right]=0 . \tag{27}
\end{equation*}
$$

It is obvious that in the set (27) the condition $\left[F_{1}, F_{2}\right]=0$ may be replaced by

$$
\begin{equation*}
\left[\alpha F_{1}+\beta F_{2}, \alpha F_{1}+\beta F_{2}\right]=0 \quad \text { with } \quad \alpha \beta \neq 0 . \tag{28}
\end{equation*}
$$

Take $\alpha F_{1}+\beta F_{2}=(1 / 2)\left(\frac{1}{\lambda_{1}} F_{1}+\frac{1}{\lambda_{2}} F_{2}\right)=P_{1}-P_{4}$, then (28) can be written

$$
\begin{equation*}
\left[P_{1}-P_{4}, P_{1}-P_{4}\right]=\left[P_{1} P_{1}\right]+\left[P_{4} P_{4}\right]-\left[P_{1} P_{4}\right]=0 \tag{29}
\end{equation*}
$$

which is in turn equivalent to

$$
\begin{equation*}
P_{i}\left(\left[P_{1} P_{1}\right]+\left[P_{4} P_{4}\right]-\left[P_{1} P_{4}\right]\right)=0 ; \quad i=1,2,3,4 \tag{30}
\end{equation*}
$$

These conditions are respectively written as

$$
\left\{\begin{array}{l}
P_{1}\left[\left(P_{2}+P_{3}+P_{4}\right) u,\left(P_{2}+P_{3}+P_{4}\right) v\right]+P_{1}\left[P_{4} u P_{4} v\right] \\
\quad+P_{1}\left[\left(P_{2}+P_{3}+P_{4}\right) u, P_{4} v\right]+P_{1}\left[P_{4} u,\left(P_{2}+P_{3}+P_{4}\right) v\right]=0
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
P_{2}\left[P_{1} u, P_{1} v\right]+P_{2}\left[P_{4} u, P_{4} v\right]-P_{2}\left[P_{1} u, P_{4} v\right]-P_{2}\left[P_{4} u, P_{1} v\right]=0, \tag{31}\\
P_{3}\left[P_{1} u, P_{1} v\right]+P_{3}\left[P_{4} u, P_{4} v\right]-P_{3}\left[P_{1} u, P_{4} v\right]-P_{3}\left[P_{4} u, P_{1} v\right]=0, \\
P_{4}\left[\left(P_{1}+P_{2}+P_{3}\right) u,\left(P_{1}+P_{2}+P_{3}\right) v\right]+P_{4}\left[P_{1} u, P_{1} v\right] \\
\quad+P_{4}\left[P_{1} u,\left(P_{1}+P_{2}+P_{3}\right) v\right]+P_{4}\left[\left(P_{1}+P_{2}+P_{3}\right) u, P_{1} v\right]=0 .
\end{array}\right.
$$

These give 26 conditions in all, and which cover all conditions supplied by

$$
\left[F_{3} F_{3}\right]=0 \text { (i.e., }\left[P_{1}+P_{4}, P_{1}+P_{4}\right]=0 \quad \text { or }\left[P_{2}+P_{3}, P_{2}+P_{3}\right]=0 \text {). }
$$

Since $\left[P_{2}-P_{3}, P_{2}-P_{3}\right]=0$ gives analoguous conditions which together with (31) cover all conditions in (6) for the case $r=4$, we have

PROPOSITION 5. The following set is also the integrability conditions for the class C^{ω} structure $\left\{F_{1}, F_{2}, F_{3}\right\}$ giving a $4-\pi$-structure:

$$
\left[(1 / 2)\left(\frac{1}{\lambda_{1}} F_{1}+\frac{1}{\lambda_{2}} F_{2}\right),(1 / 2)\left(\frac{1}{\lambda_{1}} F_{1}+\frac{1}{\lambda_{2}} F_{2}\right)\right]=\left[P_{1}-P_{4}, P_{1}-P_{4}\right]=0,
$$

$$
\begin{equation*}
\left[(1 / 2)\left(\frac{1}{\lambda_{1}} F_{1}-\frac{1}{\lambda_{2}} F_{2}\right),(1 / 2)\left(\frac{1}{\lambda_{1}} F_{1}-\frac{1}{\lambda_{2}} F_{2}\right)\right]=\left[P_{2}-P_{3}, P_{2}-P_{3}\right]=0 . \tag{32}
\end{equation*}
$$

5. We are now going to discuss on the integrability conditions for the (ϕ, ψ)-structures of class C^{ω}. (ϕ, ψ)-structures can be divided into the following three cases :
$1^{\circ} . \psi^{2}-\phi^{2}=1, \phi \psi=0, \psi \phi=0$ and $\psi^{3}=\psi, \phi^{3}=-\phi ;$
2°. $\psi^{2}+\phi^{2}=-1, \quad \phi \psi=0, \quad \psi \phi=0$ and $\psi^{3}=-\psi, \phi^{3}=-\phi ;$
$3^{\circ} . \psi^{2}+\phi^{2}=1, \quad \phi \psi=0, \quad \psi \phi=0$ and $\psi^{3}=\psi, \phi^{3}=\phi$.
For the case 1°, put $\psi^{2}=P_{2}$ and $-\phi^{2}=P_{1}$. Then $P_{1}+P_{2}=1$ and $P_{1} P_{2}$ $=P_{2} P_{1}=0$. Thus we have two projection tensor fields. The subspaces of complexified tangent space at a point corresponding to P_{1} and P_{2} are denoted as R_{1} and R_{2} respectively. Then R_{2} consists of the vectors of the form $\psi^{2} u$ $=P_{2} u, R_{1}$ consists of the vectors of the form $-\phi^{2} u=P_{1} u$. Since $\psi P_{2} u=\psi^{3} u$ $=\psi^{2}(\psi u)=P_{2}(\psi u), \psi P_{1} u=-\psi \phi^{2} u=0$, and $\psi^{2} P_{2} u=P_{2}^{2} u=P_{2} u$, the transformation ψ acts on R_{2} as $\psi^{2}=1$ and kernel $\psi=R_{1}$. Similarly, $\phi P_{2} u=\phi \psi^{2} u=0$,
$\phi P_{1} u=-\phi^{2}(\phi u)=P_{1}(\phi u)$ and $\phi^{2} P_{1} u=-P_{1}^{2} u=-P_{1} u$, so ϕ acts on R_{1} as $\phi^{2}=-1$ and kernel $\phi=R_{2}$.

The proper values of ψ on R_{2} are 1 or -1 . If ψ has only one proper value 1 on R_{2}, then $\psi P_{2} u=P_{2} u$ and $\psi u=\psi\left(P_{1}+P_{2}\right) u=\psi P_{2} u=P_{2} u$ for all u. Thus $\psi=P_{2}$ and $\psi^{2}=P_{2}{ }^{2}=P_{2}=\psi$. If ψ has only one proper value -1 on R_{2}, then $\psi P_{2} u=-P_{2} u$ and $\psi u=\psi\left(P_{1}+P_{2}\right) u=\psi P_{2} u=-P_{2} u$ for all u. Thus ψ $=-P_{2}$ and $\psi^{2}=P_{2}{ }^{2}=P_{2}=-\psi$.

If ψ has both proper values 1 and -1 on R_{2}, denote the subspaces of R_{2} corresponding to 1 and -1 as R_{22} and R_{23}. Let P_{22}, P_{23} be the projection tensors to R_{22} and R_{23}, then $P_{2}=P_{22}+P_{23}$ and $P_{1} P_{22}=P_{22} P_{1}=P_{1} P_{23}=P_{23} P_{1}=0$. Then $\psi P_{1} u=0, \psi P_{22} u=P_{22} u, \psi P_{23} u=-P_{23} u$ and $\psi u=\psi\left(P_{1}+P_{22}+P_{23}\right) u=\psi P_{22} u$ $+\psi P_{23} u=\left(P_{22}-P_{23}\right) u$. Therefore $\psi=P_{22}-P_{23}$ and $\psi^{2}=P_{22}+P_{23}=P_{2} \neq \pm \psi$.

Since ϕ acts on R_{1} as $\phi^{2}=-1$, so R_{1} is even dimensional and ϕ has proper values i and $-i$. Denote the subspaces of R_{1} corresponding to i and $-i$ as R_{11} and R_{14}, the projection tensors to these subspaces as P_{11} and P_{14}, then P_{1} $=P_{11}+P_{14}$ and $P_{11} P_{2}=P_{2} P_{11}=P_{14} P_{2}=P_{2} P_{14}=0$. Then $\phi P_{2} u=0, \phi P_{11} u=i P_{11} u$, $\phi P_{14} u=-i P_{14} u$ and $\phi u=\phi\left(P_{11}+P_{14}+P_{2}\right) u=\phi P_{11} u+\phi P_{14} u=i\left(P_{11}-P_{14}\right) u$. Therefore $\phi=i\left(P_{11}-P_{14}\right)$ and $\phi^{2}=-\left(P_{11}+P_{14}\right) \neq \pm \phi$.

Consequently, if $\psi^{2}= \pm \psi$, then the (ϕ, ψ)-structure defines a $3-\pi$-structure expressed by $\psi=P_{2}$ (or $-P_{2}$), $\phi=i\left(P_{11}-P_{14}\right)$. If $\psi^{2} \neq \pm \psi$, the (ϕ, ψ)-structure defines a $4-\pi$-structure expressed by $\psi=P_{22}-P_{23}, \phi=i\left(P_{11}-P_{14}\right)$.

For the case 2°, if we put $-\psi^{2}=P_{2}$ and $-\phi^{2}=P_{1}$ we can show that both ψ and ϕ act on R_{2} and R_{1} respectively as $\psi^{2}=-1$ and $\phi^{2}=-1$. Therefore this case always defines a $4-\pi$-structure which is expressed by $\phi=i\left(P_{11}-P_{14}\right)$, $\psi=i\left(P_{22}-P_{23}\right)$.

For the case 3°, if we put $\psi^{2}=P_{2}$ and $\phi^{2}=P_{1}$ we can show that both ψ and ϕ act on R_{2} and R_{1} respectively as $\psi^{2}=1$ and $\phi^{2}=1$. So as in case 1°, if $\psi^{2}= \pm \psi$ and $\phi^{2}= \pm \phi$ then the structure defines a $2-\pi$-structure F given by $F=P_{1}-P_{2}$. If $\psi^{2}= \pm \psi$ and $\phi^{2} \neq \pm \phi$, (or $\psi^{2} \neq \pm \psi$ and $\phi^{2}= \pm \phi$) then the (ϕ, ψ)-structure defines a $3-\pi$-structure expressed by $\psi=P_{2}$ (or $-P_{2}$) and $\phi=P_{11}-P_{14}$ (or $\psi=P_{22}-P_{23}, \phi=P_{1}$ (or $-P_{1}$)). If both $\psi^{2} \neq \pm \psi$ and $\phi^{2} \neq \pm \phi$, then the (ϕ, ψ)-structure defines a $4-\pi$-structure expressed by $\psi=P_{22}-P_{23}$, $\phi=P_{11}-P_{14}$.

It is to be noted that for a structure satisfying $\psi^{3}=-\psi$, it can not happen that $\psi^{2}= \pm \psi$. For, if $\psi^{2}= \pm \psi$ then $\psi^{3}= \pm \psi^{2}= \pm(\pm \psi)=\psi$. Thus from the above argument we have

Proposition 6. A (ϕ, ψ)-structure defines a $2-\pi$-structure if and only if $\psi^{2}= \pm \psi$ and $\phi^{2}= \pm \phi$. It defines a $3-\pi$-structure if and only if $\psi^{2}= \pm \psi$ and $\phi^{2} \neq \pm \phi$ or $\psi^{2} \neq \pm \psi$ and $\phi^{2}= \pm \phi$. It defines a $4-\pi$-structure if $\psi^{2} \neq \pm \psi$ and $\phi^{2} \neq \pm \psi$.
6. If the (ϕ, ψ)-structure defines a $2-\pi$-structure $F=P_{1}-P_{2}=2 P_{1}-1$, then $\phi= \pm P_{1}$ and $\psi= \pm P_{2}$, so $F= \pm 2 \phi-1$. Consequently, the integrability condition is given by $[F, F]=4[\phi, \phi]=0$ (or $[\psi, \psi]=0$.)

If the (ϕ, ψ)-structure defines a $3-\pi$-structure and $\psi^{2}= \pm \psi$ and $\phi^{2} \neq \pm \phi$, then $\phi=P_{11}-P_{14}$ or $\phi=i\left(P_{11}-P_{14}\right)$ according as $\phi^{2}=1$ or $\phi^{2}=-1$ on R_{1}. Thus $[\phi, \phi]=0$ gives $\left[P_{1}-P_{3}, P_{1}-P_{3}\right.$] $=0$ (where $P_{1}=P_{11}, P_{3}=P_{14}$) and this is the integrability condition as already shown in the proof of Proposition 3. Thus we have:

Proposition 7. If the (ϕ, ψ)-structure of class C^{ω} satisfies $\psi^{2}= \pm \psi$ (or $\left.\phi^{2}= \pm \phi\right)$ then the integrability condition is given by $[\phi, \phi]=0($ or $[\psi, \psi]=0)$.

Now, if we put $\psi=1+f^{2}, \phi=f$ in the case of structure f satisfying $f^{3}+f=0$, then we have $\phi \psi=\psi \phi=f^{3}+f=0$, so it defines a (ϕ, ψ)-structure of case 1° with $\psi^{2}=\psi$ and the integrability condition is $[\phi, \phi]=[f, f]=0$ as shown above.
$A(\phi, \xi, \eta)$-structure on $(2 n+1)$-dimensional manifold is a structure defined by a tensor field ϕ_{j}^{i}, a contravariant vetor field ξ^{i} and a covariant vector field η_{j} satisfying

$$
\xi^{i} \eta_{i}=1, \quad \operatorname{rank} \phi=2 n, \quad \phi_{j}{ }^{i} \xi^{j}=\phi^{i}{ }_{j} \eta_{i}=0 \quad \text { and } \quad \phi_{j}^{i} \phi_{k}^{j}=-\delta_{k}^{i}+\xi^{i} \eta_{k} .
$$

Therefore, if we put $\psi_{k}^{i}=\xi^{i} \eta_{k}$, then we have $\psi^{2}-\phi^{2}=1, \phi \psi=\psi \phi=0$ and $\psi^{2}=\psi$. This is a special case of the above structure f, and the the integrability condition is also $[\phi, \phi]=0$.

Finally, if the (ϕ, ψ)-structure defines a $4-\pi$-structure (that is, if $\psi^{2} \neq \pm \psi$ and $\left.\phi^{2} \neq \pm \phi\right)$, then $\phi=P_{11}-P_{14}$ or $\phi=i\left(P_{11}-P_{14}\right)$ according as $\phi^{2}=1$ or $\phi^{2}=-1$ on R_{1}; and $\psi=P_{22}-P_{23}$ or $\psi=i\left(P_{22}-P_{23}\right)$ according as $\psi^{2}=1$ or $\psi^{2}=-1$ on R_{2}. Thus $[\phi, \phi]=0$ gives $\left[P_{1}-P_{4}, P_{1}-P_{4}\right]=0$ (where $P_{1}=P_{11}, P_{4}=P_{14}$) and $[\psi, \psi]=0$ gives $\left[P_{2}-P_{3}, P_{2}-P_{3}\right]=0$ (where $P_{2}=P_{22}, P_{3}=P_{23}$). It is shown in the proof of Proposition 5 that these two conditions give the integrability conditions of the corresponding $4-\pi$-structure. Thus we have

PROPOSITION 8. If $\psi^{2} \neq \pm \psi$ and $\phi^{2} \neq \pm \phi$, then the integrability conditions for the (ϕ, ψ)-structure of class C° are $[\phi, \phi]=0$ and $[\psi, \psi]=0$.

References

[1] S. SASAKI, On differentiable manifolds with (ϕ, ψ)-structures, Tôhoku Math. Journ., 13(1961), 132-153.
[2] S. SASAKI, On differentiable manifolds with certain structures which are closely related to almost contact structure I, Tôhoku Math. Journ., 12(1960), 456-476.
[3] C. J. Hsu, On some properties of π-structures on differentiable manifold, Tôhoku Math. Journ., 12(1960), 429-454.
[4] C. J. Hsu, Note on the integrability of a certain strcuture on differentiable manifold, Tôhoku Math. Journ., 12(1960), 349-360.
[5] C.S. Houn, The integrability of a structure on a differentiable manifold, Tôhoku Math. Journ., 17(1965), 72-75.
[6] S. Ishihara and K. Yano, On integrability conditions of a structure f satisfying $f^{3}+f$ $=0$, Quarterly Journ. of Math., 15(1964), 217-222.

Kansas State University
University of Manitoba

[^0]: 1) Numbers in brackets refer to the reference at the end of the paper.
